
Appendix B

Example of correcting individuals

This appendix gives an example of how an individual is generated using either the LTM and
ATM methods as explained in Section 4.5.1. Just as an example, we will assume that we
have a case where the model and data graphs contain respectively 8 and 10 vertices (|VM | = 8
and |VD| = 10). Therefore, the length of an individual will be of 10 variables.

Both LTM and ATM are methods that act directly on the simulation step of EDAs.
Therefore, we need to perform first the learning step following the EDA that we have chosen.
The learning step will return a Bayesian network (in this case with a size of 10 nodes) as well
as the estimation of the distribution pl(x) obtained from the N selected individuals, being
the latter in the form of the different conditional probabilities θijk as defined in Equation 4.3.

We will assume that the learned Bayesian network structure is the one shown in Fig-
ure B.1. As explained before, the Bayesian network shows interdependencies between the
variables (e.g. in this case this structure is showing that the value taken by variable 1 is
dependent on the value of variables 2 and 9, that is, the matching assigned to vertex 1 of
the data graph GD is dependent on the matching assigned to vertices 2 and 9 of the same
graph GD, while the latter vertices can be matched to any vertex of GM independently of
the rest of matches). Following this Bayesian network, it is important to have a look at the
different combination of values of the parent-variables: in the case of nodes 2, 5 and 9, they
do not have parents, so they are considered as independent. Nodes 3, 4, 6, 7 and 10 have
a single parent, and therefore the possible combination of values for the parents is |VM |=8
(i.e. the number of values that the only parent can take). Finally, nodes 1 and 8 have two
parents each, and therefore the number of possible combinations of values of the two parents
is |VM |2 = 64. Having all this into account, the probabilities that we will have to compute
are just the following: θ2−k, θ9−k, θ31k . . . θ38k, θ11k . . . θ1(64)k, θ41k . . . θ48k, θ61k . . . θ68k, θ71k

. . . θ78k, θ(10)1k . . . θ(10)8k, θ5−k, and θ81k . . . θ8(64)k , where k = 1 . . . |VM | in all the cases.

Just as an example for our purposes, we will assume that the value of these probabilities
is uniform (this is not normally the case, we just do it for simplicity).

At this stage, we will start the simulation step in order to create the new R individuals of
the next generation. Each individual x= (x1, . . . , x|VD |) has to be generated by instantiating
each of the variables one after another. For this we will use the PLS method in which
an ancestral ordering π of the nodes in the Bayesian network is followed as explained in
Section 4.2.2. An ancestral ordering is any ordering in which any variable is placed after all
its parent variables on the Bayesian network. A possible ancestral ordering for the Bayesian
network in Figure B.1 is (2, 9, 3, 1, 6, 4, 7, 10, 5, 8), but others such as (2, 9, 5, 3, 4, 6, 1, 7, 10, 8)
or (9, 1, 7, 10, 5, 8, 2, 3, 4, 6) could also be considered. Any of these could be used, but we will
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B.1 Simulation with LTM

Figure B.1: Example of a Bayesian network structure.

select the first one: π = (2, 9, 3, 1, 6, 4, 7, 10, 5, 8).
Once the ancestral ordering has been found, we will start generating individuals. We

will instantiate the variables or each individual following the ancestral ordering, π. We will
proceed similarly at the beginning either for LTM and ATM, where initially V NO(VM )1 =
{1, 2, 3, 4, 5, 6, 7, 8} and vns1 = |VD| = 10.

B.1 Simulation with LTM

Following π, we will start with variable X2 (π(1) = 2). Variable X2 is independent from the
rest, and the probability to take any of its possible values is the same (∀k = 1 . . . |VM |, θ2−k =

1
|VM |). As the condition |V NO(VM )1| = vns1 is not satisfied no modifications are to be done
on the probabilities, so we will select a value at random and we will assign it to variable X2.
Let us imagine that this value is 1. Variable X2 in the individual is set with this value, which
in other words means that in the solution represented by this individual we are matching
vertex 2 of GD with vertex 1 of GM .

The next variable to instantiate is X9 (π(2) = 9) which is also independent from the
rest, and its situation is the same (∀k = 1 . . . |VM |, θ9−k = 1

|VM |). This time we have that

V NO(VM )2 = {2, 3, 4, 5, 6, 7, 8} and vns2 = 9, and therefore |V NO(VM )2| = vns2 is not
satisfied. Therefore we will select a value at random. Let us again imagine that this value is
1, then we will assign the value 1 to variable X9.

So far, after finishing this second step we have the following individual:

1 1

The following variable to work with is X3 (π(3) = 3). Following the Bayesian network,
this variable is dependent of variable X2, which has already been instantiated. We said before
that its probabilities are equal, and therefore we have that ∀j, k = 1 . . . |VM |, θ3jk = 1

|VM | . As

V NO(VM )3 = {1, 3, 4, 5, 6, 7, 8, 10} and vns3 = 8, we have again that |V NO(VM )3| 6= vns3,
following its distribution we select a value at random. Let us now imagine that this value is
4, thus so we assign the value 4 to variable X3.
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Example of correcting individuals

In a similar way, we will now consider next variable X1 (π(4) = 1), which is dependent
on variables X2 and X9. As it depends in two parent-variables instead on in one as before,
in this case ∀k = 1 . . . |VM | j = 1 . . . |VM |2, θ12k = 1

|VM | and θ1jk = 1
|VM | . We also have that

V NO(VM )4 = {1, 2, 3, 5, 6, 7, 8} and vns4 = 7, |V NO(VM )4| 6= vns4. Therefore following
the distribution of this value, we select a value at random, and let us imagine that we obtain
one more time the value 1. So far we have the following individual:

1 1 4 1

Next, the variable X4 is treated (π(3) = 4). Variable X4 is dependent only on vari-
able X3, which has already been instantiated. In this case we have a single parent, and
therefore ∀j, k = 1 . . . |VM |, θ6jk = 1

|VM | . If we were in an ordinary PLS simulation ap-
proach, a value would have been chosen at random. However, this time we have that
V NO(VM )5 = {2, 3, 5, 6, 7, 8} and vns5 = 6, that is, the condition |V NO(VM )5| = vns5

is satisfied. As a result, following the LTM approach, we have to modify the θ6jk probabil-
ities before instantiation so that values already appeared in previous steps do not appear
again. We do this because the number of variables to instantiate equals the number of values
still not appeared in the individual. Following Equation 4.42 we modify the probabilities as
follows:

θ6j1 = 0, θ6j4 = 0, θ6jk =
1

|VM | − 2
∀j = 1 . . . |VM |, k = 2, 3, 5, 6, 7, 8, 9, 10 (B.1)

In other words, we set the probabilities for the values already appeared to 0, avoiding them
to appear for this variable, and we normalize the rest of probabilities. Doing it so, we make
sure that the next value that will be instantiated will not be neither 1 nor 4.

As with this last case, in the successive variables to simulate, the condition |V NO(VM )m| =
vnsm m = 6, 7, 8, 9, 10 will be satisfied, and therefore for each of these variable to instantiate
a value not yet appeared will be assigned. Therefore LTM will ensure that all the vertices
in GM will have at least a vertex from GD to which are matched.

Note that the procedure followed with LTM is basically the same as PLS until the con-
dition |V NO(VM )m| = vnsm is satisfied. If random values would be different, the latter
condition was never satisfied, and the LTM procedure will behave as an ordinary PLS ap-
proach.

B.2 Simulation with ATM

ATM is somehow more complex than LTM in the sense that all the θijk probabilities are
manipulated even before the condition |V NO(VM )m| = vnsm is satisfied.

In ATM the probabilities change in relation to a value K =
⌈

N−vnsm

vnsm−|V NO(VM )m|

⌉

. This

will be used for adapting the probabilities when the condition |V NO(VM )m| = vnsm is
satisfied. The finality is to give more probability to values not appeared yet and to lower
the rest.

Following our example, we will assume that the value for N is 1000 and that the ancestral
ordering of choice is the same as in the LTM example. Following it, variable X2 will be treated
first (π(1) = 2). As the condition |V NO(VM )1| = vns1 is not satisfied, following the ATM
approach we compute the values K and PIndiv:

K =

⌈

N − vns1

vns1 − |V NO(VM )1|

⌉

=

⌈

1000 − 10

10 − 8

⌉

= 495
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B.2 Simulation with ATM

P 1
Indiv =

∑

k | uk

M
∈VM\V NO(VM )1

θ2−k = 0.

As we have at the beginning that all vertices of GM are in V NO(VM )1, then all the
probabilities will be changed following Equation 4.43 by multiplying then by the following
factor:

K − Pm
Indiv

K ·
(

1 − Pm
Indiv

) =
495 − 0

495 · 1
.

This means that all the probabilities will not be changed. As before a value will be
obtained for variable X2 at random following its distribution (∀k = 1 . . . |VM |, θ2−k = 1

|VM |).
Let us imagine that this value is 1 as in the LTM example .

The second variable to treat is X9 (π(2) = 9). We know that |V NO(VM )2| = vns2 is not
satisfied, so following the ATM approach we have that:

K =

⌈

N − vns2

vns2 − |V NO(VM )2|

⌉

=

⌈

1000 − 9

9 − 7

⌉

= 496

P 1
Indiv =

∑

k | uk

M
∈VM\V NO(VM )1

θ2−k =
1

|VM |
=

1

8
= 0.125.

Following Equation 4.43 we will now have a slight change on the probabilities:

θ∗9−k =

{

θ9−k · 496−0.125
496·(1−0.125=θ9−k ·1.14) if k = 2, 3, 4, 5, 6, 7, 8

θ9−k

496 if k = 1 .

This example shows that as |V NO(VM )m| and vnsm are more similar the effect on the
probabilities will be stronger. This change in the probabilities is applied to all the variables
to instantiate until the condition |V NO(VM )m| = vnsm is satisfied, and then ATM behaves
like LTM. The effect on this method is that learned probabilities are manipulated even more
than with LTM, and therefore values not yet appeared are more possible to appear.
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