
Chapter 3

Graph matching as a combinatorial

optimization problem with

constraints

‘The beginning of knowledge is the discovery of something we

do not understand.’

Frank Herbert

3.1 Introduction

Let us introduce some notations. We will call GM = (VM , EM) the model graph and GD =
(VD, ED) the data graph which contains the image segments that have to be matched against
GM , where Vi is the set of vertices and Ei is the set of edges of graph Gi (i = M,D). In
inexact graph matching problems GD is assumed to contain more segments than GM , as
that is the case when generated from an over-segmented image. Usual constraints for the
matching are that each vertex of GD is matched with exactly one vertex of GM (which
assumes that no unexpected objects are present on the image data) and that each vertex of
GM is matched at least with one vertex of GD (which assumes that all model objects are
indeed present in the image)1. In Section 3.2, we summarize how such constraints are taken
into account in existing methods.

In order to solve any problem using combinatorial optimization techniques, it is necessary
to find a means to represent each of the solutions to the problem as a vector of values
(usually this is known as an individual), as well as a fitness function to evaluate each of
these solutions so that the algorithm can distinguish among good and bad solutions. In
Section 3.3, we address the problem of representing solutions as individuals. Constraints
are introduced either in the representation itself, or as an elimination process of incorrect
individuals. In Section 3.4 we deal with the definition of fitness functions.

1This implies in particular that the method is not directly applicable to incomplete models or to images
with pathologies (in the case of medical images).

19

3.2 Graph matching problems with special constraints in the literature

3.2 Graph matching problems with special constraints in the

literature

Some real graph matching problems contain more specific constraints that any valid homo-
morphism has to satisfy apart from the ones commented so far. These constraints are very
specific for each graph matching problem, but they usually taken into account when gen-
erating the graph attributes. [Feder and Vardi, 1999] propose a framework based on group
theory for constraint satisfaction in NP-complete problems such as attributed graph isomor-
phism. Authors claim that this framework can also be applied to any other type of graph
matching problems. Also, the complexity of rules and constraints in conceptual graphs is
analyzed in [Baget and Mugnier, 2002]. In [Blake, 1994] the idea of partitioning the graph
matching problem into sub-problems under the control of constraints is considered. Addi-
tionally, in [Liu, 1997b] a method that provides a design advisory system for mechanical
components is developed by building a scheme for modelling constraints by defining a new
type of graphs called constraint graphs. In this work, the representation and management
of constraints are elaborated using a graph-based approach in the form of constraint graphs.
The product design optimization is formulated as a graph matching problem and solved by
integer programming techniques.

However, regarding graph matching algorithms and methods to find correct solutions,
one of most applied mechanisms for obtaining only valid solutions at the end of the search in
problems with constraints is the use of a particular type of neural networks called Hopfield
networks [Suganthan et al., 1995, Suganthan and Yan, 1998, Suganthan et al., 1999]. This
approach encodes the constraints of the problem in a way that a fitness function does not
have to take them into account. This is achieved due to the ability of the network to learn the
constraint parameter adaptively, as the adaptation scheme eliminates the need to specify the
constraint parameter empirically and generates valid and better quality mappings. Another
approach is proposed in [Gangnet and Rosenberg, 1993], which is an illustration on how
to apply constraints using the method proposed for constraint solving in [Freeman-Benson
et al., 1990]. The authors claim that their approach is simple and efficient for constraint
resolution when applied to graph matching problems. Finally, a mean field annealing neural
network is proposed as a constraint satisfaction network in [Lyul and Hong, 2002].

Examples of real graph matching problems with constraints introduced in the literature
are frontal face authentication [Ma and Xiaoou, 2001, Tefas et al., 2001], and topographical
constraints in face recognition [Wiskott, 1999].

3.3 Representations of graph matching solutions by means of

individuals

A solution to a graph matching problem is an association between vertices of GM and vertices
of GD satisfying the required constraints of the particular problem. Regarding the way of
representing a solution by means of individuals, the type of values that these can contain
allow us to classify the different individual formats or representations as

• discrete individuals: all the values in the individual are discrete,

• continuous individuals: all the values in the individual are continuous.

20 Endika Bengoetxea, PhD Thesis, 2002

Graph matching as a combinatorial optimization problem with constraints

The type of individual representation used is also a factor that is determined by the type
of combinatorial optimization technique to be applied2. For instance, Genetic Algorithms
(GAs) are usually applied only to discrete individuals, while other techniques such as Evolu-
tionary Strategies (ESs) can only be applied to continuous individuals. EDAs can be applied
to both types of individuals, as under this paradigm there are many different algorithms
available that will be described in the next chapter.

It is important to note that, independently of using discrete or continuous individuals,
different individual representations can be used for a same problem. When selecting an
individual representation it should be taken into account that this choice is an important
factor that will condition the evolution of the search process. Just as an example on the
type of factor that should be considered, it is convenient not to use ambiguous individual
representations in which two different individuals represent a same solution for the problem.
However, in some cases the individual representation used allows the existence of ambiguities
but this aspect is controlled deliberately.

3.3.1 Individual representations in the discrete domain

We denote by VM = {u1
M , u2

M , . . . , u
|VM |
M } and VD = {u1

D, u2
D, . . . , u

|VD|
D } the set of vertices of

GM and GD respectively. There are different ways of representing individuals with discrete
values for inexact graph matching, two examples of which are as follows:

Representation 1: Individuals with |VM | · |VD| genes or variables cij , that only take values 0
and 1.

For 1 ≤ i ≤ |VM | and 1 ≤ j ≤ |VD|, cij = 1 means that the vertex u
j
D of GD is

matched with the vertex ui
M of GM .

This is the representation used for instance in [Boeres et al., 1999].

Representation 2: Individuals with |VD| genes or variables, Xi i = 1, . . . , |VD|, where each of
them that can take any value between 1 and |VM |.

For 1 ≤ k ≤ |VM | and 1 ≤ i ≤ |VD|, Xi = k means that the vertex ui
D of GD is

matched with the uk
M vertex of GM .

The latter is the representation of individuals that we have selected for EDAs and GAs for
reasons that will be explained in Section 3.3.3. Therefore, in this case individuals contain as
many variables as vertices are in GD (|VD| vertices), and each of the variables can take as
many values as vertices are in GM (|VM | values).

The biggest drawback of using any of these two representations is that some individuals
can represent solutions that are not acceptable for the problem, that is, that do not satisfy
a set of constraints defined beforehand. In this thesis we will deal with very particular
constraints. These will be discussed later in Section 3.3.3.

Representation 3: Individual representation based on a permutation of values. The individual
can also be represented as a permutation of discrete values. A permutation is a list of
numbers in which all the values from 1 to n have to appear in an individual of size n.
In this case, the values of the individual do not represent directly the matching of each

2It must be said that even in the case of using a continuous individual representation we will still have
a combinatorial optimization problem since in our approach continuous individuals are transformed to a
permutation of discrete values. This procedure is explained later in this chapter.

Endika Bengoetxea, PhD Thesis, 2002 21

3.3 Representations of graph matching solutions by means of individuals

GD, but the order in which each vertex of GD will be matched following a predefined
procedure. Permutation-based individual representations have been typically applied
to problems such as the Travelling Salesman Problem [Flood, 1956] or the Vehicle
Routing Problem [Fiala, 1978]. An illustrative example of applying permutations to
genetic algorithms for solving these problems can be found in [Freisleben and Merz,
1996]

For the particular graph matching problems in this thesis, we have applied individual repre-
sentations 2 and 3 for the discrete domain. In both cases, discrete individuals have a length
of |VD| variables, where the number of values that each variable can take are |VM | or |VD|
for Representations 2 and 3 respectively. In addition, due to the type of graph matching
problems that this thesis deals with, we have decided to add constraints that have to be
satisfied by any valid solution (independently of the representation used), which are defined
in Section 3.3.3

From the permutation to the solution it represents

Once having the permutation, the individual has to be translated to the solution it symbolizes
so that it can be evaluated. Because the evaluation of an individual is executed many times
by any graph matching algorithm, it is important that this translation is performed by a
fast and simple algorithm.

Evaluating a solution requires to compare vertices of GM and vertices of GD. If we have
a permutation, a solution can be evaluated by comparing the vertices in the order given by
the permutation and deciding which is the most similar by means of a similarity function,
$(i, j), defined to compute the similarity between vertices of GD. The similarity measures
used so far in the literature have been applied to two vertices [Perchant et al., 1999, Perchant
and Bloch, 1999, 2000b, Perchant, 2000, Perchant and Bloch, 2000a], one from each graph,
and their goal has been to help in the computation of the fitness of a solution, that is, the
final value of a fitness function.

Figure 3.1 shows a procedure that could be used in order to translate a permutation of
discrete values –an individual x= (x1, . . . , x|VM |, x|VM |+1, . . . , x|VD |)– to the solution that it
represents. This procedure follows an idea inspired on the partitional clustering algorithms
proposed in [McQueen, 1967] and specially in [Forgy, 1965], and it is divided in two main
steps as follows:

• In the first step the values x1 to x|VM | are directly matched to vertices of GM from 1
to |VM | respectively.

• For each of the next values of the individual, x|VM |+1 to x|VD|, and again following the
order given in the permutation, the most similar vertex of GD based on the similarity
measure $(i, j) will be selected, and its previously matched vertex of GM will be also
chosen as the matching for the new vertex.

Permutation-based representations can be used for any graph matching problem. A
detailed example of this method, as well as a deeper explanation of it can be found in
Appendix A and in [Bengoetxea et al., 2001c,d].

Another important aspect of using a permutation-based approach is the fact that the
cardinality of the search space is |VD|!, which is different from the |GM ||GD | cardinality of

22 Endika Bengoetxea, PhD Thesis, 2002

Graph matching as a combinatorial optimization problem with constraints

From permutations to the solution

Definitions

|VM |: number of vertices in the model graph GM

|VD|: number of vertices in the data graph GD (where |VD| > |VM |)
Size of the individual (the permutation): |VD|
x= (x1, . . . , x|VD |): individual containing a permutation

xi ∈ {1, . . . , |VD|}: value of the ith variable in the individual
PVi = {x1, . . . , xi−1}: set of values assigned in the individual to

the variables X1, . . . ,Xi−1. (PV = previous values)
$(i, j): similarity function that measures the similarity between

vertex i and vertex j (with i, j ∈ VD)

Procedure

Phase 1

For i = 1, 2, . . . , |VM |
(first |VM | values in the individual, treated in order)

Match vertex xi ∈ VD of data graph GD

with vertex i ∈ VM in model graph GM

Phase 2

For i = |VM | + 1, . . . , |VD|
(remaining values in the individual, treated in this order)

Let k ∈ PVi be the most similar vertex to xi from
all the vertices of PVi (k = arg maxj=1...i−1 $(i, j))

Match vertex xi ∈ VD of data graph GD

with the vertex that is matched to vertex k of GM

Figure 3.1: Pseudocode to compute the solution represented by a permutation-based individual.

the previously described individual representation. Moreover, the fact of using permutations
and a similarity measure $(i, j) leads to redundancies in the solutions, as two different
permutations may correspond to the same solution. An example of this is also shown again
in Appendix A and in [Bengoetxea et al., 2001a,c].

Definition of the similarity

The definition of the similarity function $(i, j) is very important in the translation procedure
from a permutation-based individual to the solution it symbolizes. There are three main
aspects to be taken into account when defining this function for its use in the second step of
the translation procedure:

1. Which vertices have to be compared. The two vertices to compare can be of graph
GD, or both from graph GD (e.g. $(i, j) has two parameters, vertex i and vertex j,
we know that i ∈ VD, the choice is either j ∈ VM or j ∈ VD). Other approaches are
also possible, for instance combining the similarity of vertices from both GM and GD

Endika Bengoetxea, PhD Thesis, 2002 23

3.3 Representations of graph matching solutions by means of individuals

and assigning them a weight, or also by having a fitness function capable of returning
a value for individuals that are not correct permutations.

2. Recalculating or not the similarity measure as the individual is being gen-

erated. The function $(i, j) could be constant or not for any two vertex values. In
the latter case, the similarity value can be assumed to vary depending on the vertices
that have already been matched while the individual is being instantiated. In that
case, each time that a variable is instantiated, the values of $(i, j) will vary depending
on the effect of the new and the previous matchings. In other words, this means that
in the second step of the translation an extra clustering procedure would be required,
such as the cluster analysis proposed in [Forgy, 1965], in order to update the function
$(i, j).

3. Selection of the attributes of both vertices and edges that will be used for

measuring the similarity. This aspect is specific for each particular problem. This
choice will determine to an important degree the behavior of the algorithm.

In [Bengoetxea et al., 2001c,d] we propose a similarity measure $(i, j) that is used to
measure the similarity between vertices of the same graph GD, which has fixed similarity
values and therefore no variations apply during the instantiation of individuals.

3.3.2 Individual representations in the continuous domain

Continuous EDAs provide different algorithms for the continuous domain that could be more
suitable for some problems (see Section 4.4). Nevertheless, the representation of individuals
has to be defined in the most appropriated way to obtain the best performance with this
approach.

Individuals in this approach consist of a continuous value in <n. The main goal is to
find a representation of individuals and a procedure to obtain an univocal solution to the
matching from each of the possible permutations.

For this case we propose as an example a strategy based on the mechanism of the previous
section, trying to translate the individual in the continuous domain to a correct permutation
in the discrete domain. This translation will give us a permutation of discrete values, and we
would proceed as explained in Section 3.3.1 in order to obtain the solution that the individual
symbolizes.

Again, this new representation of individuals does not give a direct meaning of the solu-
tion it represents. This new type of representation can also be regarded as a way to change
the search from the discrete to the continuous world, which allows us to apply techniques to
estimate densities that are completely different from the ones used in discrete domains.

As this procedure to translate from the continuous world to the discrete one has to be
performed for each individual as an additional step to the method introduced in the previous
section, this process has to be fast and simple enough in order to reduce computation time.

Taking these aspects into account, we show as an example a method that can easily be
applied to graph matching problems. The individual size is set to |VD| as before, where each
of the variables of the individual can take any value following a Gaussian distribution. In
order to obtain a translation to a discrete permutation, we propose to order the continuous
values of the individual, and to set its corresponding discrete values by assigning to each
xi ∈ {1, . . . , |VD|} the respective order in the continuous individual. The procedure described
in this section is shown as pseudocode in Figure 3.2.

24 Endika Bengoetxea, PhD Thesis, 2002

Graph matching as a combinatorial optimization problem with constraints

From a continuous value in <n to a permutation

Definitions

n = |VD|: size of the individual, which is the number of
vertices in data graph GD (the permutation)

x
C= (xC

1 , . . . , xC
|VD |): individual containing continuous

values (the input)
x

D= (xD
1 , . . . , xD

|VD |): individual containing a permutation

of discrete values (the output)
xD

i ∈ 1, . . . , n: value of the ith variable in the individual

Procedure

Order the values xC
1 , . . . , xC

|VD| of individual x
C using any

fast sorting algorithm such as Quicksort
Let ki be position in which each value xC

i (1 6 i 6 |VD|) occupies
after ordering all the values

The values of the individual x
D will be set in the following way:

∀i = 1, . . . , |VD| xD
i = ki

Figure 3.2: Pseudocode to translate from a continuous value in <n to a discrete permutation com-
posed of discrete values.

3.3.3 Conditions for a correct individual in a graph matching problem

Each of the different image recognition problems that are solved using graph matching tech-
niques has particularities that have to be taken into account by any acceptable solution. Due
to this, the way of considering the constraints in a graph matching approach is an impor-
tant aspect that has to be considered attentively. A useful way of dealing implicitly with
constraints is to select an individual representation that does not allow the possibility for
invalid individuals to appear. Unfortunately, this representation does not always exist, and
satisfaction of the constraints need to be tackled using explicit mechanisms.

In order to show how problem specific constraints can be tackled explicitly, independently
of the representation of individuals of choice, we will consider that any individual to represent
a correct solution for graph matching examples in this thesis satisfies all the following 3
conditions:

1. All the vertices in GD must have a corresponding match with a vertex in GM . For
some type of images such as the ones in cartography this condition is not necessary:
sometimes when comparing a new photograph with a previous map of the same area
additional objects such as new roads and new houses that cannot be matched could
appear. For these cases, the use of a dummy vertex is advised (this technique is
described in Section 2.2.2). In our graph matching problems in this thesis we do not
consider such cases and assume that all of our segments correspond at least to a vertex
in GM , and as a result no dummy vertex has to be defined (i.e. ∅ label has to be
added).

Endika Bengoetxea, PhD Thesis, 2002 25

3.3 Representations of graph matching solutions by means of individuals

2. Each vertex in GD can have at most a vertex matched in GM . It is not acceptable that
a segment in the image corresponds to more than a segment in the atlas. This aspect is
analyzed in general terms for graph matching problems in Section 2.2.3. This condition
is satisfied in the human brain structure recognition problem [Perchant and Bloch, 1999]
by applying over-segmentation techniques to the image, making sure that an object
in the model appears always properly divided in the segmented image. None of the
individual representations defined described in Section 3.3.1 do not allow matching
a vertex of GD against two or more segments in GM , and thus using any of those
representations this condition would not need to be controlled in the graph matching
algorithms (Section 4.2.2 explains more details about controlling the generation of
individuals).

3. All the vertices in GM must have at least a matched vertex of GD. We have decided to
add this additional assumption to the graph matching problems in this thesis, because it
also needs to be satisfied in some real graph problems such as the one that is introduced
in Section 7.2 for the recognition of human brain images.

It is important to ensure that the final solution of any graph matching algorithm corre-
sponds to a correct individual. Moreover, whichever the representation of individuals chosen,
any acceptable individual obtained with any of the methods proposed in GAs, EDAs, or any
other graph matching approach in order to be considered as acceptable for our problem.

The reason for considering constraints only for vertices and not for the edges is that when
using graph matching for image recognition in vertices represent image regions, and the only
constraints that considered here are about the properties that the best solution must satisfy.
In this sense, the arcs are used for representing information about relations between the
regions, but the final solution simply shows the matching vertex by vertex. Constraints such
as taking into account only some specific edges are also considered in these problems, but
these are applied when defining the fitness functions. The main difference between many
fitness functions proposed in Section 3.4 are actually the edges that are considered or ignored.

The choice of a particular representation of individuals reviewed in Section 3.3.1 is im-
portant to reduce the effort of controlling the satisfaction or not of these three conditions.
If we compare Representations 1 and 2 all the requirements to check whether an individual
is correct or not can be summarized as follows (the need to analyze the first condition is not
required since we have decided not to use dummy vertices in our problems):

1. Every vertex of GD must be matched with one and only one vertex of GM (2 first condi-
tions).

• Representation 1:
|VM |
∑

i=1

cij = 1 ∀j ∈ {1, . . . , |VD|}

• Representation 2:

This condition is inherent in the representation, there is no need to check
this condition.

2. Every vertex of GM must be matched at least with one vertex of GD (third condition).

26 Endika Bengoetxea, PhD Thesis, 2002

Graph matching as a combinatorial optimization problem with constraints

1 1 1 2 2 2 2 2 3 4 5 6 7 8

(a)

1 1 1 1 2 2 2 2 3 3 3 3 4 4

(b)

Figure 3.3: Representation of a correct individual (a), and an incorrect individual (b) for our graph
matching problem example, for the case that GM (the model graph) contains 8 vertices and GD (the
data graph representing the segmented image) contains 14 vertices.

• Representation 1:

∀i ∈ {1, . . . , |VM |} ∃j cij = 1

• Representation 2:

∀i ∈ {1, . . . , |VM |} ∃j Xj = i

This shows that the Representation 2 of individuals only requires to check actively the
third constraint. This is the reason why this representation will be used in our experiments on
this thesis. Note that the constraints we impose are a simplification of more general inexact
graph matching problems. The interest is that they restrict the set of possible solutions.

The case of Representation 3 of individuals of Section 3.3.1 is not comparable with the
other two ones. The reason for this is that the individuals themselves are not the ones that
have to satisfy these three conditions, and it is the solution that they symbolize the one that
needs to satisfy them. In fact, following the procedure described in Section 3.3.1 we ensure
that any individual will satisfy these constraints. As a result, we do not need to worry about
the correctness of the particular solutions when using this third representation of individuals.
However, the single constraint that these individuals must satisfy is that they must contain
a correct permutation, which becomes in practice a more restrictive property to satisfy than
the three conditions introduced in this section.

In order to illustrate the meaning of these constraints, we will consider as an example
a model graph GM containing 8 vertices (labelled from 1 to 8) and a data graph GD rep-
resenting the segmented image which contains 14 vertices (labelled from 1 to 14). If we
use the Representation 2 of individuals of Section 3.3.1 for our graph matching problem,
the individual in Figure 3.3a shows an example of a correct matching, where the first three
vertices of GD are matched with the vertex number 1 of GM , the next five vertices of GD are
matched with the vertex number 2 of the graph GM , and so on. In such a representation,
when generating new individuals the result can be an invalid solution (i.e. it does not satisfy
our constraint). The individual in Figure 3.3b is an example of an invalid solution for our
problem. In this case, the individual represents a matching for some of the vertices of GM ,
but there are still other vertices from this model graph (vertices 5, 6, 7 and 8) that have no
match at all.

Endika Bengoetxea, PhD Thesis, 2002 27

3.4 Fitness functions applied to graph matching

3.3.4 What to do with incorrect individuals?

It is important to decide what to do with these incorrect individuals. In the literature many
papers can be found in the domain of GAs where the existence of incorrect individuals is
allowed hoping that these individuals can lead to the generation of fitter correct individuals.
In many other articles [Richardson et al., 1989, Smith and Tate, 1993], individuals not
representing a valid solution for the problem are either corrected or penalized. Here, we
consider all these possibilities and compare them to each other (see Section 4.5). EDAs
have been applied to problems with constraints in very few cases [Bengoetxea et al., 2000,
2001a,b], and this dissertation shows and introduces many ways on which EDA approaches
can be adapted for this type of problems taking as an example a combinatorial optimization
problem with constraints such as inexact graph matching.

3.4 Fitness functions applied to graph matching

The objective of the fitness function is to have a means to evaluate each of the possible
individuals so that the search algorithm can compare the different solutions and act in
consequence to find the best solution. Therefore, it is important to define appropriately this
function in order to assess the search of any graph matching algorithm. The behavior of the
fitness function is also very dependent on the individual representation selected and both
elements are very linked to each other. The influence of the fitness function definition in
finding the best matching between graphs has also been subject of research [Bunke, 1999].

This section discusses the different possibilities for defining a fitness function. The deci-
sion of which fitness function to use is very important when using metaheuristics, as impor-
tant as the individual representation that is used, because it will also determine how difficult
is the search for an optimal individual that will lead to a correct recognition.

An ideal fitness function should verify the following properties (assuming that the best
fitness is the highest):

1. It should be monotonic, that is, the closer an individual is to the optimum solution
the larger its fitness has to be. This assumption is very strong since local maxima are
very often present, but these should be avoided as much as possible. However, above
all, the most important is that the optimum solution has the largest value.

2. It has to avoid ambiguities, and therefore different individuals should have a different
fitness value when they are evaluated.

3. The fitness function has to take into account only the appropriate vertex and edge
attributes, the ones that are more meaningful in the search for the optimum solution.
In many cases, it is also important to assign a different weight to vertex and edge
similarities, giving more importance to the edge attributes as these are the ones that
take best into account relationships between regions and not yet the regions themselves.

4. As a secondary aim, it has to be easy and fast to compute, as this is executed many
times and it could otherwise delay too much the execution of the whole algorithm.

Whichever the fitness function selected, it is important to take into account that the fit-
ness function is always very particular for each problem, and that the fitness function itself
influences the behavior and the final results obtained by the graph matching algorithm. In

28 Endika Bengoetxea, PhD Thesis, 2002

Graph matching as a combinatorial optimization problem with constraints

addition, main differences appear between fitness functions defined for discrete and continu-
ous domains. In the next sections fitness functions for discrete representations are analyzed,
while in the last one we focus on fitness functions for the continuous domain.

3.4.1 Graph attributes and similarities

Both the model and data graphs are attributed, and the recognition process is based on
similarities between these attributes in the form of fitness functions. The type of attributes
that can be used for the computation of the fitness function and the similarity between
graphs can be based on different paradigms. Examples of this are the use of fuzzy set theory
following the theoretical background developed in [Bloch, 1999a,b]. For instance, many
references on fuzzy set theory applied to graph matching concentrate on building dedicated
fitness functions. In [Perchant et al., 1999, Perchant and Bloch, 1999] the fitness function
is based on the fuzzy attributes of each of the model and data graphs and the fitness value
of each solution is computed from comparing directly the similarity between these, whereas
in [Suganthan et al., 1998] the fitness function is computed by fusing the information encoded
in the attributes using nonlinear fuzzy information aggregation operators. In both cases
the learning of the different matching for each of the attribute-pairs is formulated as an
optimization problem, although in the former a genetic algorithm is used and in the latter a
learning procedure based on gradient projection algorithm is applied.

Apart from using fuzzy set theory for graph matching, other alternatives are the use
of vector-type and geometric attributes, and attributes based on probability theory using
distribution divergences and likelihood values. We will provide examples of these attribute
types.

Once having defined vertex and edge attributes, similarities between attributes of the
model and of the data are defined. The similarity between any two vertices aD ∈ VD

and aM ∈ VM , denoted by cN (aD, aM), is defined in terms of vertex attributes and their
semantics, and we assume to be normalized by returning a value in [0, 1] where a higher value
represents a higher similarity. Analogously, the similarity between two edges eD = (ai

D, a
j
D)

of ED and eM = (ak
M , al

M) of EM is denoted by cE(eD, eM), is defined in terms of edge
attributes and their semantics, and we also assume it to be normalized in [0, 1]. Both
cN (aD, aM) and cE(eD, eM) are very particular to the problem and are defined after selecting
the type of attributes to be used.

The next step is to define a fitness function to evaluate each of the solutions generated
by the graph matching algorithm in order to find the best homomorphism h which satisfies
the conditions h : VD → VM and ∀aM ∈ VM ∃aD ∈ VD | h(aD) = aM as well as structural
and similarity constraints.

3.4.2 f1: only taking into account the matched vertices

Based on the definitions of the vertex similarity cN (aD, h(aD)) and the edge similarity
cE((ai

D, a
j
D), (h(ai

D), h(aj
D))), the first proposal for a fitness function is to define the global

similarity of a homomorphism h as:

f1(h) =
α

|VD|
∑

aD∈VD

cN (aD, h(aD))+

1 − α

|ED|
∑

(ai
D

,a
j
D

)∈ED

cE((ai
D, a

j
D), (h(ai

D), h(aj
D))) (3.1)

Endika Bengoetxea, PhD Thesis, 2002 29

3.4 Fitness functions applied to graph matching

where 0 ≤ α ≤ 1 is a parameter used for tuning the relative importance of vertex and edge
similarity.

3.4.3 f2: taking into account all the vertices and similarities

The fitness function described in the previous section only considers similarity between ver-
tices (or edges) that are mapped by the homomorphism h, but it does not take into account
the fact that unmapped vertices could also have a high similarity which may be not desirable.
Authors in [Perchant and Bloch, 1999] adopt this idea and propose a fitness function for the
graph matching problem applied to medical images of the brain that has been used latter in
[Perchant et al., 1999] and [Boeres et al., 1999]. This second proposal for a global similarity
function accounting for such situations is presented in the following way:

f2(h) =
α

|VD||VM |
∑

(aD ,aM)∈VD×VM

[1 − |θN (aD, aM) − cN (aD, aM)|]+

1 − α

|ED||EM |
∑

(ai
D

,a
j
D

)∈ED,(ak
M

,al
M

)∈EM

[1 − |θE((ai
D, a

j
D), (ak

M , al
M)) − cE((ai

D, a
j
D), (ak

M , al
M))|],

(3.2)
where

θN (aD, aM) =

{

1 if aM = h(aD),
0 otherwise,

θE((ai
D, a

j
D), (ak

M , al
M)) =

{

1 if ai
M = h(ak

D) and a
j
M = h(al

D),
0 otherwise,

and 0 ≤ α ≤ 1 is a parameter used to adapt the weight of vertex and edge correspondences in
f2(h). The fitness function can be easily understood by having a look to the two main terms:
the first one measures the correspondence between vertices of the model and data graphs,
and the second the correspondence between edges of both graphs. The term θN (aD, aM) is
used to check whether two vertices are matched in the solution or not. If the two vertices
are very similar (cN (aD, aM) ≈ 1) and the matching is not present in the solution that is
being evaluated (θN (aD, aM) = 0) then we will obtain for the matching a low value for this
part of the represented solution ([1 − |θN (aD, aM) − cN (aD, aM)|] ≈ 0). On the other hand,
if this correspondence is present in the solution (θN (aD, aM) = 1), we obtain a good value
for this particular matching of the two vertices ([1 − |θN (aD, aM) − cN (aD, aM)|] ≈ 1). The
second term follows an analogous approach analyzing all the edges of both graphs.

3.4.4 f3: not considering edges of vertices in GD matched to the same vertex

in GM

Finally, a last improvement to the fitness function can be done by not taking into account
edges of GD between vertices that have been matched to the same vertex in GM since the
attributes of these edges are not meaningful and do not have to be compared to any edge of
GM . This idea to improve fitness functions is proposed and tested experimentally in [Boeres,
2002]. For that purpose, denote by E∗

D = {eD = (ai
D, a

j
D) ∈ ED | h(ai

D) 6= h(aj
D)} ⊂ ED

the set of edges that will only be considered for computing the global similarity. As a result,
a third global similarity function is proposed:

f3(h) =
α

|VD||VM |
∑

(aD ,aM)∈VD×VM

[1 − |θN (aD, aM) − cN (aD, aM)|]+

30 Endika Bengoetxea, PhD Thesis, 2002

Graph matching as a combinatorial optimization problem with constraints

1 − α

|E∗
D||EM |

∑

(ai
D

,a
j

D
)∈E∗

D
,(ak

M
,al

M
)∈EM

[1 − |θE((ai
D, a

j
D), (ak

M , al
M)) − cE((ai

D, a
j
D), (ak

M , al
M))|],

(3.3)
where α, θN (aD, aM) and θE((ai

D, a
j
D), (ak

M , al
M)) are defined as in the previous section.

3.4.5 f4: function based on the divergence between distributions

We propose the use of attributes based on probability theory, as these have not yet been
applied to our graph matching problems. These require again to construct a completely
different model and to represent it in a graph format using probabilistic parameters that will
allow comparison of similarities with a data graph. Later on this chapter, two new types of
fitness functions based on probability theory will be introduced.

The attributes that we will use can be classified in vertex attributes (unary attributes)
and edge attributes (binary attributes) in the same way as described in Section 3.4.1.

The unary attribute that we consider in our examples for each of the vertices is the grey
level distribution of the region represented by the vertex. Apart from this, there are also
other three vertex attributes that will be used for other purposes but for measuring the
similarity directly. These attributes are:

• size of the region (in pixels),

• coordinates x and y of the center of gravity of the region,

• super-region number in which the region is located, which is an attribute given by the
tracking procedure used to find approximate landmarks of interesting features.

Analogously, the binary (edge) attributes that we will consider are:

• distance,

• relative position.

However, edge attributes will be represented in the form of vectors considering the center
of gravity of the destination, exactly as done in [Cesar et al., 2002b]. Vectors will be computed
from all the points of the origin to that destination-center of gravity, and we will calculate
the mean and variance of the x and y components of all these vectors. Using this type of
representation will implicitly record information of the distance and relative position.

Foundations of the new fitness functions based on probability theory

In order to consider attributes using probability, we will assume that each attribute of a
region, either if it is a vertex or edge attribute, is modelled by a random variable that follows
a normal distribution. For computing the similarity, we propose that both the model and
data graphs are complete ones3.

A vertex attribute such as the grey level can usually be fitted by a normal distribution
(although this fact depends on the type of the input image). However, attributes such

3The generic definition of a complete graph is a graph G = (V, E) such that ∀a, a′ ∈ V ∃e = (a, a′) ∈ E,
and usually the condition a 6= a′ is also assumed. Therefore the edges from a vertex to itself are not considered.
Here we assume that a complete graph does not contain such edges, with each vertex in a complete graph
containing |V | − 1 edges.

Endika Bengoetxea, PhD Thesis, 2002 31

3.4 Fitness functions applied to graph matching

as distance, relative position, and in general, others more dependent on the shape of the
region, could lead to problems when searching for a good solution. The modelization of
these attribute values by normal distributions is more suitable when regions have a rounded
shape.

However, when evaluating a solution, regions matched to a same model vertex can be
considered as fused in a sense, and this fused region will often not have a rounded shape.
As a result, and in order to allow a satisfactory approximation to normal distributions, it
is very important to analyze carefully how to model edge attributes in both the model and
data graphs.

The fact of using a representation based on vectorial components of the edge attributes
is a solution to this problem. Both the distance and relative position attributes are implicit
in a vectorial representation, as the distance corresponds to the modulus and the relative
position to the angle of the vector.

In previous attributes based on fuzzy set theory that can be found in the literature such
as [Perchant, 2000], these edge attributes are modelled using the necessity, and possibility
(i.e. roughly equivalent to the minimum and the maximum). In our case, we will assume
that attributes can be modelled by normal distributions, and therefore we will use the mean
and variance.

The edges will be assumed to always finish in the center of gravity of the destination
region. Therefore, the center of gravity of every region in both the model and data images
will need to be computed. Each edge will be stored using their x and y components. As
both the model and data graphs are complete ones, we will have |Vi| − 1 i = M,D edges for
each region respectively, where we will use two attributes for each.

As a result, for each vertex in both graphs we will consider the following attributes:

1. One unary attribute: the grey level distribution. As this attribute is assumed to follow
a normal distribution, in a region a it will be represented as Na;g(µa;g, σ

2
a;g), where µ

is the mean and σ2 is the variance.

2. Two edge attributes for each edge starting in the region a, and arriving at region k:
Na,k;x(µa,k;x, σ

2
a,k;x) and Na,k;y(µa,k;y, σ

2
a,k;y). As in a complete graph with n vertices

we have n − 1 edges from each vertex, we have a total of 2n − 2 edge attributes for
each vertex. Note that these definitions assume implicitly that the x and y compo-
nents are independent, and therefore the variance-covariance matrix will be of the form
(

σ2
a,k;x 0

0 σ2
a,k;y

)

. Another possibility is to consider a binary attribute by means of a

2-dimensional normal distribution, in which case the variance-covariance matrix would
not contain zeroes.

Computing the attributes of each region

As attributes of the regions will be modelled by normal distributions, each attribute will
be characterized by its mean and variance values. Therefore, in an image with n regions, a
region a will be represented as an d-dimensional normal distribution, Na(µa,Σa) (one vertex

32 Endika Bengoetxea, PhD Thesis, 2002

Graph matching as a combinatorial optimization problem with constraints

attribute and 2n − 2 edge ones, which makes d = 2n − 1):

Na(µa,Σa) = (Na;g(µa;g, σ
2
a;g),

Na,1;x(µa,1;x, σ2
a,1;x),Na,1;y(µa,1;y, σ

2
a,1;y), . . . ,

Na,a−1;x(µa,a−1;x, σ2
a,a−1;x),Na,a−1;y(µa,a−1;y, σ

2
a,a−1;y),

Na,a+1;x(µa,a+1;x, σ2
a,a+1;x),Na,a+1;y(µa,a+1;y, σ

2
a,a+1;y), . . . ,

Na,n;x(µa,n;x, σ2
a,n;x),Na,n;y(µa,n;y, σ

2
a,n;y)

)

(3.4)

This representation will be used for regions in the model and data graphs. It is important
to take into account that the number of vertices in the model graph (|VM |) is smaller than the
number of vertices in the data graph (|VD|). Each vertex in the model graph has 2|VM | − 1
attributes and each vertex in the data graph has 2|VD| − 1 attributes.

Cases in which mixtures of normal distributions are required

Mixtures of normal distributions are a way of representing a new distribution composed by
a weighted sum of many normal distributions. Mixtures are used when the composition of
two normal distributions cannot be approximated by a single new normal distribution. The
later case occurs typically when the means of the different normal distributions are very far
from each another, and therefore a weight is given to each of the distributions in order to
express the contribution of each of them to the global combined distribution.

The weights of each original normal distribution are computed using algorithms such
as the EM [Dempster et al., 1977]. This procedure is obviously very CPU expensive. In
addition, comparing a mixture of normal distributions and a normal distribution (i.e. when
comparing the solution proposed by an individual and a region in the model) is a lot more
complicated than comparing two normal distributions in terms of number of operations
required.

In our particular example, as proved on the following section, the fact of representing
edge attributes as the two components (x and y) of a vector will allow us to approximate a
combination of normal distributions to a new normal distribution, without having the need
to use mixtures.

Attributes of the fused regions modelled by normal distributions

Let us consider as an example the case illustrated in Figure 3.4. This figure shows on the
left two regions (A and B) of a model image, and on the right we have a typical result of
an over-segmentation procedure, where the regions detected on a data image have lead to a
data graph with more subregions for each model region. Therefore each correspondence of
the regions in the model appears usually subdivided in the data image (the region A in the
model has been divided in three subregions after the automatic over-segmentation procedure,
regions 1, 2, and 3, and region B has been subdivided in two, regions 11 and 12).

In order to evaluate a solution, we would require to fuse regions 1, 2, and 3 in the data
image, and then compare the similarity to the model region A. Similarly, data image regions
11 and 12 should be fused and afterwards compared to the model region B. The fusion of
attributes of vertices in GD such as the grey level (i.e. the one selected for our problems)
represented as a normal distribution can be approximated to a new normal distribution for
evident reasons, and it does not require further discussion.

Endika Bengoetxea, PhD Thesis, 2002 33

3.4 Fitness functions applied to graph matching

A

B

1

2

3

11 12

·

·

·

·

·

·
·

Figure 3.4: Illustration of two regions in the model graph (left), and the typical result after following
an over-segmentation process on an image to be recognized (right). This figure also illustrates the
centers of gravity of each of the regions. These will be used as a destination point representative of
the whole vector from any point of the origin to the destination.

A

B 11 12

·

·
·

·
1

2

3

·

·

·

Figure 3.5: Example showing how the edge attributes are computed in both the model and data
graphs.

On the other hand, as already explained, the edge attributes that are of our interest
for comparing the similarity between regions are the distance and relative position. Given
a homomorphism h, and in order to evaluate it, before starting with any comparison the
regions in the data image that are matched to a same vertex in the model in h have to be
fused, as they are supposed to be part of a same region. Figure 3.4 shows which centers of
gravity that will be used for each region, and Figure 3.5 is an illustrative example on how
this computation is done.

From the previous figures it is obvious that in the data graph we have edge attributes that
are computed between subregions, but the equivalent regions in the model have a different
center of gravity, and therefore the solution that can be obtained is also different. The
proof that remains to be performed is illustrated in Figure 3.6, which essentially consists in
showing that it is possible to compute the edge attributes between the model regions A and
B starting from the edge attributes in the data graph of the data regions 1, 2, 3, 11 and 12.
Next, we prove that this computation is possible and how it can be performed. In addition,
we show that the fusion of edge attributes in the regions 1 2 and 3 into one, as well as such
of the regions 11 and 12 into another, can effectively be modelled by a normal distribution
using the vector components as representative data.

We will take as an example for this proof the regions and their centers of gravity of
Figure 3.4. Let SB be the size (in pixels) of region B in the model. Analogously, let S11

and S12 be the sizes of regions 11 and 12 respectively in the data graphs. As these two
regions in the data graph are the equivalent as region B in the model graph, we assume that
SB ≡ S11+S12. Using geometrical properties it can easily be proved the x and y coordinates
of the center of gravity of model region B –BB =

(

BB
x , BB

y

)

– can be computed from the

34 Endika Bengoetxea, PhD Thesis, 2002

Graph matching as a combinatorial optimization problem with constraints

A

B

1

2

3

11 12

·

·

·

·

·

·
·

Figure 3.6: Summary of the problem of obtaining the edge attributes between regions A and B in
the model graph, knowing the values of the edge attributes in the data graph.

centers of gravity of data image regions 11 and 12 –B11 =
(

B11
x , B11

y

)

and B12 =
(

B12
x , B12

y

)

.

This result can be easily generalized for a model region R which is divided in m smaller
subregions r1, r2, . . . , rm in the data image with respective sizes in pixels Sr1

, Sr2
, . . . , Srm .

Then, it can be proved that the fused center of gravity of region R can be computed as

BR =
(

BR
x , BR

y

)

≡
(∑m

i=1 Bri
x · Sri

∑m
i=1 Sri

,

∑m
i=1 Bri

y · Sri
∑m

i=1 Sri

)

(3.5)

Similarly, we can also prove that the edge attributes of any model region can also be
computed starting from the edge attributes of the equivalent data image regions. Given a
destination model region R divided in m smaller subregions r1, r2, . . . , rm in the data graph
with respective sizes Sr1

, Sr2
, . . . , Srm , knowing that the fused center of gravity is the one

described previously, and that SB ≈ S∗ =
∑m

i=1 Sri
, it can be easily shown that from any

point p1 = (x1, y1) within the origin regions the following is satisfied:

−−−→vp1BB ≈
m
∑

i=1

Sri

S∗ · −−−→vp1Bri (3.6)

This results is a linear combination of normal distributions. As such a combination of
normal distributions is also a normal distribution, then we have proved that the when fusing
the edge attributes of the r1, r2, . . . , rm regions leads also to a region which edge attributes
follow a normal distribution.

Evaluating a solution using the new approach

If individual regions of the data graph are to be compared to regions in the model graph, we
could use one of these methods:

• The distance –or divergence– between both distributions could be used for comparison.

• Another possibility is to use the likelihood function to evaluate the similarity between
regions.

We tested the use of both methods and compared them. Next, all the explanations and
further formalization of these two methods are presented.

This fourth proposal of fitness function is based on the Kullback-Leibler divergence [Kull-
back and Leibler, 1951], which measures the difference between two different distributions.
The Kullback-Leibler divergence is defined for any two types of distributions, although it
can be written in a simple form if the two distributions to be compared are normal ones.

Endika Bengoetxea, PhD Thesis, 2002 35

3.4 Fitness functions applied to graph matching

As explained in previous section, we will assume that all the attributes of all the regions in
both the model and data graph follow normal distributions, and this assumption will help
us to perform simpler operations to compute the divergence.

However, it is compulsory for this divergence that the dimensions of both normal distri-
butions to be compared are the same. In fact, each of the regions of both the atlas and data
graphs will be represented as a (2n− 1)-dimensional normal distribution, where this dimen-
sion is (2|VM | − 1) and (2|VD| − 1) for each vertex of the model or data graphs respectively.
Therefore, given a homomorphism, the question is how to find a way of comparing model
and data vertices taking into account these restrictions for comparison. This comparison
will be used as a similarity value.

In essence, when evaluating a solution given by a homomorphism h, each of the attributes
of the regions in the data graph that are matched to the same vertex in the homomorphism
(i.e. regions ai

D, a
j
D, . . . , az

D ∈ VD|h(ai
D) = h(aj

D) = · · · = h(az
D) = ar

M ∈ VM) have to
be combined in a way that the combination of the normal distributions representing each
attribute is approximated to a new normal distribution. This combination of regions will be
done by fusing the regions which are labelled with the same model graph, in other words, the
kth fused region aF

k is defined in the following way: aF
k = {al

D ∈ VD, k ∈ VM |h(al
D) = ak

M}.
It is important to note that after fusion of the data image regions and their attributes

the result is a new region with 2|VM | − 1 attributes.
After fusing all the data image regions to their corresponding fused region aF

i i =
1, . . . , |VM |, their attributes are also combined, and this results in 2|VM | − 1 attributes.
Therefore, any fused region aF can be represented as a new d-dimensional normal distribu-
tion N F (µF ,ΣF) with d = 2|VM | − 1 (since there are 1 vertex attribute and 2|VM | − 2 edge
attributes) following the definition of Na(µa,Σa) given in Equation 3.4 for any region a.

Afterwards, in order to compare how similar are the regions of the model and those of
the data image we will only need to compare the d-dimensional normal distribution of the
fused region aF

k and the d-dimensional normal distribution of the model region ak
M , with

d = (2|VM | − 1) in both graphs and k = 1, . . . , |VM |.
The main requirement of this method to be applied is to prove that the vertex and edge

attributes of the fused regions can be satisfactorily approximated to normal distributions,
knowing that the attributes of each of the vertices in VD follow a normal distribution. This
proof was shown in Section 3.4.5.

The Kullback-Leibler divergence. Kullback and Leibler introduced a divergence mea-
sure that is known as the Kullback-Leibler divergence [Kullback and Leibler, 1951]. The idea
behind a divergence is to have a measure to quantify the information quantity given by data
to discriminate between one or another probability distributions. In the discrete domain,
having a finite set of values S = {a1, a2, . . . , an}, and if the P and Q probability distributions
are given by P (ai) = pi and Q(ai) = qi i = 1, 2, . . . , n , then the Kullback-Leibler divergence
is expressed by

DK−L(P,Q) =

n
∑

i=1

pi log
pi

qi
(3.7)

Regarding the continuous case, given two density functions f(x) and g(x) for the space χ,

we have that dP
dQ

(x) = f(x)
g(x) , and therefore the Kullback-Leibler divergence is given by

DK−L(P,Q) =

∫

χ

f(x) log
f(x)

g(x)
dx (3.8)

36 Endika Bengoetxea, PhD Thesis, 2002

Graph matching as a combinatorial optimization problem with constraints

In the case of having any two normal distributions of dimension d denoted by N (µ1,Σ1)
and N (µ2,Σ2) respectively, the Kullback-Leibler divergence is computed in [Kullback and
Leibler, 1951] as

DK−L (N (µ1,Σ1),N (µ2,Σ2)) =
1

2

[

(µ1 − µ2)
tΣ−1

2 (µ1 − µ2)
]

+
1

2

(

trace
(

Σ−1
2 Σ1 − I

)

+ log
|Σ2|
|Σ1|

)

(3.9)

where I is the unary matrix. This expression is further simplified when the elements of
both d-dimensional normal distributions are independent. In the latter case, the matrices

Σj j = 1, 2 of dimensions d×d would be of the form

σ2
j,1 0 0 . . . 0

0 σ2
j,2 0 . . . 0

.

0 0 0 . . . σ2
j,d

. It can

be proved that under these conditions the Kullback-Leibler distance is given by:

DK−L(N (µ1,Σ1),N (µ2,Σ2)) =
1

2

[

d
∑

i=1

(µi
1 − µi

2)
2

σi
2

]

+
1

2

(

d
∑

i=1

(

σi
1

σi
2

− 1

)

+ log

(

d
∏

i=1

σi
2

σi
1

))

(3.10)

In our case, given a solution, for each of the model regions ak
M two d-dimensional normal

distributions with d = 2|VM | − 1 will be compared: The normal distribution of the model
vertex itself and the one obtained after fusing all the data regions associated to the kth

fused region aF
k . Note also that the Kullback-Leibler divergence is not symmetrical, and

that DK−L(P,Q) 6= DK−L(Q,P). Therefore, as a reference has to be defined, we decided to
choose as the reference the data graph vertex that is compared to each of the vertices of the
model graph (note that the fitness function is also defined as f4(h) : VD → VM). Therefore,

we consider the DK−L

(

N
(

µak
M

,Σak
M

)

,N
(

µaF
k
,ΣaF

k

))

values for all the model regions.

Definition of the fitness function. Taking all the previous explanations into account,
we propose a first fitness function definition based on the Kullback-Leibler distance. In this
definition, denoted as f4, when computing a solution proposed, we first fuse the regions in the
data graph, and then we compare each of the vertex and edge attributes of the fused region
to the vertex of the matched region. Taking the illustrative example of the previous section,
the similarity between region A in the model and the combination of regions 1, 2, and 3 in
the data graph will be computed using their respective d-dimensional normal distributions
N (µA,ΣA),N (µ1,Σ1),N (µ2,Σ2),N (µ3,Σ3), with the sizes in pixels of each of the regions
being SA, S1, S2, and S3 respectively. For this, the last three distributions have to be

combined. Knowing that Σj j = 1, 2, 3 would be of the form

σ2
j,1 0 0 . . . 0

0 σ2
j,2 0 . . . 0

.

0 0 0 . . . σ2
j,d

,

we will denote the resultant distribution by N (µ123,Σ123), having:

µ123 =
S1 · µ1 + S2 · µ2 + S3 · µ3

S1 + S2 + S3

Endika Bengoetxea, PhD Thesis, 2002 37

3.4 Fitness functions applied to graph matching

Σ123 =

τ2
123,1 0 0 . . . 0

0 τ2
123,2 0 . . . 0

.

0 0 0 . . . τ2
123,d

(3.11)

where τ2
123,i =

S1·σ2

1,i+S1·(µ123,i−µ1,i)2+S2·σ2

2,i+S2·(µ123,i−µ2,i)2+S3·σ2

3,i+S3·(µ123,i−µ3,i)2

S1+S2+S3
i = 1, . . . , d,

and µ123 = (µ123,1, µ123,2, . . . , µ123,d). Note that the dimension of both d-dimensional normal
distributions is d = 2|VM | − 1.

The component of this region in the proposed fitness function will be defined as follows:

f4(h)aM
= DK−L(N (µaM

,ΣaM
),N (µ123,Σ123))

=
1

2

[

d
∑

i=1

(µaM ,i − µ123,i)
2

σ2
123,i

]

+
1

2

(

d
∑

i=1

(

σ2
aM ,i

σ2
123,i

− 1

)

+ log

(

d
∏

i=1

σ2
123,i

σ2
aM ,i

))

(3.12)

And finally, the global fitness function will be computed as

f4(h) =
∑

aM∈VM

f4(h)aM
(3.13)

Generalizing this fitness function for a region ak
M of the model that is matched to the

equivalent m smaller subregions r1, r2, . . . , rm in the data graph (i.e. h(r1) = h(r2) = · · · =
h(rn) = R) with respectively sizes Sr1

, Sr2
, . . . , Srm , we have firstly that the combination

of all the subregions in the data graph is given by the d-dimensional normal distribution
N (µfused

ak
M

,Σfused
ak

M

), knowing that

µfused
ak

M

=

∑m
i=1 Sri

· µri
∑m

i=1 Sri

Σ2
fused

ak
M

=

τ2
fused

ak
M

,1 0 0 . . . 0

0 τ2
fused

ak
M

,2 0 . . . 0

.

0 0 0 . . . τ2
fused

ak
M

,d

(3.14)

where

τ2
fused

ak
M

,i =

∑d
j=1

(

Srj
· σ2

rj ,i + Srj
·
(

µfused
ak

M

,j − µri,j

)2
)

∑d
j=1 Srj

for i = 1, . . . , d, and µfused
ak

M

=

(

µfused
ak

M
,1, µfused

ak
M

,2, . . . , µfused
ak

M
,d

)

. Finally, the fitness

function is defined as

f4(h) =
∑

ak
M

∈VM

f4(h)ak
M

=
∑

ak
M

∈VM

DK−L

(

N
(

µak
M

,Σak
M

)

,N
(

µfused
ak

M

,Σfused
ak

M

))

(3.15)
As this fitness function expresses the divergence of probability distributions, in this case
the graph matching algorithm is committed to return the individual that minimizes this
expression, and not to maximize as in the previous three fitness functions.

38 Endika Bengoetxea, PhD Thesis, 2002

Graph matching as a combinatorial optimization problem with constraints

3.4.6 f5: function based on likelihood

This fifth proposal of fitness function is based on the likelihood of the data given the model. In
this case, the regions in the model are also represented as a d-dimensional normal distribution,
for a dimension for each of the vertex and edge attributes, as well as for the previous fitness
function f4(h): the mean and variance of each of the attributes for all the regions of the
model are computed as a previous step, and these are used for computing the likelihood.
Regarding the data graph, a similar representation is assumed, and also the data information
required to compute the likelihood is stored. This information is later used to compute each
of the homomorphisms.

For this approach, we select at random a set of N pixels from each of the regions in
the data graph. We decided to choose this number N as a constant for all type of regions
independently of their size, although when fusing the regions in the data image only a number
of pixels proportional to the size of the fused region are taken later into account. The number
N of pixels selected has to be big enough to ensure representation of each of the regions in
the data image. We denote the representation of pixels for the kth region of the data image
by xk

1, xk
2, . . . , xk

N , with k = 1, . . . , |VD|. The total size of this sample is M = N |VD|.
The next step is to compute the attribute values of the selected pixels in each region. In

the case of the vertex attributes, we consider again the grey level and the texture value. For
the edge attributes, we compute again the binary attributes using as a reference the pointed
vertex the center of gravity of the regions that have to be fused in the homomorphism as
explained in the previous sections. As a result, the number of attributes to be recorded by
each sample pixel is 2|VD| − 1. The attributes for the ith pixel of the kth region is denoted

by y
k
i =

(

yk
i,1, y

k
i,2, . . . y

k
i,2|VD|−1

)

.

Computing the likelihood of the data regarding each attribute. Given the proba-
bility distribution of a single attribute j of a particular region k of the model, N (µk,j, σ

2
k,j),

the likelihood is a measurement with N possible values yk
1,j, y

k
2,j, . . . , y

k
N,j defined as:

Lj(y
k
1,j , y

k
2,j, . . . , y

k
N,j;N (µk,j, σ

2
k,j)) =

N
∏

i=1

[

1√
2π σk,j

exp

(

− 1

2σ2
k,j

(yk
i,j − µk,j)

2

)]

=

(

1√
2π σk,j

)N

exp

(

− 1

2σ2
k,j

N
∑

i=1

(yk
i,j − µk,j)

2

)

(3.16)

In order to evaluate a given homomorphism h, we proceed in a similar way as in the
previous sections: firstly, the regions in the data image following the labels given by the
homomorphism h are identified, and |VM | fused regions are obtained. Secondly, the centers
of gravity of these fused regions are computed, and the vertex and edge attributes are
recomputed. As a result, each of the fused regions contains 1 vertex attribute and 2|VM | − 2
edge attributes. Thirdly, a set of N pixels are selected from each of the fused regions.
Fourthly, the likelihood of the d-dimensional probability distribution representing a model
region ak

M ∈ VM , with d = 2|VM | − 1, is computed as:

L
(

y
k
1 ,y

k
2 , . . . ,y

k
N ;N

(

µak
M

,Σak
M

))

=

2|VM |−1
∏

j=1

Lj(y
k
1,j, y

k
2,j , . . . , y

k
N,j ;N (µk,j, σk,j)) (3.17)

Endika Bengoetxea, PhD Thesis, 2002 39

3.4 Fitness functions applied to graph matching

where Lj is defined in Equation 3.16. The result obtained in Equation 3.17 is used in f5(h)
to compute the similarity between region k of the model and the kth fused region in the data
image.

Evaluation of a homomorphism: definition of the fitness function. Following the
definitions of the previous section, a homomorphism h can be evaluated by means of the
likelihood of the models for every vertex in the model graph regarding the pixels sampled
in the data image. For that, the similarities of all the vertices of the model graph with
such of the corresponding fused region in the data image are considered to define the global
similarity –GS– of a given homomorphism h as follows:

GS =

|VM |
∏

k=1

L
(

y
k
1,y

k
2, . . . ,y

k
N ;N

(

µak
M

,Σak
M

))

=

|VM |
∏

k=1

2|VM |−1
∏

j=1

Lj(y
k
1,j, y

k
2,j , . . . , y

k
N,j;N (µak

M
,j, σak

M
,j))

=

|VM |
∏

k=1

2|VM |−1
∏

j=1

N
∏

i=1

1√
2π σak

M
,j

exp

(

− 1

2σ2
ak

M
,j

(yk
i,j − µak

M
,j)

2

)

(3.18)

=

|VM |
∏

k=1

2|VM |−1
∏

j=1

(

1√
2π σak

M
,j

)N

 exp

|VM |
∑

k=1

2|VM |−1
∑

j=1

N
∑

i=1

(

−
(yk

i,j − µak
M

,j)
2

2σ2
ak

M
,j

)

where N
(

µak
M

,Σak
M

)

k = 1, . . . , |VM | are the ones defined in the previous sections, and all

the y
k
1,y

k
2, . . . ,y

k
N are the attribute values of the N pixels chosen at random from the fused

region k, which is formed by the aD ∈ VD such that h(aD) = k.

However, in order to define the fitness function f5(h) using this similarity definition, the
expression in Equation 3.18 can be simplified, since a proportional fitness function is valid
for our purpose. A simpler yet proportional definition of this equation is described below:

GS = C exp

|VM |
∑

k=1

2|VM |−1
∑

j=1

N
∑

i=1

(

−
(yk

i,j − µak
M

,j)
2

2σ2
ak

M
,j

)

 ∝
|VM |
∑

k=1

2|VM |−1
∑

j=1

N
∑

i=1

(yk
i,j − µak

M
,j)

2

−2σ2
ak

M
,j

(3.19)

where C =

∏|VM |
k=1

∏2|VM |−1
j=1

(

1√
2π σ

ak
M

,j

)N

. As a result, the fitness function f5(h) can be

defined as the simple expression

f5(h) =

|VM |
∑

k=1

2|VM |−1
∑

j=1

N
∑

i=1

(yk
i,j − µak

M
,j)

2

−2σ2
ak

M
,j

(3.20)

In this case, as well as with f1(h), f2(h), and f3(h), the graph matching algorithm is com-
mitted to return the individual that maximizes this expression.

40 Endika Bengoetxea, PhD Thesis, 2002

Graph matching as a combinatorial optimization problem with constraints

3.5 Conclusion

This chapter presents the graph matching problem as a combinatorial optimization one,
analyzing the main aspects that have to be taken into account for that: the definition of
an individual representation and its associated fitness function. Three different individual
representations have been presented in the discrete domain, as well as five different fitness
functions.

For the continuous domain, an individual representation based on permutations has been
introduced. This representation allows to apply the fitness functions defined for the discrete
domain for specific graph matching algorithms in the continuous domain.

It is important to note that all the definitions given in this chapter can be applied by any
combinatorial optimization algorithm. In the next chapters algorithms such as estimation of
distribution algorithms, genetic algorithms, and evolutionary strategies apply these fitness
functions to search for the best homomorphism.

Endika Bengoetxea, PhD Thesis, 2002 41

3.5 Conclusion

42 Endika Bengoetxea, PhD Thesis, 2002

