
Chapter 5

Parallel estimation of distribution

algorithms

‘I do not fear computers. I fear the lack of them.’

Isaac Asimov

5.1 Introduction

The reduction in the execution time is a factor that becomes very important when using
many applications nowadays. In spite of the enhancement on computer hardware, this
problem is always happening, as the increase in power is always related to the application
of new methods that were also too time consuming in previous computer systems. Parallel
programming techniques provide feasibility of solving new problems or longer size ones.

The computation time is sometimes forgotten or avoided in some research works, as
the validity of new methods or algorithms among others is in many times the most impor-
tant point to be considered in the first stages. However, if one wants to apply parallelism
techniques in a real life application (or even to commercialize it) the fact of reducing the
computation time of the program becomes an important aspect to take into account. When
willing to make faster the execution of a program, specially for algorithms that are very
computationally consuming, we have four main choices:

1. We can optimize the code so that it does not repeat tasks or that minimizes the time
of accessing slow functions such as disk access.

2. We can improve the hardware on which the algorithm is executing. This is done
sometimes by recording the whole program in a ROM-type chip, but also by buying a
faster processor, adding more processors to the computer, or by increasing the size of
RAM memory of the computer.

3. Compilers that will convert automatically a sequential source program into a parallel
one have also been proposed, but nowadays they mostly work for easily parallelizable
programs such as vector and matrix operations.

4. We can rewrite the code making use of parallelization techniques.

From all these solutions, the first one can improve considerably the computation time
of a program, but its main drawbacks are that this reduction has a limit and that highly

77



5.2 Sequential programs and parallelization

optimized code is normally very difficult to maintain. The second solution is always possible,
but it requires an important economic cost depending on how much we want the hardware
to be optimized. In addition, it is important to analyze which is the hardware resource that
makes the program go slower, as many times users tend to invest money in adding more
and faster processors when the fact is that most of the time the bottleneck is the lack of
RAM memory1. The third solution implies the use of high performance compilers that are
able to provide parallel versions of a sequential source code in order to allow execution in
different processors at the same time. These compilers use techniques to detect loops within
the code where matrix or vector operations are performed, and they apply special techniques
for parallelization. Unfortunately, these compilers are not intelligent enough to parallelize
every sequential program and to detect data communication and computation parts within
them that could be parallelized, and as a result these will not be a solution in our case.
Furthermore, these compilers are usually very hardware dependent and appear to be very
expensive. The interested reader can find more information about this subject in [Polaris,
1994, Wolfe, 1996].

Taking all the aforementioned reasons into account, we will concentrate on the last so-
lution, the application of parallelization techniques. These are very powerful and effective
for most of the cases, and they are often very easy to be applied to existing sequential pro-
grams. In addition, the proliferation of dedicated parallel libraries makes the application of
parallelization techniques to be quite easy for a beginner on this field. This chapter intends
to explain the basics of the existent parallelism techniques, the state of the art of the par-
allelization field, as well as to give an introduction to the most important ones using as an
example the EDA program itself.

5.2 Sequential programs and parallelization

5.2.1 The design of parallel programs

Different techniques and methodologies can be applied for creating parallel solutions. How-
ever, the best parallel solution that can be developed is usually quite different from the
sequential one. It is of fundamental importance to choose the proper methodology for par-
allel design in order to obtain the best parallel approach, in which concurrency aspects are
taken into account in depth before focusing on machine-dependent issues.

In [Foster, 1995] one of the many possible parallel design methodologies is introduced.
This methodology contains four distinct stages that are performed one after another: par-
titioning, communication, agglomeration, and mapping. During the first and second stages
the programmer focuses on concurrency and scalability, while in the third and fourth stages
the attention is on locality and other performance-related issues. These four stages are
illustrated in Figure 5.1, and are explained as follows:

Partitioning: the parts on the problem that can be parallelized are identified and selected.
This task is performed independently of the hardware type available, and issues such
as the number of processors available are not taken into account at this stage.

1The lack of enough RAM memory forces the computer to work into the hard disk. The disk access time

is measured on the order of milliseconds, while RAM memory is in the order of nanoseconds. Therefore this

factor implies a considerable delay on the overall execution time of the whole program and the operating

system.

78 Endika Bengoetxea, PhD Thesis, 2002



Parallel estimation of distribution algorithms

Problem
partition

agglomerate

communicate

map

Figure 5.1: Parallel design methodology when parallelizing programs, as described in [Foster, 1995].
The four stages are illustrated: starting from a problem specification, (1) the problem is partitioned
in smaller tasks that are divided in processes, (2) communication requirements between the different
processes are determined, (3) processes are agglomerated, and finally (4) processes are mapped to
processors.

Communication: the communication that is required to coordinate all the processes is
identified and analyzed. Communication data structures and proper communication
protocols are defined.

Agglomeration: this stage focuses on performance requirements and implementation costs.
Some of the processes are combined into larger groups in order to improve performance
and implementation costs.

Mapping: processes are organized regarding the number of processors available. The main
objectives are to balance the work load of each process and to minimize communication
costs.

Usually, parallel programs will create and destroy dynamically processes in order to obtain
a balance in work load on amount of processes between processors. The design of parallel
algorithms is presented here as sequential work, but often considerations at some stages
require reconsidering previously designed aspects. Next, these four steps will be discussed
in more detail.

Endika Bengoetxea, PhD Thesis, 2002 79



5.2 Sequential programs and parallelization

Partitioning the problem

The main objective of the partition step is to divide the problem in the smallest possible
tasks, in order to obtain what is called a fine-grained decomposition of the problem2.

Partition is applied to both the whole computation job and the data associated to the
processes. Usually, programmers focus first on the data partition (i.e. the way of partitioning
the data is determined) and finally processes are associated to the partitioned data. This
partitioning technique is known as domain decomposition.

Another approach is to focus first in partitioning the global job in processes and to
work out afterwards which is the best way to partition the data. This is called functional

decomposition.

These two techniques are complementary, and they can be applied to different parts of a
single problem or even both can be applied at the same time to the whole problem in order
to obtain different parallel algorithms to solve a single problem.

Process communication schemes in parallel programs

After partitioning the problem in sub-tasks assigned to processes, the programmer has to
determine the way in which all these working processes will be coordinated and organized. As
processes will require to receive information associated to another processes, the information
flow between all the processes has to be analyzed with care. This task is performed in the
communication phase of the parallel program design. For this, it is essential to take into
account all the synchronization and communication aspects between all the processes.

A general idea to understand how to coordinate the different processes collaborating for
a global job is the use of a producer-consumer scheme, which is a general approach of how
two types of processes can be organized. The general case is the one in which there are a set
of processes playing the role of the producers, where they produce elements that are stored
in a buffer or an intermediate work pool. The rest of the processes will play the role of the
consumer, which will read elements from the buffer or work pool and will use them for some
determined task. Figure 5.2 illustrates this approach.

P6 P7 P8 P9 P10

P1 P2 P3 P4 P5

Buffer

Figure 5.2: The producer-consumer approach.

However, there are also many other ways to organize the communication and synchro-
nization between all the processes. In any case, it is always important to determine the
nature of the communication channel to select the best way of communicating processes.
In [Foster, 1995], these aspects are focused on the communication, of which different types
are classified taking into account four orthogonal axes:

2A fine-grained decomposition represents the greatest flexibility possible to parallelize programs, as it

divides the whole problem in the maximum number of tasks.

80 Endika Bengoetxea, PhD Thesis, 2002



Parallel estimation of distribution algorithms

Local/Global: in local communication each process communicates with a small set of pro-
cesses. In global communication it communicates with the rest of them.

Structured/Unstructured: in structured communication, all the processes form a regular
structure when communicating. Regular structures can be a tree, a pipeline, or a grid
for instance. On the other hand, in unstructured communication arbitrary graphs are
formed.

Static/Dynamic: the identity of the communicating partner processes is always the same
in static communication. When it is dynamic, the identity of the communicating
partners can be different each time.

Synchronous/Asynchronous: in synchronous communication, there are producers and
consumers of messages that execute in a coordinated way, with producer/consumer
pairs cooperating in data transfer operation. In asynchronous communication, a con-
sumer can obtain its data without the collaboration of the producer.

There are many working schemes that could be chosen for coordinating the execution of
all the processes. None of them is better than the others for all the practical cases, and the
programmer has to decide which is the one that best fits the organization of each parallel
program.

Next, a short review of five typical and basic working schemes for organizing processes
in parallel programming is given. Each of them is applied in those tasks in which their
use has been shown to be the most effective. The programmer should be aware of all these
possibilities and choose the one that he considers to be the optimum, as this choice as well as
the information flow is of fundamental importance to obtain a satisfactory performance on
parallel programs. A bad design could lead to a dramatic worsen on the performance of the
whole program, resulting in some cases in even worse execution times than with a sequential
program.

Generally speaking, the different basic working schemes are the following: phase parallel,
divide and conquer, pipeline, master-slave, and work pool.

Phase parallel. A parallel program that follows this method will be divided in a series
of two main steps. In the computation step, each of the processes will perform an inde-
pendent computation in parallel. In the following step, all the processes will synchronize
(either by using lock variables, semaphores or any other blocking communication method,
see Section C.3 in Appendix C) and all the results will be gathered. Figure 5.3 shows this
approach.

Divide and conquer. This algorithm for parallel programming is very similar to its se-
quential homologous as it can be appreciated in Figure 5.4. A parent process divides its
computing weight in many smaller parts an it assigns them to a number of child processes.
The children processes will proceed similarly, and then they will gather their children’s re-
sults and send them back to their parent. This set of division on the job and gathering and
sending of results is made recursively. The main drawback of this method is that a balance
is required for an equitable division of tasks among processes. When using this scheme it is
important to consider the dynamic nature of the problem, as well as to analyze the possibility
of fully parallelizing it.

Endika Bengoetxea, PhD Thesis, 2002 81



5.2 Sequential programs and parallelization

P1 P2 P3 P4

Synchronous interaction between processes

P1 P2 P3 P4

Synchronous interaction between processes

Figure 5.3: The phase parallel approach.

P1

P2 P3

P7P6P5P4

P2 P3

P1

Figure 5.4: The divide and conquer approach.

Pipeline. In this approach, all the processes form a chain as shown in Figure 5.5. This
chain is feed with a continuous flow of data, and processes execute the computations asso-
ciated to each different step on the pipeline, one after another for each data-unit, but all
work at the same time on different data-units. This behavior is similar to the execution
of instructions in a segmented processor, in which it is important to take into account the
dependence types of the input data.

P1 P2 P3 P4

Figure 5.5: The pipeline approach.

Master-slave. As already explained, this working scheme –also known as manager-worker

or process farm– is among the most applied. A process takes the role of the master or
manager, executes parts of the global job that cannot be parallelized, and divides and sends
to the rest of slave or worker processes the part of the global job that can be executed in
parallel. This approach is illustrated in Figure 5.6. When a slave or worker process finishes
its task, it sends back to the master the results obtained. Afterwards, the master is then
sending more work to the slave. The main drawback is that the master process coordinates
the whole information exchange, which in some cases results in a bottleneck.

82 Endika Bengoetxea, PhD Thesis, 2002



Parallel estimation of distribution algorithms

In some particular problems, the master also performs part of the job instead of simply
waiting for the rest of the workers, and therefore it also plays at the same time the role of a
worker.

P1

P2 P3 P4 P5 P6

Figure 5.6: The master-slave approach.

Work pool. This method is often used with the model of shared variables. Figure 5.7 shows
that this approach requires a global data-structure that is used as a work pool. Initially some
basic amount of work has to be added to this pool. The main difference between this model
and the previous master-slave one is that in this case all the processes are of the same type,
as there is no master process on the scheme. All the processes that take part in the job can
access it and produce: (1) no work, (2) a part of the work that will be placed on the pool,
or (3) many parts of the work that will also be placed on the pool.

P1 P2 P3 P4 P5

Work pool

Figure 5.7: The work pool approach.

The parallel part of the program finishes when the work pool is empty. This method
makes easier to balance the work load between all the processes. However, it is not easy to
implement it when the message passing model is to be used (see Section C.3.5 in Appendix C)
as this model does not allow an efficient access to the shared structure. The pool can be
implemented as an unordered set, or an ordinary queue with or without priority.

Agglomeration

The agglomeration phase focuses on the performance of the system that has been designed so
far: for instance, the fact of having many more processes than processors is highly inefficient
in terms of execution time, as most of the time the system will not be able to keep executing
all the processes at the same time. When agglomerating, we move from the theoretical design
phase towards the realistic one, where the hardware resources available will be taken into
account. The agglomeration is therefore the opposite step of the partitioning phase, in which
the fine-grained solution is revised and the number of global tasks reduced. In addition
to the reduction in the number of processes, in the agglomeration phase the replication
of the data between different tasks will be determined to be worthwhile or not in terms
of efficiency. In brief, the two objectives for the agglomeration phase is firstly to reduce
the number of processes (by combining them and creating larger ones), and secondly to
provide an appropriated number of them so that the processors can deal with, and to reduce
communication costs.

Endika Bengoetxea, PhD Thesis, 2002 83



5.2 Sequential programs and parallelization

Even if the number of tasks will be reduced in this step, it is usually the case that at the
end more processes than processors will be scheduled. The reason for this is that processes
will make use of other resources such as input/output devices: processes that are waiting for
input/output devices will leave their processor free for a time, and in the meanwhile another
process could make a profit and advance in its job.

Mapping

Finally, the mapping phase will distribute the processes among the available processors.
The mapping phase does not arise on single-processor or on shared-memory computers that
provide automatic task scheduling.

The goal of mapping algorithms is to minimize execution time. Two strategies are used
for achieving this goal:

1. Processes that are able to execute independently are executed in different processors,
in order to increase concurrency.

2. Processes that communicate frequently are assigned to the same processor, in order to
increase locality.

Unfortunately, these two strategies sometimes conflict between them. In addition, the
fact that usually there are more processes than processors is another factor that makes the
mapping problem more complex.

There are several algorithms, such as load-balancing algorithms, that provide solutions
to the mapping problem. This problem is known to be NP-hard, and discussion on this topic
is out of the scope of this thesis. The interested reader is referred to [Foster, 1995] for more
information on this topic.

5.2.2 Parallelizing an already existing sequential program

The algorithm to design parallel programs introduced in the previous section is suitable when
an algorithm has to been redesigned from scratch. However, in many cases the programmer
has already a sequential program to solve the problem that is executing too slowly just
because of specific bottlenecks at different stages of the algorithm.

When a sequential version of the program is available, and we have access to its source
code, it is not necessary to apply the four stages of the previous design model. Instead,
a common practice is to identify the parts in the code that represent the most important
bottlenecks in the program and to apply parallelization mechanisms to these parts.

Identifying bottlenecks in programs can be a difficult task if we do not know exactly how
the program behaves. In addition, sometimes different input data could lead to very different
CPU-time requirements of the different routines of the sequential algorithm. Hopefully, there
are many tools to perform an analysis of the execution time rate of each of the routines on
the program. An example of these tools is the gprof, which is a GNU tool that records all
the required information for an exhaustive analysis. This tool is used together with the gcc

ANSI C++ compiler, and an example of its application is shown later in Section 5.5.2. Such
a tool helps the programmer to determine the routines that constitute the main bottlenecks
in the program, which should be parallelized.

Once the routines to be parallelized have been identified, we could use one of the many
communication and synchronization paradigms available. Many of these are described in

84 Endika Bengoetxea, PhD Thesis, 2002



Parallel estimation of distribution algorithms

Section C.3.6 in Appendix C. For these, the task that the selected routines performs is di-
vided in subtasks and, as well as in the previous section, communication and synchronization
between them is determined and implemented.

An example of a way of coordinating the different processes collaborating for a global
job is the use of a producer-consumer scheme, which was introduced in Section 5.2.1. Very
often this approach is used for the case of a single producer and one or more consumers. It is
important to mention that the client-server scheme is also a particular case of the producer-
consumer: we could assume that the producers are clients that basically produce requests
and store them in a structure such as a buffer, and the server will play the role of consuming

requests by attending them.
Section 5.5 shows an example on how to apply these techniques for the case of having

already a sequential program in which routines that represents bottlenecks are identified and
parallelized.

5.3 Parallel architectures and systems

5.3.1 Parallel computer architectures

As the performance of any parallel program is heavily dependent on the hardware available,
it is important to have a general understanding of the existing parallel machines in order to
select the best one for our purpose. Obviously, one can always execute parallel programs on
an ordinary PC or workstation with a single CPU and its particular memory, but the fact
of having more than 2 or 4 processes or threads will lead to a competition between all of
them for the use of the CPU rather than to the desired collaboration between them. The
drastic reduction in computer prices in the last years has made possible for more users to
acquire machines with more than a processor. Moreover, the existence of very fast local
area networks allows single processor computers to communicate with each other with rates
similar as communication within an internal bus of a machine.

We present in this section a classification of the different parallel systems. The classifica-
tion is done based on the number of processors and the arrangement of CPUs and memory
within the different parallel systems. One of the first classifications is the one based on
Flynn’s specification [Flynn, 1972]. An illustration of this classification is shown in Fig-
ure 5.8. Following this general classification, the main difference between computer systems
is done regarding the number of processors and their type in the next way:

Single Instruction Single Data (SISD): This is an ordinary workstation system, where
there is a single CPU and a single address map accessible by the CPU. This is not
considered as a parallel system.

Single Instruction Multiple Data (SIMD): This type of systems can be considered as
a first approach to parallel computing, and they are nowadays disappearing. In a
typical SIMD machine we can have hundreds of CPUs, even thousands, all of them
with a small private memory space. They all execute at the same time the same
instruction over different data (at least, if the instruction makes it possible). These
systems were thought for parallel computation of vector and matrix operations. When a
CPU requires data stored in another’s memory address map an explicit communication
procedure has to be executed before. The main problems of these machines are their
inflexibility as well as their high dependence on synchronization between all the CPUs
of the system.

Endika Bengoetxea, PhD Thesis, 2002 85



5.3 Parallel architectures and systems

Computer

Architectures

Parallel

Architectures

MIMD
Multiple Instrunction

 Multiple Data

DM
Distributed Memory

MC
Multicomputers

BC
Beowulf Clusters

COW
Clusters of

Workstations

MPP
Massively Parallel

Processor

SDM
Shared Distributed

Memory

SM
Shared Memory

SIMD
Single Instruction

 Multiple Data

Sequential

Architectures

SISD
Simple Intruction

 Simple data

Figure 5.8: Illustration of all the different computer architectures. Here all the possible forms are
shown, and many of them exist today. In some of these systems the number of processors is just one,
but in other there can be thousands of them.

Multiple Instruction Multiple Data (MIMD): In this approach with many CPUs, all
the processors have their particular memory space too, but the way of execution is very
asynchronous and each processor can execute a different instruction, or even a different
program. There is a complete independence in execution between all the CPUs. These
systems are very convenient for nowadays’s parallel systems. A diagram of the most
used memory models is also presented in Figure 5.9. MIMD systems’ performance
shows a high dependence on the memory architecture, and depending on it we can
classify these systems as follows:

Shared memory. The system has a single memory space, so that any computer can access
any local or remote memory in the system, independently of the process that
is the owner. Having a single memory space allows having shared memory
for communication between all the executing workers or tasks, which makes it
be an efficient communication mechanism. This is very convenient for parallel
programs where the amount of data to process is very big, as the data requires
no copying in order for all the CPUs to access it at the same time. In other

86 Endika Bengoetxea, PhD Thesis, 2002



Parallel estimation of distribution algorithms

Mem

CPU

Mem

CPU

Mem

CPU

Mem

CPU

Distributed Memory

Memory

Shared Memory

CPUCPUCPUCPU

Memory

CPU

Memory

CPU

Shared Distributed Memory

CPUCPU

Figure 5.9: Illustration of the most used memory models for parallel computer architecture taxon-
omy.

cases, all this data should be exchanged between CPUs’ address maps during
the execution of the parallel program with the consequent lack on efficiency.
An aspect to remember is that the disadvantage of using shared memory access
is that shared variables lead to the existence of race conditions between parallel
programs or routines, and therefore synchronization mechanisms have to be
included in our parallel programs.

Distributed memory. In this case each processor has a particular address map that the
rest cannot access at all. It is therefore essential that a process sends all the data
to another if they have to collaborate to compute something. This communica-
tion operations are explicit (i.e. they have to be programmed). These systems
have the advantage of being very easily scalable, but the lack of a shared address
map adds a time penalty for each inter-process communication. An example of
this type of computer systems are the so called Massively Parallel Processors
(MPP).

Shared distributed memory. This hybrid model has the goal of having the advantages
of both systems (i.e. the easy communication mechanism of shared memory
and the scalability of distributed systems). These systems would contain their
own memory address map, but the architecture is designed so that any node
can access the memory of another with a slight time penalty. This type of
architecture is a current trend on multiprocessor architectures.

In the recent years the development of two main fields in computing, such as the faster
processors and the improvements of networks in communication speed, have also made avail-
able some new computer systems within the distributed memory MIMD model that could
be regarded as virtual parallel computers. It is important to distinguish properly between
three different possible machines that follow the MIMD model:

Network of workstations: in this model many very fast separated computers are con-

Endika Bengoetxea, PhD Thesis, 2002 87



5.3 Parallel architectures and systems

nected through a fast Local Area Network (LAN). Each computer has its own console,
can work as an independent machine, and occasionally they can all collaborate in a
common task. This type of systems are known as NOW (Network Of Workstations).

Cluster: clusters are made of different machines, but there is a single console to control
all the computers. However, in order to have full control of each of the nodes, it is
necessary to do a connection through the console.

Multicomputers: in multicomputers all the different computers behave as a single one,
and the user or programmer can control the whole execution of all the CPUs from a
single node. No connection is necessary to a single node in order to control what is
going on in the multicomputer.

This type of MIMD model machines are mainly built with clusters of workstations, where
each workstation in the cluster acts as a separate computer. Processes on these systems can-
not use shared memory, as the memory space of every workstation is physically separated
from the others, and therefore message passing primitives are used for inter-process commu-
nication between processes executing in different workstations. In some special cases, these
systems also are able to use virtual shared memory.

However, there are also special types of computer clusters composed of ordinary hardware
architectures (i.e. ordinary PCs) with public domain software (i.e. Linux OS and dedicated
libraries designed for fast message passing). A node plays the role of the server and controls
the whole cluster, serving files to the rest of the nodes (i.e. the client-nodes). In addition, in
some cases a node can also be a shared memory system (a multiprocessor). This particular
type of clusters are known as Beowulf Clusters (BC) [Beowulf, 1994].

The main advantage of NOWs is their lower cost compared to other parallel machines,
scalability, and code portability. The main drawback is the lack of available software specially
designed for this type of systems in order to make the cluster behave as a single virtual
machine. However, the existence of specialized public domain libraries such as Parallel
Virtual Machine (PVM) and implementations of the Message Passing Interface (MPI) makes
programmers easier to work with them (later in Section 5.3.3 these two libraries are analyzed
in detail).

Finally, it is worth mentioning how typically all these parallel systems are combined with
the different communication and synchronization methods. Typically, when shared memory
is available the selected communication approach is to use shared buffers and variables that
all execution units can access using as a result an explicit synchronization mechanism such as
mutex semaphores. On the other hand, in distributed systems only message passing primi-
tives are possible for communication between execution units, and synchronization is implicit
on these primitives. Table 5.1 illustrates the way of combining communication paradigms
(shared memory and message passing) with different architectures (multiprocessors and mul-
ticomputers). This table shows that the native communication models for multiprocessors
and multicomputers are shared memory and message passing respectively, but that multi-
processors can also use message passing (which also can be efficient) and multicomputers can
use shared memory mechanisms (although this latter solution in practice is not so efficient).

5.3.2 Comparison of parallel programming models

As explained before, parallel architectures as well as parallel software provide a way of di-
viding a task into smaller subtasks, each of them being executed on a different processor.

88 Endika Bengoetxea, PhD Thesis, 2002



Parallel estimation of distribution algorithms

Multiprocessors Multicomputers
virtual

Shared native shared
memory memory library

implemented
Message over shared native
passing memory

Table 5.1: Table showing the combination of communication models and parallel architecture models.
The native communication models for multiprocessors and multicomputers are shared memory and
message passing respectively.

When programming this subdivision of tasks we can use several concurrent models, as de-
scribed in Section 5.2.1, such as client-server or producer-consumer. Whichever the type of
model chosen, two are the aspects that should be taken into account in order to compare
two different parallel implementations of a computationally expensive sequential program:

Granularity: This is the relative size of each of the computation units (i.e. the amount of
work for each of the workers) that execute in parallel. This concept is also known as
coarseness, or fineness of task division.

Communication: This is relative to the way that execution units communicate to each
other and how they synchronize their work.

It is important to take into account that the number of processes or workers is also an
important factor to consider every time that the parallel program will be executed. This
is very commonly a parameter of parallel programs. One might think that it is better to
use as many processes as possible so that the workload of each is very low and each of
them needs less time to complete its subtask, leading to a shorter time to complete the
whole job. However, it is important to take into account that the number of CPUs is a
limiting factor, as the maximum number of processes that can be running at the same time
is equal to the number of CPUs (the rest will be in an idle state waiting for an executing
process to pass to a blocked state and to take ownership of the freed CPU). In addition, it
is also important to note that creating a new process is a procedure that also requires some
additional time by the operating system, as well as the communication or synchronization
procedures to coordinate them all. The latter is specially costly when processes are executing
in different workstations connected through a network. That is why the number of processes
has to be carefully chosen trying to find a balance between workload and cost for creating,
communicating, and synchronizing these.

5.3.3 Communication in distributed systems: existing libraries

In the recent years some alternatives have been created in order to provide a programming
interface when writing programs for multicomputers. Three of the most known ones are the
following:

• Parallel Virtual Machine (PVM): PVM [Parallel Virtual Machine, 1989] is a software
system that allows a heterogeneous network to be seen as a parallel computer. As a
result, when a parallel program is to be executed, this is done over a virtual parallel

Endika Bengoetxea, PhD Thesis, 2002 89



5.4 Parallelism techniques in the literature applied to graph matching

machine –hence the name. PVM is maintained by the so called Heterogeneous Network

Computing research project. This project is a collaboration of the Oak Ridge National
Laboratory, the University of Tennessee and Emory University.

• OpenMP3 application program interface: OpenMP [OpenMP, 1997] is a portable,
scalable model that gives shared-memory parallel programmers a simple and flexible
interface for developing parallel applications for platforms ranging from the desktop to
the supercomputer. The design of OpenMP is based on threads that share a common
memory space.

• The Message Passing Interface (MPI): MPI [Message Passing Interface, 1993] has been
designed and standardized by the so called MPI forum which is formed by academic
and industrial experts and is thought to be used in very different types of parallel
computers. Nowadays there are many implementations of the standard available for
many platforms. MPI is used now by the most important parallel computer vendors,
as well as in universities and commercial companies.

PVM and OpenMP are standards where both the interface and implementation are de-
fined (they are closed standards regarding these aspects), while in MPI only the interface is
designed and many different implementations exist. These parallel programming alterna-
tives were designed with the main objective of providing a solution to the problems of lack of
standardization in parallel programming, that resulted in a lack of portability. Actually, dif-
ferent versions of these libraries exist for many different operating systems and architectures,
which make them be portable enough for most of the existing computer systems.

5.4 Parallelism techniques in the literature applied to graph

matching

Due to the complexity of many real graph matching problems, long execution times are
required for dealing with all the search space as well as with all the data to evaluate each
solution. As a result, parallelism techniques have been proposed in the literature to parallelize
graph matching algorithms of very different types.

Many different parallelism techniques have been applied in the literature for faster com-
putation of graph matching problems. Among them we have the use of linear combination
and parallel graph matching techniques for 3D polyhedral objects representable by 2D line-
drawings [Wang, 1999], and the use of a communication scheduling framework for commu-
nication algorithms [Bhat et al., 1999].

The subject of using parallel techniques to graph matching is also analyzed as a whole
subject in some references. Examples of this are the description of the basic combinatorial, al-
gebraic, and probabilistic techniques required for the development of fast parallel algorithms
for graph matching problems and for closely related combinatorial problems [Karpinski and
Rytter, 1998, Reif, 1993], and a study of different parallel algorithms as well as a proposal
of a new one for attributed exact graph matching [Abdulkader, 1998].

On the other hand, there are also examples on applying graph matching techniques
to improve parallelism in computer networks and operating systems. An example of this is
tackling the problem of finding an optimal allocation of tasks onto processors of a distributed
computing system [Tom and Murthy, 1999].

3The MP in OpenMP stands for Multi Processing.

90 Endika Bengoetxea, PhD Thesis, 2002



Parallel estimation of distribution algorithms

All these references concentrate on the design of the parallel program, and in analyzing
the complexity of the different graph matching approaches in order to obtain a simpler one.
In addition, they are mainly based in shared memory approaches and threads, and practically
no examples on combining fast networks and message passing standards for graph matching
problems can be found.

5.5 Parallelization of sequential EDA programs

5.5.1 Computation needs in EDAs

Experiments applying EDAs to complex problems such as inexact graph matching –see Chap-
ters 6 and 7– show that some of the EDA algorithms are very time consuming [Bengoetxea
et al., 2000, 2001a,b,c,d, 2002a]. The execution time is directly proportional to the number
of dependencies (i.e. maximum number of parents that each node can have) that the learning
algorithm takes into account, as well as to the number of vertices of both the model and
data graphs (i.e. the number of regions to recognize). This is specially evident in the case
of EBNA for the discrete domain and EGNA for the continuous domain. Unfortunately, in
real problems these graphs contain a lot of vertices due to imprecisions in image acquiring
techniques, and therefore these two EDAs can even require many days to fulfill the stopping
criterion.

Parallel programming techniques can be applied to improve these execution times by
executing processes in parallel. As a first step before starting to modify the code, it is
important to identify the steps on the algorithm that are suitable for parallelization, as some
of its steps are inherently sequential and cannot be parallelized. An example of a step that
one can think of to be easily parallelized is the simulation step. This step is used to create the
R individuals that will form the next generation after the learning step in the probabilistic
graphical model. These individuals can be created in parallel, as the simulation of each of
these individuals has to be done without taking into account the generation of the previous
ones.

Another important step that can be parallelized is the learning step in EDAs. EBNA
and EGNA algorithms are among the most complex EDAs as they try to take into account
all types of dependencies between the variables, and therefore the learning steps of these two
are specially time consuming. Due to this reason, we will concentrate in parallelizing these
two algorithms. However, before proceeding to any parallelization design, it is essential to
know how the learning is performed on these. The learning procedures in EBNA and EGNA
have been reviewed in Sections 4.3.4 and 4.4.4 respectively. The techniques described in
Section 5.2.1 were applied for this purpose.

Whichever the procedure selected for parallelization, it is important firstly to analyze in
the whole problem which of these steps is the one that consumes most of the CPU time of
the overall execution time. This is an important factor since parallelizing a function that
only supposes for instance a 5% in the global execution of the program will not have much
influence in terms of reduction of execution time. The next section is a study of execution
steps and procedures on EDAs.

Endika Bengoetxea, PhD Thesis, 2002 91



5.5 Parallelization of sequential EDA programs

5.5.2 Analysis of the execution times for the most important parts of the

sequential EDA program

It is important to realize that the simple procedure of creating a new execution unit (either
a process or a thread) requires some additional execution time, and therefore further study
is required in order to be sure that the amount of work per process is big enough to justify
the extra time-overhead of creating the process itself.

The different EDAs described so far for both the discrete and continuous domains have
been executed and the time required for each of the internal steps and procedures has been
measured. The tool used for this measurement is the widely known gprof, which is a GNU tool
that records all the required information that we need. As already explained in Section 5.2.2,
this tool is used together with the gcc ANSI C++ compiler. Table 5.3 shows the execution
times in absolute values to obtain these results after execution in a two processor Ultra
80 Sun computer under Solaris version 7 with 1 Gb of RAM. It is important to note that
these values do not correspond to ordinary execution times because the compilation options
required for doing this analysis are different and debugging flags are active, thus making the
execution much slower. After all, the results are given in statistical terms such as percentages
of use of CPU, information that is enough for our purposes. That is also why execution in
another machine such as a PC with Linux would return similar results in terms of execution
time percentages.

Three experiments were carried out using the inexact graph matching problem with
graphs generated randomly for Study 1 (the 10 & 30, 30 & 100 and 30 & 250 examples), and
using the fitness function defined in Section 3.4.3. Some of the results obtained with these
experiments are shown in Table 5.2.

In order to understand the results shown in Table 5.2, it is important to have a better
understanding on the purpose of the procedures in the source code. There is a fitness function
that is used to compute the value of each individual. This function is represented in the table
as Fitness Func. and is the one defined in Equation 3.2. The fitness function is the same
for both discrete and continuous EDA experiments, although in the latter algorithms there
is an additional step in the continuous case as described in Section 3.3.2. These procedures
and the way of carrying out the experiments are described in detail in Section 3.4.3 as well
as in [Bengoetxea et al., 2001c,e, Mendiburu et al., 2002].

There is also a procedure that performs the learning for each of the EDAs, the learning
of the probabilistic graphical model (Bayesian network or the Gaussian network in discrete
and continuous domains respectively) expressed in the table as Learning for the discrete
and continuous EDAs. This procedure constitutes the main difference between the different
EDAs, and the relative execution time among the different EDAs of this procedure depends
essentially on the complexity of the chosen algorithm. In the continuous domain, there are
also two procedures called Means and Covariances and Matrix operations that are also part
of the learning process of the algorithms (i.e. their times are included on the Learning part
on continuous EDAs) that are on the table in order to show their relative significance in the
execution time.

Finally, the last procedure to mention is Simulation, which finality is the generation of
the R individuals of the next generation. This procedure is different in the discrete and
continuous cases, but essentially they perform the same task.

The times given in Table 5.2 only reflect the time in percentages. This information shows
clearly that in the EBNABIC and EGNABIC cases the fact of parallelizing the simulation
step would not reduce drastically the overall execution time of the whole program, as in

92 Endika Bengoetxea, PhD Thesis, 2002



Parallel estimation of distribution algorithms

EDA Execution Execution
Algorithm Procedure Time (%) Procedure Time (%)

UMDA Fitness Func. 9.6 Fitness Func. 81.9
Simulation 7.4 Simulation 9.4
Learn Bayesian N. 7.7 Learn Bayesian N. 24.2

MIMIC Fitness Func. 12.89 Fitness Func. 63.7
Simulation 6.4 Simulation 8.0
Learning (BIC) 47.3 Learning (BIC) 85.7

EBNABIC Fitness Func. 18.1 Fitness Func. 12.3
Simulation 4.0 Simulation 1.4

Means and Covariances 24.6 Means and Covariances 24.6
UMDAc Fitness Func. 14.3 Fitness Func. 34.7

Simulation 2.1 Simulation 0.9
Learning 23.6 Learning 23.1
Fitness Func. 13.7 Fitness Func. 34.1

MIMICc Means and Covariances 23.5 Means and Covariances 22.6
Simulation 4.4 Simulation 3.5
Learning 5.6 Learning 55.0
Means and Covariances 21.4 Means and Covariances 7.2

EGNABGe Fitness Func. 12.2 Fitness Func. 10.9
Simulation 1.9 Simulation 0.3
Learning (BIC) 53.1 Learning (BIC) (*)
Means and Covariances 3.5 Means and Covariances (*)

EGNABIC Fitness Func. 1.6 Fitness Func. (*)
Simulation 0.6 Simulation (*)
Learning 34.2 Learning (*)
Means and Covariances 15.9 Means and Covariances (*)

EGNAee Matrix operations 17.2 Matrix operations (*)
Fitness Func. 9.2 Fitness Func. (*)
Simulation 5.3 Simulation (*)
Learning 40.4 Learning (*)
Matrix operations 33.7 Matrix operations (*)

EMNAglobal Means and Covariances 6.8 Means and Covariances (*)
Fitness Func. 5.4 Fitness Func. (*)
Simulation 10.3 Simulation (*)

Table 5.2: Time to compute for two graph matching problems synthetically generated with sizes 10
& 30 (first column) and 50 & 250 (second column). All the figures are given in relative times, i.e.
100% = full execution time. The values with the symbol (*) would require more than a month of
execution time to be properly computed.

the big case (last column) this step does not represent a significant execution time of the
algorithm (only the 0.6% and 4% of the execution time). These two experiments show clearly
that the most time consuming function is the BIC function, the one that is used to evaluate
the different Bayesian and Gaussian networks in their respective versions.

It is also important to realize from the tables presented that the relative significance of
the learning procedures in the execution time is more important when the size of the problem
is also bigger. These data also show that the learning is not linear regarding the size of the
problem, showing the already known NP-hard nature.

Endika Bengoetxea, PhD Thesis, 2002 93



5.5 Parallelization of sequential EDA programs

10 & 30 example: 50 & 250 example:
EDA Algorithm execution time execution time

UMDA 00:02:22 04:28:25
MIMIC 00:02:25 05:27:33
EBNABIC 00:04:44 37:01:45
UMDAc 00:28:52 33:37:51
MIMICc 00:29:42 33:25:03
EGNABGe 00:34:14 146:43:30
EGNABIC 03:52:04 (*)
EGNAee 00:44:34 (*)
EMNAglobal 01:46:34 (*)

Table 5.3: Time to compute the analysis in Table 5.2 for the 10 & 30 and 50 & 250 examples
(hh:mm:ss). Again, the values with the symbol (*) required more than a month of execution time to
be properly computed.

As discrete representations are mainly used in real graph matching problems we decided
to parallelize the most CPU expensive discrete EDA that we defined: the EBNABIC . There-
fore, this thesis concentrates mainly on parallelizing the BIC score, which implementation
appears to be very important in the total execution time required by this EDA medium size
problems.

5.5.3 Interesting properties of the BIC score for parallelization

Looking at the time required to execute algorithms such as EBNA in the discrete domain and
EGNA in the continuous domain, it appears clear that parallel programming and concurrency
techniques need to be applied in order to obtain shorter execution times. Some parallel
algorithms have already been proposed in the literature for similar purposes [Freitas and
Lavington, 1999, Sangüesa et al., 1998, Xiang and Chu, 1999], and also more concretely for
the EBNA algorithm [Lozano et al., 2001].

In EBNABIC and EGNABIC the learning of the probabilistic graphical model is usually
done by starting with an arc-less structure and by adding or removing step by step the arc
that most increases the BIC score. This process is repeated until a stopping criterion is
met, and the final result is a probabilistic graphical structure that reflects the interdepen-
dencies between the variables. As a result, both EBNABIC and EGNABIC are based on a
score+search approach.

The BIC score is based on the penalized maximum likelihood. It can be written as:

BIC(S,D) =

n∑

i=1

BIC(i, S,D) (5.1)

BIC(i, S,D) =

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij

−
1

2
(ri − 1)qi. (5.2)

An important property of the BIC score is that it is decomposable. This means that the
score can be calculated as the sum of the separate local BIC scores of each of the variables.
Therefore, each variable Xi has associated a local BIC score –BIC(i, S,D)– as defined in
Equation 5.2.

94 Endika Bengoetxea, PhD Thesis, 2002



Parallel estimation of distribution algorithms

As a result, this allows us to compute the component that each variable adds on the global
BIC score of the structure separately. It is important to remember that the arc adding or
removing has to ensure that the structure will still be a DAG (Directed Acyclic Graph) in
order to be accepted.

The structural learning algorithm has to find the best arc addition or removal in order
to improve the BIC score. This task is accomplished by computing the corresponding BIC
score for every arc modification. Therefore, as there are n(n − 1) possible arc modifications
in a structure with n nodes, there are also n(n − 1) possible gains on the BIC scores to
calculate each step arc modifications. The arc modification that maximizes the BIC score,
whilst maintaining the DAG structure, is applied to S. Also, if the arc (j, i) is modified (i.e.
added or removed), only the component BIC(i, S,D) is affected. In the next step the rest of
the BIC(k, S,D) k 6= i do not change, and therefore only n−2 terms have to be computed.

All the computation of the different possible arc modifications can be computed sepa-
rately. This task can be distributed to different processes that can be computing in parallel
all the BIC(i, S,D) in different processors.

5.5.4 Parallel techniques applied in this thesis

Regarding the different parallel architectures and systems shown in Section 5.3 where a par-
allel program can run and in order to offer the two possibilities of using shared memory or
message passing, we have developed two different parallel versions of EBNABIC : one is based
on using threads and shared memory, suitable for SM and SDM or multiprocessor machines
in general, and was implemented using the pthreads library. The other is based on processes
communicating using message passing, suitable for NOW, clusters, or multicomputers, imple-
mented using the MPI interface. The reason for choosing these two parallelization standards
is their proved performance, but also their portability and availability for different operating
systems such as Windows, Solaris and Linux. Appendix D shows the main parts of the source
code in EBNA, while an example of parallelizing the EBNA program in the way described is
presented later in Section 6.4. Experimental results and conclusions are shown in the latter
section for both using threads and MPI. These techniques are applied to the parallelization
of the BIC procedure due to its computation cost in complex problems.

Endika Bengoetxea, PhD Thesis, 2002 95



5.5 Parallelization of sequential EDA programs

96 Endika Bengoetxea, PhD Thesis, 2002


