
Chapter 6

Experiments with synthetic

examples

‘Learning is not attained by chance, it must be sought for with ardor

and attended to with diligence. ’

Abigail Adams

6.1 Introduction

This chapter introduces three different studies leading to demonstrate the validity of the
EDA approach and its behavior for the application to inexact graph matching problems.
Different aspects already considered but not shown with experimental tests are described in
these studies.

In order to avoid at the maximum the influence of a particular real problem on the
behavior of EDAs and other algorithms, random or synthetic attributed graphs have been
created and will be used as a starting point in all the experiments in this chapter. The aim of
the different sections is as follows: Study 1 analyzes and compares the performance of EDAs
and other evolutionary computation techniques such as GAs. Study 2 is an illustration of
what happens inside complex EDAs and tries to make clearer the way of approaching better
solutions. For this, the best structure that the probabilistic graphical models adopts for
better representing the selected individuals of each generation is shown. Finally, in Study 3
the parallelization process of a complex algorithm such as EBNA is carried out, and an easily
adaptable method for other similar complex approaches such as EGNA is introduced and
justified with experimental data showing the considerable improvement in execution time
that the proposed method obtains.

6.2 Study 1: measurement of the performance

6.2.1 Design of the experiment

Three different synthetic examples of graphs have been created randomly using different sizes
of model graphs –GM– and data graphs –GD. The sizes of these graphs are as follows from
the smallest to the biggest: in the first example the model graph GM contains 10 vertices
and 15 edges, and the data graph GD has 30 vertices and 39 edges. For the second example
the graph GM contains 30 vertices and 39 edges, and the graph GD 100 vertices and 247
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edges. Finally, in the third example GM contains 50 vertices and 88 edges, and the graph
GD has 250 vertices and 1681 edges. The sizes of these graphs have been chosen carefully.
Firstly, the size for the graphs of the first –small– example has been selected based on the
explanations given for a real problem in [Boeres et al., 1999, Boeres, 2002], which shows a
reduced example of the inexact graph matching problem of graphs extracted from healthy
human brain images introduced in [Perchant et al., 1999] and [Perchant and Bloch, 1999].
The size of the graphs for the third example are similar to the ones introduced in [Perchant
et al., 1999], in which a model graph GM that contains 43 vertices and 336 edges is matched
against another graph GD that contains 245 vertices and 1451 edges. Finally, the graphs for
the second example are half way between the first and the third examples’ ones. In what
follows, we will call 10 & 30 example, 30 & 100 example, and 50 & 250 example to the small,
second, and big graph matching cases respectively.

The number of edges chosen for all these graphs were selected knowing that the value
returned by this fitness function does not depend on |EM | and |ED|. Following the classifica-
tion of graphs between sparse and dense introduced in [Larrañaga et al., 1997], the number
of edges have been chosen to be the median of the sparse graphs of that size.

As in every optimization problem, a fitness function has to be defined in order to evaluate
the goodness of any of the possible solutions. The fitness function f2(h) introduced in
Section 3.4 (Equation 3.2) was selected for the experiments in this study just as an example
because of its previous use in real graph matching problems [Boeres, 2002, Perchant and
Bloch, 1999, Perchant et al., 1999].

For all the three cases, both the model and data graphs GM and GD have been gener-
ated randomly from scratch. The fact that no image processing is performed in the graph
construction avoids the dependence of the image processing techniques in the final result.
Obviously, as these graphs are generated randomly, they do not represent neither any knowl-
edge nor any common segments, and we do not have previous knowledge about which is the
optimum matching between vertices of GM and GD. As well as both graphs, cN (aD, aM ) and
cE(eD, eM ) were also generated randomly, and α is assigned a value of 0.8 because the best
results are obtained with this value in [Boeres et al., 1999] for their particular application.
This value is taken as an example for these experiments too.

As the aim of the experiments with these three synthetic examples is to test the perfor-
mance of EDAs in general, we have selected three discrete EDAs introduced in Section 4.5.1,
as well as four continuous EDAs introduced in Section 4.5.2. Because the main difference
between EDAs in both domains is the number of dependencies between variables that they
can take into account, the fact of having graphs with different sizes will influence parame-
ters such as the best solution obtained after a number of generations, the time to compute
the algorithm, and the evolution of the algorithm itself through the search. This section
describes the experiments and the results obtained1. The three discrete EDA algorithms
are also compared to three broadly known GAs: canonic basic (cGA) [Holland, 1975], elitist
(eGA) [Michalewicz, 1992] and steady state (ssGA) [Whitley and Kauth, 1988]. The two
first GAs evolve from a population to another by applying crossover operations to some indi-
viduals in the population, and the difference between them is that the eGA always includes
in the new population the best individual of the previous one, whereas cGA does not. The
ssGA approach is somehow different, as it only generates one individual at each iteration,
replacing only the worst individual of the population when its fitness value is worse than the

1A review of this work focusing only on the discrete domain can also be found in [Bengoetxea et al., 2001a,
2002a].
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one of the new individual.

EDAs and GAs were implemented in ANSI C++ language, and the experiments were
executed on a two processor Silicon Graphics machine SGI-Origin200 under IRIX OS version
64-Release 6.5 with 500 Mbytes of RAM.

In the discrete case, all the programs were designed to finish the search when the whole
population is formed by the same repeated individual or when a maximum of 100 generations
was reached. GAs were programmed to generate the same number of individuals as with
discrete EDAs, and therefore 100 generations were executed for all of them. The ssGA
is a special case because of generating a single individual at each iteration, but it was also
programmed in order to generate the same number of individuals by allowing more iterations.
In the continuous case, the algorithms were designed to finish when the 150th generation was
reached.

The initial population for all the discrete algorithms was generated using the same random
generation procedure based on a uniform distribution for all the possible values, and in the
case where the correction of the individuals applies, both discrete EDAs and GAs were
programmed using the same correction procedures. In the same way, the fitness function
used in all the algorithms is exactly the same. In the continuous case, the generation of the
first generation was also done following a similar procedure for generating continuous values.

In EDAs of both domains, the following parameters were used: a population of 2000
individuals (R = 2000), from which the best 1000 are selected (N = 1000) to estimate
the probability, and the elitist approach was selected (that is, always the best individual is
included for the next population and 1999 individuals are simulated). In GAs a population
of 2000 individuals was also selected, with a mutation probability of 1.0/|VD | and a crossover
probability of 1.

6.2.2 The need to obtain correct individuals

As one of the aims of this study is to analyze the behavior of EDAs in ordinary problems,
we decided to add extra constraints to the problem. For this, three conditions have been
introduced in Section 3.3.3 that need to be satisfied for any solution. It is important to realize
that both in GAs and discrete EDAs the individuals generated every generation could contain
an incorrect solution (that is, the solution might not satisfy the three conditions introduced
in Section 3.3.3). That is why some techniques to avoid the presence of incorrect individuals
have been introduced in Section 4.5.1. Continuous EDAs do not have such a problem, as the
individual representation chosen avoids it completely.

Nevertheless, as using the techniques to obtain correct individuals introduced in Sec-
tion 4.5.1 implies a computational cost as well as a direct and permanent manipulation on
the population itself, it is important to check whether the percentage of incorrect individuals
for the different algorithms is high enough to justify such a correction. We will take our 30 &
100 case as an example to confirm whether the additional manipulation process is required
or not.

Figure 6.1 shows the percentages of correct and incorrect individuals during the search
process for the three discrete Estimation of Distribution Algorithms (UMDA, MIMIC and
EBNA), as well as for the cGA, eGA and ssGA in the 30 & 100 example without applying
any technique to correct the wrong individuals (PLS only). Similarly, Figure 6.2 shows
the results of applying penalization under the same conditions. These graphics illustrate
the mean results of 20 executions for each of the algorithms. For each graphic the x axis
represents the generation number, and the y axis the percentage of individuals that are
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(a) UMDA (b) MIMIC

(c) EBNA (d) cGA

(e) eGA (f) ssGA

Figure 6.1: Figures for the correctness of the UMDA, MIMIC and EBNA (discrete EDAs) as well
as for the cGA, eGA and ssGA (GAs), applied to the second example of 30 & 100 vertices without
correction.

correct (i.e. all the vertices in VM have been assigned in the matching), the ones where a
value is missing (i.e. when only one vertex of VM has not been assigned), the ones where two
values are missing (i.e. when two vertices of VM have not been assigned), when three values
are still to be assigned, and finally the individuals in which more than three vertices have
not been assigned to a data vertex. These graphics illustrate that at the final generation
of all the algorithms practically none of the individuals is acceptable, but the percentage of
correct individuals decreases sooner when increasing the size of the graphs. It is important
to note that in this 30 & 100 example the individuals have a total size of 100 variables or
genes, and each of them have to be assigned to a value between 1 and 30 (|VM | = 30 and
|VD| = 100) has to be assigned to each of them, thus it is more probable that at least one
of the vertices in VM has not been assigned in the variables or genes than in the 10 & 30
example.

From the results we can conclude that for graphs of complexity similar or higher than in
this 30 & 100 example, the number of correct individuals gradually decreases every generation
for all the algorithms. Furthermore, the percentage of individuals that have one vertex of
VM not matched in the last generation appears to be very high for all the algorithms. These
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(a) UMDA (b) MIMIC

(c) EBNA (d) cGA

(e) eGA (f) ssGA

Figure 6.2: Figures for the correctness of the UMDA, MIMIC and EBNA discrete EDAs as well
as for the cGA, eGA and ssGA GAs, applied to the second example of 30 & 100 vertices and using
penalization.

graphs show clearly the behavior of the different algorithms, as well as the nature of the
fitness function selected. As a result, we can conclude that without any mechanism to
correct or guide the generation of individuals the percentage of correct ones will decay quite
fast. This decay can be appreciated in both discrete EDAs and GAs, but for the case of
EDAs the problem appears to be much more important, as when applying PLS simulation
alone none of the three EDA contains any correct individuals at the last generation of the
search. On the other hand, the three types of GAs do also contain a high proportion of
incorrect individuals at the last generation, and therefore this does not ensure that the final
solution returned by the algorithm will be a correct one.

Another conclusion about the penalization procedure can also be obtained from these
results: the penalization of the incorrect individuals is the only correction method that does
not manipulate the learning and simulation steps (the others are LTM and ATM as explained
in Section 4.5.1), but whichever the penalization weight to the incorrect individuals there
will always be the possibility of finding incorrect individuals in the final population. In fact,
the proportion of incorrect individuals for penalization in UMDA, MIMIC, EBNA, cGA,
eGA and ssGA were of 33.66%, 33.69%, 33.69%, 66.81%, 68.32% and 100% respectively. A

Endika Bengoetxea, PhD Thesis, 2002 101



6.2 Study 1: measurement of the performance

stronger penalization is required to be applied to individuals if this method is to be selected
for graphs with as many vertices as in these three examples, but it would never ensure 100%
of correct individuals in the population.

6.2.3 Discrete domain

Experimental results by combining correction methods and algorithms

Once proved the need to control the generation of the individuals in every population, the
three methods described in Section 4.5.1 for discrete domains were combined with the three
discrete EDA algorithms. In the case of the GAs, the last two methods described in the
same section were used for cGA eGA and ssGA, as the ones based on the modification of the
probability in the simulation step do not apply in GAs which do not perform such a step.

The results obtained from the different executions of the algorithms are shown in this
section. For each algorithm and example the mean values of the fitness value of the best
individual at the last generation, the number of generations to reach the final solution, and
the computation time are shown.

The computation time presented in these experimental results is actually the CPU time
of the process from the beginning to the end, and therefore it is not dependent on the
variations on the multiprogramming level during the execution time. This computation
time is presented as a measure to illustrate the different computation complexity of all
the algorithms. It is important also to note that all the operations for the estimation of
the distribution, the simulation, and the evaluation of the new individuals are carried out
through memory operations.

The null hypothesis of the same distribution densities was tested for each of the different
algorithms and for each of the correction methods to control the generation of new individ-
uals. The non-parametric test of Kruskal-Wallis was used [Kruskal and Wallis, 1952]2. This
task was carried out with the statistical package S.P.S.S. release 9.00.

Discrete domain: best individual, number of generations required, and compu-

tation time

The results of the 10 & 30 example are shown in Figure 6.3 and Tables 6.1, 6.2, and 6.3.
Figure 6.3 is done with the mean of 20 executions for all the algorithms, showing their
different behaviors depending on the correction method employed. The reader is reminded
that the PLS only and Penalization methods do not ensure a population of only correct
individuals. Shorter lines indicate that the algorithm finishes requiring less generations.
Tables 6.1, 6.2, and 6.3 show also the mean values as well as the results of applying the
Kruskal-Wallis test to the different parameters (fitness value, number of generations required,
and execution time required).

In an analogous way, results for the 30 & 100 example are shown in Figure 6.4 and
Tables 6.4, and 6.5. Results for the 50 & 250 example are found in Figure 6.5 and Tables 6.6,
and 6.7. These tables show also the mean values showing their behavior when changing the
correction method employed as well as the results of applying the Kruskal-Wallis test to
the different parameters (metric and execution time required). The number of generations
reached for the 10 & 30 and 30 & 100 examples was of 100 for all the algorithms.

2The interested reader is referred to [Siegel, 1956] for a deep explanation on non-parametric tests.
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(a) UMDA (b) MIMIC

(c) EBNA (d) cGA

(e) eGA (f) ssGA

Figure 6.3: Graphs showing the best individual at each generation of the searching process for the
algorithms UMDA, MIMIC, EBNA, cGA, eGA, and ssGA for the case of the 10 & 30 vertex graphs.
Note the different scales between discrete EDAs and GAs.

At the light of the results obtained in the fitness values, we can conclude that from the
three GAs used, ssGA appears clearly as the one that obtains the best results. Furthermore,
the computation time to generate the final solution is also less than the one required by the
other two GAs.

There is little difference in the best individual obtained by the different discrete EDAs:
even if with some correction methods EBNA obtains the best results, in some cases such
as in LTM and penalization, UMDA returned the best results. As explained before, EBNA
was expected to return the best result due to its ability to estimate more accurately the
probability, in spite of the higher computational cost. Nevertheless, as the differences do not
appear to be significant, we could not conclude that any algorithm is superior to the rest
simply based on these experimental results. Even if in EBNA no restrictions are set to the
structure to learn, the results obtained could indicate that the most appropriate structure for
this problem could be a structure with at most pairwise dependencies. It is also important
to note that both graphs GM and GD have been created at random and that they do not
show any knowledge, which makes the matching process even more dependent on the fitness
function used.

Regarding the difference between discrete EDAs and GAs, it seems clear that EDAs
obtain better results for any of the correction methods applied to the individuals. It is

Endika Bengoetxea, PhD Thesis, 2002 103



6.2 Study 1: measurement of the performance

(a) UMDA (b) MIMIC

(c) EBNA (d) cGA

(e) eGA (f) ssGA

Figure 6.4: Graphs showing the best individual at each generation of the searching process for the
algorithms UMDA, MIMIC, EBNA, cGA, eGA, and ssGA for the case of the 30 & 100 vertex graphs.
Note the different scales between discrete EDAs and GAs.

important therefore to note that ssGA obtains similar results as EDAs.

Additional results. Additionally, the Kruskal-Wallis test was also applied to the correc-
tion methods between discrete EDAs only, and the non-parametric test of Mann-Whitney
[Mann and Whitney, 1947] was carried out for GAs only. The results are shown in Table 6.8.

Another important aspect to remember is the control of the correctness of the individuals.
As the LTM and ATM imply the manual modification of the learned model by changing the
probabilities, the learning itself is somehow manipulated. The correction of individuals does
also modifies at random some of the individuals of the population. The penalization of the
incorrect individuals is the only correction method that does not manipulate the learning and
simulation steps, but whichever the penalization weight to the incorrect individuals there
will always be the possibility of containing incorrect individuals in the final population. A
stronger penalization could improve these values, but it would never ensure 100% of correct
individuals in the population.

Regarding the fitness values of the best individuals obtained at the end of the search
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(a) UMDA (b) MIMIC

(c) EBNA (d) cGA

(e) eGA (f) ssGA

Figure 6.5: Graphs showing the best individual at each generation of the searching process for the
algorithms UMDA, MIMIC, EBNA, cGA, eGA, and ssGA for the case of the 50 & 250 vertex graphs.
Note the different scales between discrete EDAs and GAs.

processes, we can conclude that from the three GAs used, ssGA appears clearly as the
one that obtains the best results. Furthermore, the computation time to generate the final
solution is also less than the one required by the other two GAs. The best individuals
obtained using the different EDAs are very similar: even if with some correction methods
EBNA obtains the best results, in some cases such as in LTM and penalization UMDA
performs better. As explained before, EBNA is expected to return better results due to its
ability to estimate more accurately the probability distribution every generation, in spite
of a higher computational cost. Nevertheless, the small differences between EDAs do not
appear to be significant for this example regarding Table 6.8. This effect can be explained
by the fact that both graphs have been created at random and that they should not reflect
any dependence between variables, and as a result EBNA cannot find more dependencies
than other simpler EDAs. On the other hand, when comparing EDAs and GAs, it appears
clearly that EDAs obtain better results using any of the correction methods applied to the
individuals. It is important to note however that only ssGA obtains nearly as good results
as EDAs.
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Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 0.9305 0.9297 0.9305 0.9303 p = 0.016
MIMIC 0.9296 0.9293 0.9296 0.9289 p = 0.242
EBNA 0.9304 0.9299 0.9301 0.9301 p = 0.320
cGA – – 0.8065 0.8285 p < 0.001
eGA – – 0.8428 0.8431 p = 0.766
ssGA – – 0.9053 0.9045 p = 0.636
Statistical
Significance p < 0.001 p = 0.283 p < 0.001 p < 0.001

Table 6.1: Best fitness values for the 10 & 30 example (mean results of 20 runs).

Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 50.85 67.00 49.90 53.65 p = 0.023
MIMIC 42.00 92.70 46.90 47.40 p < 0.001
EBNA 52.00 63.40 51.20 54.55 p = 0.088
cGA – – 100 100 p = 1.000
eGA – – 100 100 p = 1.000
ssGA – – 100 100 p = 1.000
Statistical
Significance p < 0.001 p < 0.001 p < 0.001 p < 0.001

Table 6.2: Number of required generations for the 10 & 30 example (mean results of 20 runs).

Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 00:58 01:25 01:01 01:32 p < 0.001
MIMIC 00:56 02:39 01:02 01:32 p < 0.001
EBNA 03:37 04:25 03:38 04:34 p < 0.001
cGA – – 01:00 01:00 p = 0.100
eGA – – 01:01 01:01 p = 0.100
ssGA – – 01:09 01:09 p = 0.747
Statistical
Significance p < 0.001 p < 0.001 p < 0.001 p < 0.001

Table 6.3: Time to compute for the 10 & 30 example (mean results of 20 runs, in mm:ss format).

6.2.4 Continuous domain

In an analogous way as in the discrete domain, continuous EDAs were also tested in order to
check their performance in graph matching problems. The same three examples were taken
and were executed 20 times each. The results of the experiment are shown in Figures 6.6,
6.7 and 6.8, and Table 6.9.

This table shows that the differences between the algorithms in the discrete and continu-
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Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 0.940502 0.874684 0.892806 0.825850 p < 0.001
MIMIC 0.936400 0.859538 0.898960 0.824063 p < 0.001
EBNA 0.936739 0.875429 0.905114 0.823836 p < 0.001
cGA – – 0.674490 0.687297 p = 0.004
eGA – – 0.706609 0.712994 p = 0.160
ssGA – – 0.932318 0.911038 p < 0.001
Statistical
Significance p = 0.773 p < 0.001 p < 0.001 p < 0.001

Table 6.4: Best fitness values for the 30 & 100 example (mean results of 20 runs).

Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 00:11:50 00:12:56 00:11:59 00:13:05 p < 0.001
MIMIC 00:17:19 00:18:24 00:17:29 00:18:50 p < 0.001
EBNA 03:18:06 03:19:06 03:18:13 03:19:16 p < 0.001
cGA – – 00:09:07 00:09:08 p < 0.001
eGA – – 00:09:07 00:09:07 p = 1.000
ssGA – – 00:09:03 00:09:04 p = 0.317
Statistical
Significance p < 0.001 p < 0.001 p < 0.001 p < 0.001

Table 6.5: Time to compute for the 30 & 100 example (mean results of 20 runs, in hh:mm:ss format).

Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 0.863936 0.840546 0.856377 0.805633 p < 0.001
MIMIC 0.854939 0.792449 0.855580 0.796515 p < 0.001
EBNA 0.863677 0.833811 0.858611 0.795378 p < 0.001
cGA – – 0.587868 0.588509 p = 0.725
eGA – – 0.608552 0.607220 p = 0.725
ssGA – – 0.835702 0.818191 p < 0.001
Statistical
Significance p = 0.050 p < 0.001 p < 0.001 p < 0.001

Table 6.6: Best fitness values for the 50 & 250 example (mean results of 20 runs).
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Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 01:47:34 01:51:16 01:47:54 01:49:26 p < 0.001
MIMIC 02:45:43 02:50:07 02:45:45 02:47:26 p < 0.001
EBNA 53:01:35 53:08:04 53:03:35 52:59:49 p = 0.001
cGA – – 01:40:23 01:40:15 p = 0.297
eGA – – 01:40:35 01:40:34 p = 0.925
ssGA – – 01:40:50 01:40:39 p = 0.180
Statistical
Significance p < 0.001 p < 0.001 p < 0.001 p < 0.001

Table 6.7: Time to compute for the 50 & 250 example (mean results of 20 runs, in hh:mm:ss format).

First Experiment(10 & 30)

between EDAs only between GAs only

Fitness value: p = 0.139 Fitness value: p < 0.001
Correction Generations: p < 0.001 Generations: p = 1.000

Time: p < 0.001 Time: p < 0.001

Fitness value: p < 0.001 Fitness value: p < 0.001
Penalization Generations: p < 0.001 Generations: p = 1.000

Time: p < 0.001 Time:p < 0.001

Second Experiment(30 & 100)

between EDAs only between GAs only

Fitness value: p = 0.164 Fitness value: p < 0.001
Correction Time: p < 0.001 Time: p < 0.001

Fitness value: p = 0.471 Fitness value: p < 0.001
Penalization Time: p < 0.001 Time:p < 0.001

Third Experiment(50 & 250)

between EDAs only between GAs only

Fitness value: p = 0.886 Fitness value: p < 0.001
Correction Time: p < 0.001 Time: p = 0.012

Fitness value: p = 0.787 Fitness value: p < 0.001
Penalization Time: p < 0.001 Time:p = 0.025

Table 6.8: Particular non-parametric tests for the 10 & 30, 30 & 100 and 50 & 250 examples.
The cases where the generations in GAs are p = 1.000 indicate that all GAs executed during 100
generations. These are the mean results of 20 runs for each algorithm.
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Figure 6.6: Graphs showing the best individual of the 10 & 30 case at each generation of the
searching process for the continuous EDAs UMDAc, MIMICc, EGNABGe, EGNABIC , EGNAee, and
EMNAglobal.

Figure 6.7: Graphs showing the best individual of the 30 & 100 case at each generation of the
searching process for the continuous EDAs UMDAc, MIMICc, EGNABGe, EGNAee, and EMNAglobal.

Figure 6.8: Graphs showing the best individual of the 50 & 250 case at each generation of the
searching process for UMDAc, MIMICc, EGNABGe, and EGNAee.
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10 & 30 10 & 30 30 & 100 30 & 100 50 & 250 50 & 250
best time best time best time

UMDAc 0.994964 00:10:36 0.986516 01:33:29 0.693013 10:13:14
MIMICc 0.994844 00:11:09 0.989696 01:35:29 0.692722 10:18:56
EGNAee 0.994909 00:14:29 0.990219 07:26:56 0.688189 67:08:11
EGNABGe 0.994887 00:13:23 0.990141 03:09:57 0.684401 461:59:00
EGNABIC 0.994878 02:29:41 – – – –
EMNAglobal 0.994855 00:32:09 0.988799 97:45:25 – –

Table 6.9: Figures of the 3 cases of Study 1 for the continuous EDAs, obtained as the mean values
after 20 executions of the continuous EDAs. The best column corresponds to the best fitness value
obtained through the search.

ous domains are significant for all the algorithms analyzed. The null hypothesis of the same
distribution densities was tested (non-parametric tests of Kruskal-Wallis and Mann-Whitney)
for each of them with the statistical package S.P.S.S. release 9.00. These tests confirmed the
significance of the differences in the results regarding the value of the best solution obtained.
It is important to remember that all the solutions obtained by the continuous representation
are correct, and therefore these results can be compared directly to any of the correction
methods described for the discrete case. In many continuous versions of the EDA algorithms
fitter results were obtained at the end of the search than their respective discrete versions,
and it was only on the 50 & 250 example, where the results obtained by continuous EDAs
are worse than the discrete EDAs. The main drawback of continuous EDAs is the longer
execution time they require, which is extremely larger for the case of more complex contin-
uous EDAs such as EGNABGe. In EGNABIC and EMNAglobal the execution time was so
high that after 500 hours of execution time the processes were aborted. These results show
clearly that the behavior of selecting a discrete learning algorithm or its equivalent in the
continuous domain is very different regarding all the parameters analyzed.

It is important to note that the number of evaluations was different as the ending criteria
for the discrete and continuous domains have been set to be different. In all the cases,
the continuous algorithms obtained a fitter individual, but the CPU time and number of
individuals created was also bigger.

At the light of the results obtained in the fitness values, we can conclude the following:
generally speaking, continuous algorithms perform better than discrete ones, either when
comparing all of them in general or when only with algorithms of equivalent complexity.

6.3 Study 2: evolution of probabilistic graphical structures

The aim of this study is to analyze the evolution of the probabilistic graphical model com-
plexity (the Bayesian network in the discrete case and the Gaussian network in the continuous
one) so that the reader can have an idea of the complexity of the graph matching problem
and the behavior of each of the different EDAs.

Due to the difficulty of visualizing a structure with as many nodes as shown in the
graphs of the previous study, a smaller real example has been chosen. This example is
taken from an image of human muscle cells, where the model graph GM contains a vertex
for each of the cells in the image. This image was over-segmented and the data graph GD

was obtained from it. In this particular example the graph GM contains 14 vertices and 66
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Figure 6.9: Figures showing the structures learned during the MIMIC search in discrete EDAs.

edges, and the data graph GD contains 28 vertices and 124 edges. EDAs were applied to
this example using individuals with a size of 28 variables (|VD| = 28) in both discrete and
continuous domains. Therefore, all the probabilistic graphical structures generated during
the successive generation in the EDA approach using this representation of individuals is of
28 vertices. The number of edges of these structures symbolizes the number of dependencies
between the different regions of the data image that the algorithm detects.

The discrete UMDA example is not shown in any figure, as it does consider all the
variables as having no interdependencies. The assumed structure is the same as for UMDAc,
and it is shown in Figure 6.13a.

With discrete EDAs we obtain structures such as the ones illustrated in Figure 6.9 (for
the MIMIC approach) and Figure 6.11 (for EBNA). These two examples show clearly that
the algorithm is learning a structure according to the complexity we expected: MIMIC
takes into account pairwise dependencies and generates a structure in the form of a chain in
every generation, and only the order of the variables changes during the search. The EBNA
algorithm imposes no restrictions to the number of dependencies that a variable can have,
and therefore there is no limitation in the number of arcs that a node can have in every
generation.

With continuous EDAs we can appreciate the analogous behavior: the continuous MIMICc

case is illustrated in Figure 6.10, where a behavior similar to Figure 6.9 can be seen. Again,
this was expected as the discrete MIMIC does also consider pairwise dependencies. Nev-
ertheless, the estimation of the distribution is performed using different methods in both
algorithms according to the domain of the variables (MIMIC generated a Bayesian network
and MIMICc a Gaussian network).

With continuous EDAs we obtain structures such as the ones illustrated in Figure 6.10
(for the MIMICc approach) and Figure 6.12 (for EGNAee). These two examples show clearly
that the algorithm is learning a structure according to the complexity we expected: MIMICc
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(b) 150th generation

Figure 6.10: Figures showing the structures learned during the MIMICc continuous EDA.

takes into account pairwise dependencies and generates a structure in the form of a chain
in every generation, and the EGNAee algorithm imposes no restrictions to the number of
dependencies that a variable can have (there is no limitation in the number of arcs that a
node can have in every generation).

Figure 6.13 is a special case, as the structures of both the UMDAc algorithm and
EMNAglobal are always fixed during the whole search process (i.e. the estimation of the
probabilities does not imply the learning of a structure, this is fixed), and therefore the
structure is considered to exist as a fixed one.

We can appreciate in these experiments as well as in others such as the ones mentioned
in [Bengoetxea et al., 2001c,e] that EBNA and EGNA algorithms, although they are analo-
gous in complexity in their domains, they have different tendencies. Both algorithms do not
set any restriction to the number of dependencies that variables can have (i.e. the probabilis-
tic structures can have any number of arcs for each node). In EBNA, the algorithm tends to
finish with an arc-less structure, which is influenced by the fact that in the last generations
the best individual appears many times in the population, and therefore the algorithm finds
the same value in a variable too often to detect dependencies regarding the rest of the vari-
ables –see Figure 6.11. In EGNAs, values are continuous and cannot be repeated as easily
as in the discrete domain, and therefore as values are different the dependencies can also be
found and represented as arcs in the structure. This is why at the last generations of the
search EGNAs show structures with a lot of arcs. This effect can be appreciated for both
EBNA and EGNA in Figure 6.14. In addition, there are also some additional factors that
may influence this result:

• The complexity of the problem is not as high as expected, and therefore in this case
UMDA and EBNA would return similar results.
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(a) 1st generation (b) 8th generation

(c) 16th generation (d) 24th generation (e) 32nd generation

(f) 37th generation

Figure 6.11: Graphs showing the evolution of the Bayesian network in a EBNA search, illustrating
clearly that the number of arcs of the probabilistic structure decreases gradually from the first gen-
eration to the last ones. A circular layout has been chosen in order to show the same nodes in the
same position. The number of arcs decreases as follows respectively: 57, 56, 40, 12, 3, and 1. After
the 37th generation and until the last (the 43th one) the Bayesian network does not contain any arc.
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(b) 150th generation

Figure 6.12: Figures showing the structures learned during the Edge Exclusion EGNAee continuous
EDA.
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(b) EMNAglobal

Figure 6.13: Figures showing the structures learned during the UMDAc and EMNAglobal continuous
EDAs.

• The fact that using a representation with that many values per variable requires a
bigger population per generation so that more complex dependencies can be analyzed.

It is important to note that in the former case, even if the best results obtained are similar,
the execution time for EBNA would be much higher. This is caused by the first part of
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(b) EGNAee

Figure 6.14: Graphs showing the evolution in number of arcs of the respective probabilistic structures
for EBNA and EGNAee. The two different tendencies are illustrated: EBNA tends to a structure
with less arcs when the search goes on, while EGNA-type algorithms tend to a structure with more
arcs.

the learning process of EBNA that requires searching for the best structure to model the
probability distribution, as in UMDA there is no such a step.

6.4 Study 3: parallelization

This study concentrates on the parallelization issues concerning EDA algorithms. Follow-
ing the techniques and explanations given in Chapter 5, this section concentrates in the
implementation and in obtaining experimental results to show the behavior of the different
communication methods available in communication for parallel programs: the use of shared
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memory and threads, and the use of message passing and processes in different machines.
This section is subdivided in two parts regarding both paradigms.

6.4.1 Parallelizing EBNA using threads and shared memory

Taking into account all the properties of the BIC score described in Section 4.3.4 and analyzed
in Section 5.5.3, we perform a basic modification on the sequential program in order to allow
to compute in parallel all the arc modifications. For this task, the broadly known pthreads

standard library is used, which allows threads to communicate through memory and to
synchronize them using semaphores.

The score+search procedure is therefore organized in a very different way, as now threads
have to divide the work: a thread plays the role of the manager that distributes the work
among the rest, and the others are the workers that have to compute all the possible arc
modifications for a same number of nodes.

Reorganizing the execution of the program

The fact of using a multithread program allows us to use shared memory for communication
between them. This is implemented by creating a single process which contains many threads
executing within its memory space. Global variables are defined, and these are used for direct
communication between threads. However, the use of shared variables for communication
leads to the existence of race conditions within the program. Therefore, a synchronization
mechanism is required to ensure exclusive access to the critical sections in the program. The
critical sections have to be identified by the programmer, and it is also his responsibility to
integrate the synchronization primitives within the code.

In order to accomplish the parallelization task, the first thing to do is to choose a mul-
tithread standard library to program. The pthreads library is commonly available in many
operating systems, so we decided to select it.

Once having decided this, the next step is to select the working scheme that all the parallel
program will use for organizing the work of all the threads. EDA programs do have several
parts that can only be executed sequentially, and the only part that we intend to parallelize
is the computation of the BIC score each generation. Therefore the use of a master-slave
scheme is very suitable for this case: a first thread will be executing the sequential parts of
the EDA program, and when it reaches the step of estimating the probability distribution it
will divide the work and send it to the workers. The worker threads will compute the BIC
score.

An important aspect to consider is the number of worker-threads that will be created at
the same time. We could think at a first glance that creating as many threads as possible is
the best to finish the job, but it is important to take into account that creating a thread also
has a cost associated, and that each thread has to be given enough work in order to justify
its generation time. In addition, another limiting factor to decide how many simultaneous
threads can be working is the number of CPUs of our system: having too many workers will
lead to a system with workers competing between them to take ownership of CPUs instead of
having them cooperating. For this reason, a semaphore is used to limit the number of threads
created at any time. This semaphore is initialized to the maximum number of threads that
can exist. In our case we have a two processor computer, and therefore this limit was set to
4 threads3.

3In fact, since in our particular case we have only two processors in our computer, we could limit the
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10 & 30 ex. 10 & 30 ex. 50 & 250 ex. 50 & 250 ex.
EDA sequential parallel sequential parallel
Algorithm exec. time exec. time exec. time exec. time

EBNABIC 00:04:34 00:03:20 52:59:49 28:00:04
EGNABGe 00:13:23 00:16:35 461:59:00 67:48:01
EGNABIC 02:29:41 01:59:31 (*) (*)

Table 6.10: Execution time for the 10 & 30 and 50 & 250 examples using the EBNABIC , EGNABGe

and EGNABIC algorithms regarding their sequential and parallel versions of computing the BIC score
(hh:mm:ss). The values with the symbol (*) required more than a month of execution time to be
properly computed.

Experimental results of the multithread BIC procedure using shared memory

As the parallel BIC algorithm does not follow a new algorithm, the best fitness values
obtained with the new parallel version of the EBNA approach are exactly the same as the
sequential version. The only differences that can be expected are just in the execution time.
Table 6.10 shows the effect of applying the parallel algorithm on the 50 & 250 example in
both the EBNABIC and EGNABIC algorithms for their sequential and parallel versions.

The results show clearly that the use of threads reduces considerably the execution time
for the 30 & 100 and 50 & 250 examples. A special mention is for the 10 & 30 example in
the EGNABGe case, as these particular results show that the parallel version requires longer
time than the sequential program. This is the result of parallelizing the learning step: in
Table 5.2 we can see clearly that the percentage of computing time for such an small example
is of 5.6 %, while in the 50 & 250 example we obtain a computation percentage of 55 %.
This illustrates that parallel programming techniques can improve the overall execution time
of the program, but that the cost of creating new processes or threads has also to be taken
into account, as already explained in the previous sections. In the small example with the
EGNABGe algorithm the relative weight of the function is so small in the whole execution
time that each of the worker-threads do not have enough processing tasks in order to justify
their creation, while in the big example the learning step is the one requiring the most
computation time and the fact of being computed in different threads gives very satisfactory
results.

For the rest of the cases and EDAs the final result was a considerable improvement in exe-
cution time in both the small and big examples, and the application of parallel programming
techniques such as the use of the library pthreads appears to be very advisable.

In brief, the results obtained could be summarized as follows: multithread libraries ap-
plied on multiprocessors are a very powerful tool for programs such as EDAs that require a
big amount of CPU time, but it is necessary to perform previously an analysis on the relative
time consumed by each of its functions in order to be sure to be applying them correctly.

6.4.2 Parallelizing EBNA using processes and MPI

MPI is a message passing interface introduced in Section 5.3.3. As its name indicates, MPI
has been designed to use message passing as the communication mechanism for inter-process

number of threads to 2. However, any program has always some small periods of time where a thread is
blocked waiting for a operating system job, and another thread could use the CPU in the meanwhile. This is
the reason why it is convenient to create some more threads than processors.
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communication. Threads that are attached to the same process usually communicate through
global variables in shared memory. However, any two threads from two different processes
(either if the processes are on the same computer or connected through a network) cannot
use shared memory and therefore message passing is the only possible mechanism. MPI
provides an efficient mechanism for threads from different processes, and it can also been
applied even when shared memory is available.

MPI has been designed as an interface for communicating processes that could even be
executing in different computers at the same time. We have chosen the MPI implementation
called MPICH for our experiments. The reasons for choosing both MPI and this particular
implementation MPICH is their portability, good performance and availability for operating
systems such as Windows, Linux and Solaris. MPICH even contains versions for very fast
computer network configurations such as Myrinet, which allows us for further reduction in
execution times.

As in MPI the communication is based on message passing primitives, the synchronization
between sender and receiver is done implicitly. In addition, using MPI allows us to use a
cluster formed by many 2-processor simple architecture PCs under Linux connected by a very
fast local area network (LAN) to collaborate and cooperate each other by creating processes
in all the machines without having to change the program. This means that in this case we
can use the same master-slave working scheme as with the parallel version of the pthreads

library, but this time workers would be processes that could be executing in different CPUs
and even in different computers at the same time.

However, in the particular example of the EDA program, the fact that processes cannot
share any memory among them forces the manager to send all the data structures required
to compute the BIC function to each of the workers. Afterwards when all the workers have
completed their part of the job, each one will have to send a message to the master with the
amount of work done. In addition, as in MPI processes are created and not threads, it is
important to take into account that the creation of a process requires more time that creating
a thread. Moreover, if processes are to be created in other computers within a cluster this
operation will take even longer.

All the latter consideration make us modify partly the structure of the EDA program. In
addition, the fact that in MPI the master and the slaves have to execute the same program
and that processes cannot be created dynamically is also another reason for a deep restructure
of the whole sequential program.

Experimental results of the parallel BIC procedure using MPI

The implementation of the EBNABIC parallel version using MPI was tested on a different
machine than the one used in the multithread program. The reason for this is that in this
case for an efficient use of MPI a cluster of workstations is more suitable rather than a
single machine with fast processors. In our case, we tested the parallel program based on
MPI using a cluster formed by 5 computers with 2 Intel Pentium II processors at 350 MHz,
512 KBytes cache, and 128 MBytes of RAM each. The operating system used is GNU-Linux.
These computers are connected by two different local area networks: one is a Fast Ethernet
and Myrinet. The different between them is that Myrinet has a bigger bandwidth, provides
shorter latency times for communication, but it is much more expensive. The decision of
using a network or another does not imply any modification on the source code, and it does
only affect the compilation options of the MPI distribution. Execution times with both types
of local area networks (LANs) were tested and are presented in this section.

118 Endika Bengoetxea, PhD Thesis, 2002



Experiments with synthetic examples

Different experiments were performed using both the 30 & 100 and 50 & 250 examples
of Study 1. Both networks were tested using different number of processors (i.e. number of
worker-processes created). Figure 6.15 shows the evolution of the execution time for the two
examples and in the two networks. The case of the 30 & 100 example with Fast Ethernet
illustrated in Figure 6.15a is specially illustrative, as it shows the typical case in which in
two moments the fact of increasing the number of workers also increases the execution time
required. The explanation of this is as follows: the first and initial increase in execution
time is due to the added computation required to implement the communication between
workers and the manager, while the latter at the end is a result of dividing too much the
work load per worker and therefore requiring more time to create each of them rather than
having them working. In between both moments, we have a part in which the parallelization
techniques give the expected results of reducing the execution time. In this example but for
the Myrinet network this does not happen because the network is faster and therefore the
overhead created by the communication is also smaller.

The 50 & 250 example presents acceptable figures for both the Fast Ethernet and Myrinet
networks. Both graphics in Figure 6.15 show also the differences in data transfer speed be-
tween the Fast Ethernet and Myrinet networks. On the other hand, with smaller examples
the increase in execution time could also happen even when using a fast network such as
Myrinet. These results are also shown in numeric format in Table 6.11. Therefore, our
experiments show the expected effects when parallelizing complex and CPU intensive pro-
grams, and these also serve as an idea of the minimum size that the problems need to have
in order to obtain shorter execution times. This table also shows that in both the Fast
Ethernet and Myrinet networks, the optimum number of workers is 7 (1 manager process +
7 worker processes), and for the Myrinet case the higher the number of processes the shorter
the execution time (we arrived until a total of 9 worker processes), although in the Myrinet
case we would find a moment after which the execution time would also show the increase
when augmenting too much the number of workers. However, these results are only valid
for the particular configuration of the cluster where the experiments were carried out, and
will have considerable differences depending on the RAM memory available, and the number
and working frequency of the processes in each computer that forms the cluster.

Figure 6.16 is an example of the types of traces that we can obtain using the MPICH
implementation of MPI. These traces are used to identify bottlenecks in MPI programs, but
here are presented for illustrating the communication requirements that the evolution of
each generation requires. The state and MPI primitive executed by each of the processes are
shown using different colors. These figures demonstrate that while the manager is executing
the rest of the workers are simply waiting, and therefore no parallelization is occurring during
this time. Later, there is a phase in which the manager is executing sending operations and
workers are mostly executing receiving ones. The latter is the time in which the work is
being distributed to and executed by the workers while the manager is administrating and
coordinating all the job. This repeats once and again until the total number of generations
have been completed. Obviously, in order to achieve a considerable reduction in execution
time the parallel phase needs to occupy most of the time in the diagram, which has been
shown to happen in our case when having graphs of big sizes. The speed of the network is
also another factor to consider, and this fact is shown in the different times illustrated in the
figure.
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(a) 30 & 100 example

(b) 50 & 250 example

Figure 6.15: Illustration of the evolution in execution time when using MPI and depending on the
number of processes.

6.5 Conclusions of the studies on synthetic problems

Very different studies have been described in this chapter, from which different results and
conclusions for the application of these techniques on real graph matching problems. We can
summarize them as follows:

Study 1: the main conclusion that is obtained from this study is that when additional
constraints are present in real problems a mechanism is available in EDAs to ensure
that the final solution will satisfy all of them. Specially in graph matching problems
that have a complexity similar in size to the ones obtained in real images, the control of
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Number of Total Time Speed Up Total Time Speed Up
Processes Fast Eth. Fast Eth. Myrinet Myrinet

1 01:28:07 1 01:28:07 1
2 01:53:03 0.779 01:04:28 1.368
3 01:43:40 1.850 00:54:59 1.602
4 01:26:04 1.023 00:47:19 1.862
5 01:28:55 0.991 00:44:47 1.967
6 01:23:47 1.052 00:45:13 1.949
7 01:23:02 1.061 00:43:33 2.023
8 01:17:57 1.130 00:41:02 2.147
9 01:30:22 0.975 00:42:18 2.083
10 01:34:20 0.934 00:42:02 2.096

(a) 30 & 100 vertices

Number of Total Time Speed Up Total Time Speed Up
Processes Fast Eth. Fast Eth. Myrinet Myrinet

1 37:00:09 1 37.00:09 1
2 34:24:55 1,075 20:21:01 1.818
3 25:54:22 1.428 15:29:36 2.388
4 21:16:22 1.739 11:50:02 3.126
5 19:50:30 1.864 11:06:42 3.330
6 18:15:10 2.027 10:20:06 3.580
7 16:59:37 2.177 09:10:19 4.034
8 15:52:58 2.329 08:42:15 4.251
9 16:30:14 2.242 08:21:53 4.423
10 17:22:47 2.129 08:10:07 4.529

(b) 50 & 250 vertices

Table 6.11: Execution times obtained when increasing the number of processes (processors used)
for the medium-sized example with 30 & 100 vertices (above) and for the big example with 50 & 250
vertices (below). Times are presented in hh:mm:ss format.

constraints can be performed applying to EDAs the methods described in Section 4.5.1.

In addition, this study presents a comparison of the performance of the different EDAs
and other evolutionary computation algorithms which illustrate their differences de-
pending on the complexity of the graph matching problem. In addition, the same
graphics show the evolution in best solution obtained per generation, which can be
used to select an algorithm over the rest regarding the stopping criterion of the search.
In any case, EDAs show on the whole a better performance than other evolutionary
computation techniques for both the discrete and continuous domains.

It is important to note that the behavior of the algorithms is always very dependent on
the fitness function selected. Fitness functions are defined for each particular problem,
and algorithms also adapt in a different way to the type of fitness functions. From the
experiments carried out we can see that the different algorithms have different tendency
to fall on local maxima (or local minima if the fitness function has to be minimized)
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(a) Trace of execution in a Fast Ethernet network

(b) Trace of execution in a Myrinet network

Figure 6.16: Figures for the communication mechanisms and other MPI primitives on the parallel
version of EBNABIC for the particular configuration of our cluster.

or to scape from them. In this study, EDAs showed a better propensity to avoid local
maxima, although in fitness function with less local maxima GAs obtain the optimum
in a shorter time.

Study 2: this study illustrates the behavior of the different EDAs during the search pro-
cess. This behavior is specially interesting in case of EBNA and EGNA, as they take
into account all the possible dependencies. This study illustrates the evolution of the
probabilistic graphical models on EDAs and explains why they converge to solution at
the end of the search process.

Study 3: from the results presented in Study 3, we can conclude that the mechanism used in
this thesis reduces considerably the execution time required for CPU intensive programs
such as EBNABIC . The two versions of the parallel program, the multithread and the
MPI ones, can be applied to multiprocessors and clusters respectively according to the
hardware availability. In addition, results of two types of LANs are presented showing
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the relevance of the network speed on the execution time.

In both cases, the paradigm applied is a master-slave scheme as described in Sec-
tion 5.6. This mechanism has been designed for its easy adaptation to other EDAs or
evolutionary computation algorithms. The source code of the multithread and MPI
version including detailed explanations about the communication and synchronization
implementations is presented in Appendix D.

However, another important conclusion that is obtained from these results is that the
number of workers is an important parameter that is very dependent on the character-
istics of the computers that has to be chosen with care in order to obtain a satisfactory
reduction in execution time without increasing the overhead of the communication
between the workers and the master.
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