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Directeurs de Thèse : Isabelle Bloch

Pedro Larrañaga
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Summary in Spanish – Resumen en castellano

Motivación

Desde hace ya varias décadas se han utilizado las computadoras para trabajar con imágenes.
Los ejemplos más clásicos son aquellos en los que la computadora mejora una imagen con
ruido o que está borrosa. Sin embargo, este tipo de trabajos utiliza información que con-
tiene la imagen que se podŕıa considerar de bajo nivel, es decir información tal que nivel de
gris de los pixels, segmentación, e incluso formas geométricas de segmentos de una imagen.
Sin embargo, también encontramos en las imágenes otro tipo de información que podŕıamos
denominar de alto nivel, como son por ejemplo la estructura de la escena en la imagen, la
topoloǵıa, y organización espacial de los diferentes objetos en la imagen. Este último tipo
de información la que resulta más dif́ıcil de procesar para una computadora, y es precisa-
mente parte del objetivo de esta tesis: presentar un procedimiento novedoso para facilitar el
reconocimiento automático de imágenes.

En los últimos años se ha propuesto la utilización de grafos para representar el conocimiento
estructural utilizando técnicas matemáticas, y poder aśı utilizar esta representación para fa-
cilitar la comprensión a las computadoras. El interés de este tipo de representaciones va
en aumento entre la comunidad cient́ıfica debido a la posibilidad de utilizar esta repre-
sentación junto con algoritmos de correspondencia de grafos1, ya que esta representación es
muy versátil y permite también representar las variaciones y diferencias estructurales entre
diferentes objetos.

Asimismo se han propuesto diversas aplicaciones directas de este tipo de representación
para realizar el reconocimiento automático de imágenes. En este tipo de aplicaciones, el
conocimiento sobre posibles variaciones estructurales del objeto que aparece en las imágenes
(una persona, un rostro, una imagen médica, etc.) es expresado por medio de un modelo que
se representa como un grafo (o atlas, como también se denomina en ciertos casos). Ejemplos
de áreas de reconocimiento de imágenes en las cuales este tipo de representaciones han sido
utilizadas y publicadas son cartograf́ıa, reconocimiento de caracteres, y reconocimiento de
estructuras cerebrales a partir de imágenes de resonancia magnética. Este último ejemplo se
ilustra en la Figura 1.

El grafo modelo se construye habitualmente utilizando un vértice para expresar cada una
de las regiones del objeto a reconocer (Ej.: en el caso de imágenes de un cerebro humano,
habrá un vértice para representar el cerebelo, otro para el cuerpo calloso...) y aristas para
representar la interrelación entre estas regiones. Asimismo, se utilizan atributos para expre-
sar las propiedades de vértices y aristas para poder aśı identificarlos y distinguir los unos
de los otros. Este grafo modelo contiene atributos en los vértices y aristas, y muchas veces
es necesaria la supervisión de un experto (Ej. un neurólogo para construir el modelo que
representa un cerebro humano) para asegurar la veracidad e idoneidad del modelo construido.

Tras la construcción de un grafo modelo, y para poder realizar el reconocimiento de
imágenes a través del mismo, es necesario construir un grafo a partir de cada una de las
imágenes a reconocer. Estos grafos que se denominan en la literatura grafos de datos o grafos
de entrada, son construidos a menudo automáticamente por la computadora sin asistencia
del usuario. En este proceso de construcción del grafo de datos correspondiente a una
imagen, uno de los pasos más significativos en cuanto al rendimiento del método es el de
la segmentación de la propia imagen previo a la construcción del propio grafo: el grafo de
datos se genera utilizando un vértice para representar cada uno de los segmentos en los que

1La correspondencia de grafos se denomina en inglés graph matching
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Figure 1: Ejemplo de aplicación de la correspondencia entre grafos al reconocimiento de imágenes.
El objetivo en este problema en concreto es el de identificar las diferentes partes del cerebro a partir
de la imagen en 3D de la izquierda.

se ha dividido la imagen (de forma similar al grafo modelo), y es precisamente debido a esto
que la segmentación debe hacerse con especial atención para asegurar un número y tamaño
adecuado de los segmentos.

Correspondencia de grafos

El reconocimiento de la imagen se realiza mediante la correspondencia entre los grafos modelo
y de datos2. Este proceso es equivalente a asignar una etiqueta a cada una de las regiones de
la imagen a reconocer, de manera que se designa cada región de la imagen como perteneciente
a una sección concreta del objeto. Esta asignación de etiquetas se efectúa vértice a vértice de
entre los del grafo de datos, asignando a cada uno un vértice del grafo modelo. Este proceso
se ilustra en la Figura 2.

Formalizando lo anterior, se definen dos grafos en problemas de reconocimiento de pa-
trones basados en modelos, –el grafo modelo GM y el grafo de datos GD– y el procedimiento
de buscar correspondencias entre ellos se basa en analizar las semejanzas entre ellos según sus
vértices, aristas y atributos. Por lo tanto, podemos plantear el problema de correspondencia
entre grafos de la siguiente manera: dados dos grafos GM = (VM , EM ) y GD = (VD, ED), el
problema consiste en encontrar un homomorfismo h : VD → VM tal que (u, v) ∈ ED si y sólo
si (f(u), f(v)) ∈ EM .

Se han planteado varios problemas en la literatura para poder efectuar la correspondencia
entre grafos y demostrar la validez de las distintas técnicas. En los problemas más simples se
asume que el número de vértices en ambos grafos es el mismo, por lo que la técnica empleada
en buscar la mejor correspondencia o solución debe devolver un isomorfismo. Este tipo de
problemas se engloban dentro de correspondencias exactas de grafos, y la propiedad que
se cumple en estos es |VM | = |VD|. Sin embargo, en muchos otros problemas (sobre todo
en aquellos en los que la segmentación se ha realizado automáticamente) la condición de
isomorfismo es demasiado estricta para poder satisfacerla y el número de vértices del grafo
de datos es habitualmente superior al del modelo. En este otro tipo de problemas, cada
posible solución es un homomorfismo h en el que se asigna a cada vértice del grafo de datos

2A este proceso de correspondencia entre grafos también se le denomina en castellano macheo de grafos.
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Figure 2: Ejemplo de cómo se realiza el reconocimiento de imágenes a partir de los grafos modelo y
de datos.

una etiqueta correspondiente a un vértice. Estos últimos son conocidos como problemas de
correspondencia inexacta de grafos, y su complejidad es mucho mayor que la de los anteriores.
En este último caso se cumple la propiedad |VM | < |VD|.

Existen también otras posibles formas de clasificar los problemas de correspondencia de
grafos. En cualquier caso, la clasificación basada en problemas de correspondencia de grafos
exactos e inexactos es la más extendida. La Figura 3 muestra la clasificación más difundida
en la literatura.

Se han propuesto muchos tipos diferentes de problemas de correspondencia de grafos en
la literatura, y en muchos de ellos se utilizan los siguientes enfoques:

• Nodo nulo o dummy : son problemas en los que se utiliza un nodo adicional para tener
una correspondencia añadida y poder dejar de considerar regiones en la imagen que no
correspondan a partes del objeto a reconocer.

• Correspondencias múltiples entre nodos: este tipo de problemas son mucho más com-
plejos de los comentados hasta ahora ya que es posible que un segmento de la imagen
a reconocer sea a la vez parte de más de una región del objeto a analizar. Aunque
este tipo de problemas pueden plantearse, su resolución conlleva más combinaciones y
el espacio de búsqueda para encontrar la solución óptima puede llegar a ser intratable
computacionalmente.

Se pueden aplicar muchas técnicas diferentes para encontrar la correspondencia óptima
en un problema concreto, incluso procedentes de paradigmas muy diversos. Ejemplos de
art́ıculos mostrando métodos aplicados a correspondencia entre grafos son los que proponen
árboles de decisión [Messmer and Bunke, 1999], redes neuronales [Riviere et al., 2002], al-
goritmo EM [Cross and Hancock, 1998], relajación probabiĺıstica [Christmas et al., 1995],
heuŕısticos y metaheuŕısticos [Pelillo et al., 1999], algoritmos genéticos [Wilson and Hancock,
1997], y programación evolutiva [Singh and Chaudhury, 1997]. Muchas de estas técnicas están
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Figure 3: Clasificación de problemas de correspondencias entre grafos en dos clases principales.

orientadas a correspondencias exactas de grafos y por lo tanto devuelven el isomorfismo que
representa la mejor correspondencia entre el grafo modelo y el de datos generado a partir de
la imagen original a ser reconocida. Sin embargo, en muchos otros (sobre todo en aquellos
aplicados a problemas con imágenes reales) la condición de isomorfismo es demasiado fuerte
y por lo tanto se pueden encontrar en la literatura numerosas aproximaciones para resolver
problemas de correspondencias inexactas de grafos.

Los problemas que se han considerado en esta tesis doctoral son todos problemas de
correspondencia inexacta de grafos, y en ningún caso se ha considerado la posibilidad de
añadir nodos nulos. Además, con el objetivo de no aumentar la complejidad de problemas
que ya de por śı son complejos, se ha decidido realizar una sobre-segmentación de la imagen
a reconocer para evitar la posibilidad de correspondencias múltiples entre grafos. De esta
forma el número de vértices de los grafos de nodos es mayor en nuestros problemas. El
método que proponemos para realizar la correspondencia entre grafos es el de Algoritmos de
Estimación de Distribuciones (EDAs), tema que se estudia en profundidad en esta tesis. Aśı,
se puede resumir el objetivo y la motivación de esta tesis como la presentación de un nuevo
paradigma para hacer frente a correspondencias inexactas de grafos aplicados al dominio de
la visión por computador y reconocimiento de patrones.

Correspondencia de grafos planteado como un problema de optimización

combinatorial

El problema de correspondencia inexacta de grafos es NP-duro, tal y como demuestran varios
trabajos en la literatura. Debido a esta complejidad tan grande, el uso de algoritmos que
proporcionan una aproximación a la mejor solución se muestra necesario. Aśı, con el objetivo
de poder aplicar este tipo de algoritmos, se puede plantear el problema de correspondencias
entre grafos como un problema de optimización combinatorial con restricciones. Esta tesis
analiza los aspectos y mecanismos que deben aplicarse para poder plantear el problema de
esta manera y poder aplicar posteriormente algoritmos como los denominados Algoritmos
de Estimación de Distribuciones (EDAs).
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Para poder plantear un problema cualquiera como un utilizando técnicas este tipo de
algoritmos se necesita esencialmente definir las siguientes caracteŕısticas:

• Una representación de los individuos o soluciones, de manera que podamos ex-
presar cada uno de los puntos en el espacio de búsqueda.

• Una función objetivo a optimizar, que asigna un valor a cada solución posible (o
individuo) para expresar cómo es de adecuado el individuo analizado como solución
para el problema.

Los individuos se expresan como vectores de valores que pueden ser discretos o continu-
os. Algunos algoritmos están diseñados para trabajar únicamente con individuos discretos o
continuos, aunque otros como por ejemplo los EDAs permiten utilizar ambos tipos de indi-
viduos. Esta tesis presenta la forma de trabajar con ambos tipos de individuos y diferentes
representaciones dentro de los dominios discretos y continuos para aplicarlas en problemas
de correspondencia de grafos.

Un ejemplo de una de las representaciones que se ha aplicado en varios problemas ex-
puestos en esta tesis consiste en asociar a cada vértice de GD un vértice de GM . Por lo
tanto, el tamaño de los individuos en este caso concreto es de n = |VD| variables3, Xi ∈ X

i = 1, . . . , |VD|, donde cada variable contiene un valor entre 1 y |VM |. El valor de cada vari-
able en el individuo tiene el siguiente significado: Xi = k 1 ≤ i ≤ |VD|, 1 ≤ k ≤ |VM | ⇔
el i-ésimo vértice de GD es identificado como el k-ésimo vértice de GM .

Esta tesis propone otras dos representaciones más en el dominio discreto, aśı como una
representación de individuos para el dominio continuo. Además, y con la intención de mostrar
la robustez del método propuesto, se ha añadido una restricción a los problemas que deben de
cumplir los individuos para poder tenerse en consideración. Esta restricción es la siguiente:

∀aM ∈ VM ∃aD ∈ VD | h(aD) = aM

De esta forma, se espera que la solución devuelta por el método haya encontrado cada una de
las partes representadas en el modelo al menos a uno de los segmentos de la imagen a recono-
cer. Esta restricción aumenta aśı la complejidad del problema, y esta tesis presenta varios
mecanismos que pueden utilizarse para tener en cuenta restricciones mediante la aplicación
de EDAs.

Finalmente, y con el objetivo de evaluar la bondad del individuo como posible solución a
un problema, se definen dos funciones cN (aD, aM ) y cE(eD, eM ) que miden respectivamente
la semejanza entre dos vértices aD ∈ VD y aM ∈ VM , y entre dos aristas eD ∈ ED y eM ∈ EM .
Se definen en esta tesis un total de cinco funciones objetivo basadas en estas dos medidas
de semejanza para poder medir la conveniencia de la solución que representa cada individuo
para un problema determinado.

Algoritmos de Estimación de Distribuciones

Los Algoritmos de Estimación de Distribuciones (o EDAs como se les conoce en la literatura)
es un tópico reciente dentro de la familia de la computación evolutiva aplicada a problemas
de optimización. Otros ejemplos dentro del dominio de la computación evolutiva son los
Algoritmos Genéticos (GAs).

3Cuando se aplican algoritmos genéticos se dice que los individuos están formados por genes, mientras que
en otros paradigmas como en el caso de los EDAs se dice que tienen variables. En esta tesis se considera que
los individuos constan de variables.
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Figure 4: Ilustración de la aproximación EDA en procesos de optimización.

La computación evolutiva se engloba dentro del tipo de técnicas no deterministas, y los
algoritmos de computación evolutiva se caracterizan por mantener un conjunto de posibles
soluciones que se hace evolucionar progresivamente. Debido al śımil con poblaciones de
seres vivos, se denomina habitualmente individuo a cada una de las soluciones, población al
conjunto de individuos, y generación a cada una de las poblaciones que evolucionan sucesiva-
mente una tras otra. La diferencia más significativa entre los GAs (que son sin duda los más
conocidos y utilizados dentro de la computación evolutiva) y los EDAs es que la evolución
desde una generación a la siguiente se realiza en el caso de los GAs mediante operaciones
de mutación y cruce, mientras que en los EDAs esta evolución se realiza utilizando técnicas
basadas en la teoŕıa de la probabilidad y más concretamente mediante el aprendizaje y la
simulación de redes Bayesianas o redes Gausianas. Esta idea se ilustra en la Figura 4.

La Figura 5 muestra el pseudocódigo genérico de los EDAs, que sigue esencialmente los
siguientes pasos:

1. Primeramente, se genera la población inicial D0 formada por R individuos. La creación
de estos R individuos se realiza a menudo asumiendo una distribución uniforme en
cada variable. Tras generar los individuos, estos se evalúan mediante la aplicación de
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EDA

D0 ← Generar R individuos (la población inicial D0) al azar

Repetir para l = 1, 2, . . . hasta satisfacer un criterio de parada

DN
l−1 ← Seleccionar N < R individuos de Dl−1 siguiendo

un método de selección determinado

ρl(x) = ρ(x|DN
l−1) ← Estimar la distribución de probabilidad

de que un individuo se encuentre entre los individuos seleccionados

Dl ← Muestrear R individuos (la nueva población) a partir de ρl(x)

Figure 5: Pseudocódigo genérico de los EDA.

la función objetivo.

2. Segundo, para evolucionar la l − 1-ésima población Dl−1 hacia la siguiente Dl, se
seleccionan N individuos (N < R) de Dl−1 siguiendo un criterio. Denominamos DN

l−1

al conjunto de los N individuos seleccionados de la generación número l − 1.

3. Tercero, se induce el modelo gráfico probabiĺıstico n–dimensional que mejor representa
las interdependencias entre las n variables. Este paso es conocido como el del apren-
dizaje, y es el más crucial de los EDA debido a la importancia de tener en cuenta
todas las dependencias entre variables para asegurar una evolución satisfactoria hacia
individuos más válidos.

4. Finalmente, la nueva población Dl se constituye con R nuevos individuos obtenidos
tras simular la distribución de probabilidad aprendida en el paso previo. A menudo se
utiliza una aproximación elitista, manteniendo aśı el mejor individuo de la población
DN

l−1 e la nueva población Dl. En este último supuesto, se crean cada generación un
total de R− 1 nuevos individuos en vez de R.

Los pasos 2, 3 y 4 se repiten hasta satisfacer una condición de parada concreto. Ejemplos
de criterios de parada son: llegar a un número de generación máxima, alcanzar un número
máximo de individuos analizados, uniformidad en la población recién generada, o el hecho
de no obtener un individuo con un valor de función objetivo mejor tras un cierto número de
generaciones.

Se han propuesto una gran variedad de algoritmos en la literatura que son parte de los
EDA, los cuales pueden clasificarse en tres grandes grupos dependiendo de la complejidad
del tipo de dependencias entre variables que tienen en cuenta:

• Sin interdependencias entre variables: estos EDAs se basan únicamente en dis-
tribuciones univariantes ρ(xi). Esto significa que la estructura en forma de red Bayesiana
(o Gausiana si trabajamos en el dominio continuo) es fija y no contiene arcos. En otras
palabras, esto significa que todas las variables del individuo se consideran independi-
entes entre śı.

Como ejemplo de algoritmos pertenecientes a este grupo tenemos en el dominio discreto
el llamado UMDA (Univariate Marginal Distribution Algorithm) [Mühlenbein, 1998]

Endika Bengoetxea, PhD Thesis, 2002 xi



donde la estimación de la distribución de probabilidad se realiza de la siguiente manera:

p(x) =

n∏

i=1

p(xi)

Otro ejemplo es el conocido como UMDAc (Univariate Marginal Distribution Algorithm
- continuous)[Larrañaga et al., 2000], el cual es el equivalente a UMDA aunque en este
caso corresponde al dominio continuo.

• Dependencias a pares entre variables: los EDAs pertenecientes a este grupo están
basados en distribuciones univariantes –ρ(xi)– y también en condicionales de segundo
orden –ρ(xj | xi). La diferencia más significativa con respecto al grupo anterior es que
la estructura de la red Bayesiana (o Gausiana) puede ser diferente, aunque cada una
de las variables puede tener como mucho un padre. Esto requiere un paso previo de
selección de la mejor estructura que no exist́ıa en los anteriores.

Un ejemplo de EDAs discretos pertenecientes a este grupo es MIMIC (Mutual Informa-
tion Maximization for Input Clustering) [de Bonet et al., 1997], que propone realizar
la siguiente factorización de la probabilidad:

p(x) = p(xi1 | xi2) · p(xi2 | xi3) · · · p(xin−1 | xin) · p(xin)

MIMIC se basa en buscar la permutación π = (i1, i2, . . . , in) que minimiza la divergen-
cia de Kullback-Leibler entre la estimación p̂π(x) y la distribución real p(x).

De nuevo, existe una versión continua de MIMIC llamada MIMICc (Mutual Information
Maximization for Input Clustering - continuous) [Larrañaga et al., 2000].

• Dependencias múltiples entre variables: los EDAs pertenecientes a este grupo
consideran tanto distribuciones univariantes como condicionales orden dos o superior,
y por lo tanto las estructuras de redes Bayesianas o Gausianas no tiene ninguna re-
stricción en el número de arcos que pueden contener. Esta caracteŕıstica requiere una
búsqueda exhaustiva de la mejor estructura gráfica probabiĺıstica entre todas las posi-
bles, y por lo tanto estos algoritmos son más costosos en tiempo de ejecución que los
de los grupos anteriores, aunque también son capaces de aprender modelos que reflejan
más fielmente las interrelaciones entre las diferentes variables que forman parte de los
individuos.

En el dominio discreto, como un ejemplo de EDAs pertenecientes a este grupo tenemos
el conocido como EBNA (Estimation of Bayesian Networks Algorithm) [Etxeberria and
Larrañaga, 1999]. Un ejemplo del dominio continuo es EGNA (Estimation of Gaussian
Networks Algorithm) [Larrañaga et al., 2000, Larrañaga and Lozano, 2001], que sigue
una aproximación similar a EBNA.

En EBNA se define un score o medida basada en la máxima verosimilitud penal-
izada conocida como BIC (Bayesian Information Criterion) [Schwarz, 1978] que mide
la idoneidad de una estructura para representar las interdependencias entre los indi-
viduos. Utilizando esta medida, se busca la red Bayesiana que lo maximiza, y para
ello los autores proponen el método conocido como Algoritmo B [Buntine, 1991]. Una
vez definida la estructura, la factorización de la probabilidad se realiza de la siguiente
forma:

p(x) =
n∏

i=1

p(xi|pa(xi))
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Figure 6: Esquema de ejecución maestro-esclavo, donde un proceso hace de gestor de tareas y los
demás realizan partes de un trabajo común.

donde pa(xi) es el conjunto de padres de la variable xi en la red Bayesiana.

Son varios los algoritmos y aproximaciones de EDAs que se han propuesto en la liter-
atura, aunque por el momento no hay demasiados art́ıculos demostrando todo su potencial
en comparación con otros paradigmas más conocidos como por ejemplo los GAs y Estrate-
gias evolutivas (ES). Esta tesis viene a cubrir este espacio para la aplicación concreta de
reconocimiento de objetos en imágenes. Otro de los aspectos novedosos de esta tesis es
precisamente el hecho de aplicar EDAs por primera vez a problemas de correspondencia
de grafos, y esta tarea se realiza para dominios discretos y continuos. Asimismo se han
desarrollado en esta tesis métodos orientados a los EDAs para gestionar las restricciones
que puedan existir en problemas, aplicables incluso en aquellos problemas que no sean de
correspondencia de grafos.

En el caso de aplicar EDAs a correspondencia de grafos, las distribuciones y estructuras
probabiĺısticas que se estiman en los EDA representan las dependencias entre las diferentes
posibilidades de correspondencias entre vértices de GD con respecto a vértices de GM .

Uno de los mayores inconvenientes que se han encontrado al aplicar EDAs a correspon-
dencias entre grafos es el hecho de que, debido al gran tamaño de los vértices y de los
atributos a tener en cuenta en problemas reales, se requiere mucho tiempo de cálculo para
que los EDAs evolucionen. Este inconveniente es especialmente evidente en los EDAs del
tercer grupo dado que para la búsqueda de la mejor estructura gráfica probabiĺıstica se re-
quiere analizar muchas posibles estructuras. Debido a esto, esta tesis propone técnicas de
paralelismo para EDAs orientadas a reducir estos tiempos de ejecución.

Paralelización de EDAs

Esta tesis presenta un estudio que analiza las necesidades de CPU de los diferentes EDAs.
Este análisis se ha realizado con la herramienta GNU gprog. En estos estudios se evidencia que
los algoritmos más costosos computacionalmente son los del tercer grupo, y es precisamente
el paso del aprendizaje el que mayor peso conlleva. En el caso concreto del problema de
reconocimiento de estructuras cerebrales, el aprendizaje con EBNA supone el 85,7% del
tiempo de ejecución total. Se decidió paralelizar el algoritmo EBNA debido a que los dominios
discretos están más extendidos entre los EDAs y que los EBNA pertenecen al tercer grupo
de los EDAs.

El aprendizaje en EBNA se basa en la medida BIC, y es precisamente esta medida la que
requiere casi todo el tiempo de cálculo del aprendizaje. Una importante propiedad de BIC
–BIC(S,D) donde S es la estructura y D los datos a partir de los cuales se ha realizado
el aprendizaje– es que se puede descomponer en componentes BIC(i, S,D) que expresan la
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Figure 7: Ejemplo de un problema real de reconocimiento de estructuras faciales utilizando corres-
pondencia entre grafos. Se ilustran los resultados conseguidos utilizando algoritmos genéticos y los
EDAs UMDA y EBNA. Estos resultados muestran que el reconocimiento en este caso es superior en
el caso de ambos EDAs.

medida local BIC para la variable Xi:

BIC(S,D) =

n∑

i=1

BIC(i, S,D) =

n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
− 1

2
(ri − 1)qi

Para paralelizar el programa se utilizó el modelo de ejecución maestro-esclavo ilustrado
en la Figura 6, de manera que cada uno de los esclavos computan los términos BIC(i, S,D)
correspondientes a las diferentes variables Xi i = 1, . . . , n.

Para probar distintas técnicas de paralelismo se utilizaron las libreŕıas pthreads y MPI,
las cuales permitieron comparar la posibilidad de utilizar memoria compartida y paso de
mensajes respectivamente con diferentes configuraciones de máquinas.

Los experimentos realizados mostraron que tanto con threads como con MPI se obtienen
reducciones sustanciales en el tiempo de cálculo, llegando en algunas ocasiones a reducir el
tiempo de cálculo inicial en un 60%.

Ejemplos experimentales

Esta tesis muestra diferentes ejemplos de aplicación de EDAs a problemas de correspondencia
inexacta de grafos. De entre los ejemplos se presentan tanto problemas creados artificialmente
para mostrar varias caracteŕısticas de los EDAs y técnicas propuestas, aśı como problemas
reales. Los estudios que se han realizado con ejemplos artificiales son los siguientes:

• Comparativa entre EDAs, GAs y ES para problemas de complejidad muy diferente.

• Análisis de cuatro métodos adaptados a los EDAs para controlar el cumplimiento de
restricciones en problemas de correspondencia de grafos.

• Estudio de la evolución de las estructuras gráficas probabiĺısticas de generación en
generación durante una búsqueda con EDAs discretos o continuos.

• Aplicación y medición de rendimiento de las técnicas de paralelismo propuestas.
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Figure 8: Ejemplo de algunos errores t́ıpicos en regiones. A: segmentos muy pequeños, de tamaño
tan pequeño que es dif́ıcil incluso para una persona identificarlas propiamente. B: segmentos situados
en cercańıa de ĺımites entre dos o más regiones, tan cercanos que crean dudas para poder clasificarse
adecuadamente. C: verdaderos errores de reconocimiento.

Además de todos estos estudios, se muestran en esta tesis aplicaciones reales, orientadas sobre
todo a reconocimiento de estructuras cerebrales a partir de imágenes en 3D de resonancia
magnética, y de reconocimiento de estructuras faciales (se trata de encontrar la nariz, boca,
etc.). Los resultados conseguidos para este último problema para los algoritmos con steady
state (un algoritmo genético), UMDA y EBNA se muestran en la Figura 7.

En todos los ejemplos reales que se han utilizado en esta tesis se ha comprobado que
los posibles errores de reconocimiento al utilizar técnicas de correspondencia entre grafos se
dividen en tres tipos. Estos tres tipos se ilustran en la Figura 8.

Conclusiones y perspectivas

Esta tesis plantea los problemas de correspondencia entre grafos como problemas de opti-
mización combinatorial con restricciones. Una de las aportaciones más novedosas de esta
tesis consiste en utilizar EDAs por primera vez en este tipo de problemas.

De la comparación de EDAs con GAs la conclusión de los experimentos realizados es la
siguiente: en problemas no muy complejos los GAs encuentran resultados similares a los de
los EDA requiriendo menos tiempo de ejecución; sin embargo, en problemas complejos los
EDAs siempre consiguen mejores resultados que los GAs, siendo estos últimos además muy
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susceptibles a caer en máximos locales. Además, los EDA continuos muestran generalmente
un mejor rendimiento que los discretos a la hora de devolver una solución, aunque a costa
de un mayor tiempo de ejecución.

Se proponen asimismo varios tipos diferentes de funciones objetivo basados en diferentes
paradigmas como por ejemplo lógica difusa y teoŕıa de la probabilidad. Los resultados mues-
tran también la importancia de la generación del grafo modelo y la definición de atributos.

Finalmente, los resultados experimentales muestran que la paralelización de los EDA
contribuye satisfactoriamente a la reducción de tiempos de cálculo.

Referente a ĺıneas de trabajo futura, se pueden mencionar las siguientes áreas y posibles
ideas:

* Modelización: considerar importancias diferentes entre diferentes regiones, generar mod-
elos a partir de más de una imagen. . .

* Funciones objetivo: realizar una comparación de rendimiento entre ellas, pruebas con
otras representaciones de individuos y funciones objetivo. . .

* Comprobar la validez del método en secuencias de imágenes

* Mejoras en los EDA: otras técnicas de generación de poblaciones iniciales, pruebas con
otros modelos gráficos probabiĺısticos. . .

* Paralelización de EDAs: paralelizar otros EDAs, combinación entre algoritmos en par-
alelo, aplicar otras técnicas de paralelismo. . .
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Résumé

Motivation

L’objectif de cette thèse est de contribuer au développement de méthodes de reconaissance
d’objets dans les images, s’appuyant sur des informations de haut niveau, sur la structure
de la scène (topologie, organisation spatiale des différents objets dans l’image).

Au cours des dernières années les graphes ont été utilisés pour représenter mathématique-
ment la connaissance structurelle. L’intérêt de ce type de représentation va en augmentant
dans la communauté scientifique grâce à la possibilité d’utiliser cette représentation en com-
binaison avec des algorithmes de mise en correspondance de graphes (graph matching en
anglais), car cette représentation permet de représenter les variations et les différences struc-
turelles entre objets différents.

Différentes applications ont été proposées en utilisant ce type de représentation pour
réaliser la reconnaissance automatique des images. Dans ce type d’applications, la connais-
sance sur les variations structurelles possibles des objets qui apparaissent dans les images
(personne, visage, image médicale, etc.) est exprimée à travers un modèle que l’on représente
comme un graphe (ou atlas, comme on l’appelle dans certains cas). La cartographie, la re-
connaissance de caractères, et la reconnaissance de structures cérébrales à partir d’images de
résonance magnétique sont des exemples de domaines dans lesquels ce type de représentation
a été utilisé et publié. Ce dernier exemple est illustré figure 9.

Le graphe modèle est souvent construit en utilisant un nœud pour chacune des régions de
l’objet à reconnâıtre (Ex: dans le cas d’images d’un cerveau humain, il y aura un nœud pour
représenter le cervelet, un autre pour chaque ventricule...) et les arêtes pour représenter les
relations entre ces régions. On utilise des attributs pour exprimer les propriétés de chaque
nœud ou arête, et pour pouvoir les identifier ainsi que les distinguer les uns des autres. Ce
graphe est souvent construit de manière supervisée.

Après la construction d’un graphe modèle, et pour pouvoir réaliser la reconnaissance
d’images à travers lui, il est nécessaire de construire un graphe à partir de chacune des
images à reconnâıtre. Ces graphes, qui sont dénommés dans la littérature graphes de données
ou graphes d’entrée, sont automatiquement construits par l’ordinateur sans l’assistance de
l’utilisateur. Dans ce processus de construction du graphe de données correspondant à
une image, une étape de segmentation de l’image précède la construction du graphe et est
fondamentale : le graphe de données est formée en utilisant un nœud pour représenter chacun
des segments obtenus. Les mêmes attributs que ceux du graphe modèle sont calculés pour
les nœuds et les arêtes du graphe de données.

Mise en correspondance de graphes

La reconnaissance des structures de l’image est réalisée en recherchant la meilleure corre-
spondance entre les graphes modèle et de données. Il s’agit d’affecter une étiquette à chacune
des régions de l’image à reconnâıtre, les étiquettes étant définies par les régions du graphe
modèle. La figure 10 illustre le principe de la mise en correspondance.

En notant GM = (VM , EM ) le graphe modèle et GD = (VD, ED) le graphe de données,
le problème consiste à trouver un homomorphisme h : VD → VM tel que (u, v) ∈ ED si et
seulement si (f(u), f(v)) ∈ EM . Ces homomorphismes sont évalués en calculant la similarité
entre les attributs des nœuds et des arêtes mis en correspondance. On cherche alors un
meilleur homomorphisme au sens d’un certain critère combinant ces similarités.
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Figure 9: Exemple d’application de la mise en correspondance de graphes appliquée à la reconnais-
sance d’images. L’objectif est de reconnâıtre les différentes parties d’un cerveau humain à partir
d’une image 3D comme celle de gauche.

Graphe modèle attribué


Image(s) de référence
Image à reconnaître


Graphe de données attribué


Méthode de

correspondance


des deux graphes


Correspondance


imagen - modèle


(reconnaissance)


Figure 10: Principe de la mise en correspondance des graphes modèle et de données pour la recon-
naissance de structures cérébrales.

Une grande partie de la littérature est consacrée à la recherche d’isomorphismes de
graphes, ce qui suppose en particulier que |VM | = |VD|. On parle alors de correspondance
exacte. Cependant, dans beaucoup de problèmes, surtout pour ceux où la segmentation
s’effectue automatiquement, la condition d’isomorphisme est trop stricte et le nombre de
nœuds du graphe de données est supérieur à celui du modèle (|VM | < |VD|). On parle alors
de correspondance inexacte de graphes, et la complexité de ces problèmes est supérieure à
celle des précédents. C’est à ce type de problème que nous nous intéressons ici.

La figure 11 illustre les différents types de problèmes de mise en correspondance de
graphes. Dans les problèmes de mise en correspondance inexacte, on utilise souvent :

• un nœud nul ou dummy représentant la non-reconnaissance (par exemple pour une
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Figure 11: Classement des problèmes de mise en correspondance de graphes en deux classes princi-
pales.

région de l’image correspondant à une structure non représentée dans le modèle) ;

• des correspondances multiples entre nœuds : ces types de problèmes sont les plus com-
plexes, car il est possible qu’un segment de l’image à reconnâıtre fasse en même temps
partie de plus d’une région de l’objet à traiter. Bien que ce type de problèmes puisse
exister, leur résolution implique plus de combinaisons et la recherche pour trouver la
solution optimale peut être de complexité trop élevée pour pouvoir être traitée.

Beaucoup de techniques très différentes ont été développées pour la mise en corre-
spondance de graphes : arbres de décision [Messmer and Bunke, 1999], réseaux de neu-
rones [Riviere et al., 2002], algorithme EM [Cross and Hancock, 1998], relaxation proba-
biliste [Christmas et al., 1995], heuristiques et métaheuristiques [Pelillo et al., 1999], al-
gorithmes génétiques [Wilson and Hancock, 1997], et programmation évolutive [Singh and
Chaudhury, 1997]. Beaucoup de ces techniques restent restreintes aux correspondances ex-
actes de graphes. Cependant, dans beaucoup d’autres exemples, surtout en ce qui concerne
les applications aux images réelles, la condition d’isomorphisme est trop forte, cependant
les approches pour résoudre les problèmes de correspondances inexactes sont actuellement
moins répandues.

Les problèmes considérés dans cette thèse sont des problèmes de mise en correspondance
inexacte de graphes, sans ajouter de nœud nul. En outre, dans le but de ne pas augmenter
la complexité de problèmes qui sont déjà complexes, il a été décidé de réaliser une sur-
segmentation de l’image à reconnâıtre pour éviter la possibilité de correspondances multiples
entre graphes. La méthode proposée pour réaliser la mise en correspondance repose sur les
algorithmes d’estimation de distributions (EDAs).

Formalisation de la mise en correspondance de graphes comme un problème

d’optimisation combinatoire

A cause de la grande complexité du problème de mise en correspondance inexacte, nous nous
sommes tournés vers des algorithmes d’optimisation combinatoire sous contrainte. Cette
thèse analyse les aspects et mécanismes qui doivent s’appliquer pour pouvoir formuler le
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problème de cette manière et ensuite appliquer des algorithmes tels que les Algorithmes
d’Estimation de Distributions (EDAs).

Les caractéristiques suivantes doivent être définies :

• une représentation des individus ou des solutions, de manière à représenter chacun
des points dans l’espace de recherche ;

• une fonction objectif à optimiser qui affecte une valeur à chaque solution possible
ou individu, pour exprimer la validité et la qualité de l’individu comme solution au
problème.

Chaque individu est composé d’un vecteur de valeurs qui peuvent être discrètes ou con-
tinues. Les EDAs permettent d’utiliser les deux types d’individus contrairement à d’autres
algorithmes. Cette thèse présente la façon de travailler avec les deux types d’individus et
de représentations afin de les appliquer dans des problèmes de mise en correspondance de
graphes.

Une représentation possible des individus consiste à associer à chaque nœud de GD un
nœud de GM . Donc, la taille des individus est déterminée dans ce cas par n = |VD| variables4,
Xi ∈ X i = 1, . . . , |VD|, où chaque variable contient une valeur entre 1 et |VM |. La valeur
de chaque variable dans l’individu a la signification suivante : Xi = k avec 1 ≤ i ≤ |VD| et
1 ≤ k ≤ |VM | ⇔ le i-ème nœud de GD est identifié comme le k-ème nœud du graphe modèle
GM .

Cette thèse propose deux autres représentations d’individus dans le domaine discret, ainsi
qu’une représentation pour le domaine continu. En outre, et avec l’intention de montrer la
robustesse de la méthode proposée, une contrainte supplémentaire que doivent accomplir les
individus pour pouvoir être pris en considération est ajoutée :

∀aM ∈ VM , ∃aD ∈ VD | h(aD) = aM

On impose ainsi que toute structure du modèle soit identifiée dans l’image. Cette restriction
augmente ainsi la complexité des problèmes et celle des différents mécanismes présentés dans
cette thèse. Elle permet de montrer comment on peut tenir compte des restrictions quand
on applique les EDAs.

Enfin, dans le but d’évaluer la qualité de l’individu comme solution possible à un problème,
on définit deux fonctions cN (aD, aM ) et cE(eD, eM ) qui mesurent respectivement la similarité
entre deux nœuds aD ∈ VD et aM ∈ VM , et entre deux arêtes eD ∈ ED et eM ∈ EM . Nous
avons défini plusieurs fonctions objectif dépendant de ces fonctions de similarité.

Algorithmes d’Estimation de Distributions

Les Algorithmes d’Estimation de Distributions (EDAs) sont une approche récente dans la
famille des algorithmes évolutifs appliqués aux problèmes d’optimisation. Ces algorithmes
se caractérisent par un procédé d’évolution d’un ensemble de solutions. A cause de la simil-
itude avec des populations d’êtres vivants, on appelle d’habitude individu chacune des so-
lutions, population l’ensemble d’individus, et génération chacune des populations qui se
développent successivement. La différence la plus significative entre les EDAs et les Algo-
rithmes Génétiques (GAs), qui sont parmi les plus connus et utilisés dans ce domaine, réside

4Dans le domaine des algorithmes génétiques on considère que les individus sont composés de gènes, mais
dans le domaine des EDAs on parle plutôt de variables probabilistes.
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Figure 12: Illustration de l’approche EDA en optimisation.

dans le processus d’évolution d’une génération à la suivante : elle est réalisée dans le cas
des GAs par des opérations de mutation et de croisement, et dans les EDAs par des tech-
niques fondées sur la théorie des probabilités et plus particulièrement sur l’apprentissage et
la simulation de réseaux bayésiens ou de réseaux gaussiens. Cette idée est illustrée figure 12.

La figure 13 présente le pseudocode générique des EDAs qui suit essentiellement les étapes
suivantes :

1. La population initiale D0 formée par R individus est créée. La génération de ces
R individus est souvent réalisée en supposant une distribution uniforme pour chaque
variable. Une fois que les individus sont engendrés, ils sont évalués selon la fonction
objectif.

2. Pour faire évoluer la i-ème population Dl−1 vers la suivante Dl, N individus sont
sélectionés dans Dl−1 (N < R) en suivant un certain critère. Nous appelons DN

l−1

l’ensemble des N individus sélectionnés dans la génération numérotée l − 1.

3. Le modèle probabiliste graphique n–dimensionnel qui représente le mieux les dépendances
entre les n variables est déterminé. C’est l’étape d’apprentissage, qui est cruciale dans
les EDAs à cause de l’importance de la prise en compte de toutes les dépendances entre
les variables pour assurer une évolution satisfaisante vers des individus meilleurs.

4. La nouvelle population Dl est constituée avec R nouveaux individus obtenus après
avoir simulé la distribution de probabilité apprise dans l’étape précédente. On utilise
souvent une approche élitiste, et ainsi le meilleur individu de la population DN

l−1 est
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EDA

D0 ← Engendrer R individus (la population initiale D0) au hasard

Répéter pour l = 1, 2, . . . jusqu’à satisfaire un critère d’arrêt

DN
l−1 ← S N < R individus de Dl−1 en suivant

une méthode de selection déterminée

ρl(x) = ρ(x|DN
l−1) ← Estimer la distribution de probabilité

qu’un individu se trouve entre les individus selectionnés

Dl ← Echantillonner R individus, la nouvelle population, à partir de ρl(x)

Figure 13: Pseudocode générique des EDAs.

gardé dans la nouvelle population Dl. De cette manière, dans chaque génération un
total de R− 1 nouveaux individus sont créés au lieu de R.

Les étapes 2, 3 et 4 sont répétées jusqu’à satisfaire une condition d’arrêt. Des exem-
ples de critères d’arrêt sont : arriver à un nombre de génération maximal, atteindre un
nombre maximal d’individus analysés, uniformité dans la population, ou le fait de ne pas
obtenir un individu avec une valeur de fonction objectif meilleure après un certain nombre
de générations.

Un grand nombre d’algorithmes qui font partie des EDAs a été proposé dans la littérature.
On peut les classer en trois grands groupes selon la complexité du type de dépendances entre
variables considéré :

• Sans dépendance entre variables : la structure du réseau bayésien (ou gaussien
si nous travaillons dans le domaine continu) est fixe et ne contient pas d’arcs. En
d’autres termes, cela signifie que toutes les variables de cet individu sont considérées
indépendantes entre elles.

Comme exemple d’algorithmes du domaine discret qui appartiennent à ce groupe nous
pouvons mentionner UMDA (Univariate Marginal Distribution Algorithm) [Mühlenbein,
1998] où l’estimation de la distribution de probabilité est réalisée de la manière suiv-
ante :

p(x) =

n∏

i=1

p(xi)

Un autre exemple est l’algorithme connu comme UMDAc (Univariate Marginal Distri-
bution Algorithm - continuous) [Larrañaga et al., 2000], qui est l’équivalent de l’UMDA
dans le domaine continu.

• Dépendances entre paires de variables : dans la structure du réseau bayésien ou
gaussien chacune des variables peut avoir au plus un parent. Cela nécessite donc une
étape d’estimation de la meilleure structure.

Un exemple d’EDAs pour le domaine discret appartenenant à ce groupe est MIMIC
(Mutuel Information Maximization for Input Clustering) [de Bonet et al., 1997] qui
propose de réaliser la factorisation de probabilité suivante :

p(x) = p(xi1 | xi2) · p(xi2 | xi3) · · · p(xin−1 | xin) · p(xin)
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MIMIC recherche la permutation π = (i1, i2, . . . , in) qui minimise la divergence de
Kullback-Leibler entre la distribution estimée p̂π(x) et la distribution réelle p(x).

De nouveau, il existe une version continue de MIMIC nommée MIMICc (Mutuel Infor-
mation Maximization for Input Clustering - continuous) [Larrañaga et al., 2000].

• Dépendances multiples entre variables : cette fois toutes les probabilités con-
ditionnelles peuvent intervenir, et la structure du réseau bayésien ou gaussien est
quelconque. Cette caractéristique demande une recherche exhaustive de la meilleure
structure probabiliste graphique parmi toutes celles qui sont possibles, et donc ces
algorithmes sont plus chers en termes de temps d’exécution que ceux des groupes
précédents. Leur avantage est qu’ils sont capables d’apprendre une structure proba-
biliste graphique qui considère les relations entre les différentes variables des individus
plus fidèlement.

Citons comme exemple dans le domaine discret l’agorithme EBNA (Estimation of
Bayesian Networks Algorithm) [Etxeberria and Larrañaga, 1999], et EGNA (Estima-
tion of Gaussian Networks Algorithm) [Larrañaga et al., 2000, Larrañaga and Lozano,
2001] dans le domaine continu.

L’agorithme EBNA utilise un score BIC (Bayesian Information Criterion) [Schwarz,
1978] qui mesure l’aptitude d’une structure à représenter les dépendances entre les
individus. Le réseau bayésien qui maximise cette mesure est estimé par la méthode
de l’Algorithme B [Buntine, 1991]. La factorisation de la probabilité s’écrit alors de la
façon suivante :

p(x) =
n∏

i=1

p(xi|pa(xi))

où pa(xi) est l’ensemble des parents de la variable xi dans le réseau bayésien.

Les algorithmes et approches d’EDAs qui sont proposés dans la littérature sont nombreux,
bien que pour le moment il y n’ait que peu d’articles qui en montrent tout le potentiel
en comparaison avec d’autres paradigmes plus connus comme par exemple les GAs et les
Stratégies Evolutives (ES). Cette thèse vise à combler ce manque dans le cas de la mise en
correspondance de graphes pour la reconnaissance d’objets dans les images. Un autre des
aspects innovants de cette thèse est précisément le fait d’appliquer pour la première fois les
EDAs aux problèmes de mise en correspondance de graphes, tout en tenant compte des deux
domaines discret et continu.

Dans ce cas, les distributions estimées dans les EDAs représentent les dépendances entre
les différentes correspondances possibles entre nœuds de GD par rapport aux nœuds de GM .

EDAs parallèles

Une des principales limites des EDAs pour les problèmes traités ici est le temps de calcul
important qu’ils nécessitent pour aboutir à la solution. Nous avons donc étudié les possibilités
de parallélisation de ces algorithmes afin de réduire ces temps d’exécution.

Nous avons analysé différents EDAs en fonction des besoins de calcul pour chacune de
leurs étapes. Cette analyse a été réalisée avec l’outil GNU gprog. Ces études soulignent
que les algorithmes les plus chers en calcul sont ceux du troisième groupe, et cet effet est
précisément dû à l’étape d’apprentissage. Dans le cas de la reconnaissance de structures
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Figure 14: Schéma d’exécution mâıtre-esclave, où un processus joue le rôle de mâıtre de tâches et
les autres réalisent des parties d’un travail commun.

cérébrales, cet apprentissage avec EBNA prend 85,7% du temps d’exécution total. Nous
avons décidé de paralléliser l’algorithme EBNA (troisième groupe et domaine discret).

L’apprentissage dans EBNA repose sur la mesure BIC, qui demande presque tout le
temps de calcul de cet apprentissage. La mesure BIC(S,D), où S est la structure et D
les données à partir desquelles est réalisé l’apprentissage, peut être divisée en composantes
BIC(i, S,D) qui expriment la mesure locale BIC pour une variable Xi :

BIC(S,D) =

n∑

i=1

BIC(i, S,D) =

n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
− 1

2
(ri − 1)qi

Pour paralléliser le programme on utilise le modèle d’exécution mâıtre-esclave illustré
figure 14, dans lequel chacun des esclaves calcule les termes BIC(i, S,D) correspondant aux
différentes variables Xi i = 1, . . . , n.

Pour essayer des techniques distinctes de parallélisme, cette thèse utilise des librairies
pthreads et MPI qui permettent de tester l’intérêt d’utiliser la mémoire partagée et le passage
des messages respectivement, avec des configurations différentes des ordinateurs.

Les essais réalisés montrent qu’avec des threads et avec du MPI nous pouvons obtenir
des réductions significatives du temps de calcul, allant jusqu’à 60%.

Résultats expérimentaux

Nous avons traité différents exemples d’application des EDAs à des problèmes de correspon-
dance inexacte de graphes. Des exemples synthétiques obtenus par simulations permettent
d’illustrer différentes caractéristiques des EDAs et des techniques proposées :

• Comparaison entre EDAs, algorithmes génétiques et stratégies évolutives pour des
problèmes de complexités très différentes.

• Analyse de quatre méthodes adaptées aux EDAs pour satisfaire les contraintes imposées
aux problèmes de correspondance de graphes.

• Etude de l’évolution des structures graphiques probabilistes de génération en génération
pour les EDAs discrets ou continus.

• Application et mesure de rendement des techniques de parallélisme proposées.

Des applications réelles ont ensuite été traitées, portant sur la reconnaissance de struc-
tures cérébrales à partir d’images 3D de résonance magnétique, et de structures faciales (il
s’agit de trouver le nez, la bouche, etc.). Les résultats obtenus pour ce dernier problème
pour les algorithmes ssGA (algorithme génétique), UMDA et EBNA sont illustrés figure 15.

Dans tous les exemples réels traités, les erreurs de reconnaissance que peuvent commettre
les techniques de correspondance entre graphes se divisent en trois types, illustrés figure 16.
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(a) ssGA (b) UMDA (c) EBNA

Figure 15: Exemple d’un problème réel de reconnaissance de structures faciales. Les résultats
sont obtenus en utilisant l’algorithme génétique SSGA et les EDAs UMDA et EBNA. Ces résultats
montrent que la reconnaissance est meilleure dans le cas des EDAs.

A

B

C

Figure 16: Exemple de quelques erreurs typiques de reconnaissance. A: segments de taille trop petite
pour pouvoir être identifiés, même visuellement. B: segments situés à proximité des limites de deux
régions ou plus, trop ambigüs pour pouvoir être classés. C: vraies erreurs de reconnaissance.
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Conclusions et perspectives

Cette thèse formalise les problèmes de mise en correspondance de graphes comme des
problèmes d’optimisation combinatoire sous contraintes. Un des apports les plus innovants
de cette thèse consiste à utiliser pour la première fois les EDAs dans ce type de problèmes.

Quant à la comparaison des EDAs avec des GAs, la conclusion des essais réalisés est la
suivante : pour des problèmes qui ne sont pas très complexes les GAs donnent des résultats
similaires à ceux des EDAs et nécessitent moins de temps d’exécution ; cependant, pour
des problèmes complexes les EDAs donnent toujours de meilleurs résultats que les GAs, qui
sont plus susceptibles de tomber dans des extrema locaux. En outre, les EDAs du domaine
continu se comportent généralement mieux que ceux du domaine discret quant à la qualité
de la solution obtenue, bien qu’avec un coût plus grand en termes de temps d’exécution.

Différents types de fonctions objectif ont également été proposés, fondés sur des paradigmes
différents comme la théorie des ensembles flous et la théorie des probabilités. Les résultats
montrent aussi l’importance de choisir une bonne façon de générer le graphe modèle et de
définir les attributs.

Finalement, les résultats expérimentaux montrent que la parallélisation des EDAs con-
tribue de façon satisfaisante à la réduction de temps de calcul.

Les perspectives de ce travail sont les suivantes :

Modélisation : considérer les différences d’importance entre les régions, engendrer des
modèles à partir de plus d’une image.

Fonctions objectif : réaliser une comparaison de rendement entre elles, tester d’autres
représentations d’individus et de fonctions objectif.

Vérifier la validité de la méthode sur des séquences d’images et exploiter la conti-
nuité d’une image à la suivante pour améliorer la reconnaissance.

Amélioration des EDAs : autres techniques de génération de populations initiales, essais
avec d’autres modèles graphiques probabilistes.

Parallélisation des EDAs : paralléliser d’autres EDAs, combinaison entre algorithmes en
parallèle, appliquer d’autres techniques de parallélisme.
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filters for Image Restauration Using Estimation of Distribution Algorithms. CAEPIA
2001, Spanish Society for the Artificial Intelligence. (in Spanish).

2000
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Chapter 1

Introduction

‘A journey of a thousand miles begins with a single step.’

Confucius

The automatic recognition of images is an objective which is difficult to achieve. This
issue has been analyzed and tackled in many different ways. Moreover, the automatic recog-
nition of images is regarded as a complex field within the pattern recognition domain, as
many questions such as the way of representing the knowledge and the way of adapting the
knowledge representation to the changes in the images are essential for successful result and
have to be analyzed with care.

Graph representations are widely used for dealing with structural information in different
domains such as networks, psycho-sociology, image interpretation, pattern recognition, and
many others. In a typical graph representation, regions of the image are represented by
vertices in the graph. These vertices are related to each other by edges, which express
structural relationships between objects. Vertices and edges are usually attributed.

One important problem to be solved when using such representations is graph matching,
for instance to recognize image regions with the help of a model. The problem consists
in searching for the best homomorphism between two graphs: the one that represents the
model –the model graph1– and the other that represents the image –the data graph. The
best graph homomorphism is determined regarding both the attributes of vertices and edges.

In order to achieve a good correspondence between the model and the data graphs, the
most usual way is to search for a graph isomorphism. A lot of work is dedicated to the
search for an exact isomorphism between two graphs or subgraphs. However, in many cases
the bijective condition is too strong. Because of the schematic aspect of the model and of
the difficulty to segment accurately the image into meaningful entities, no isomorphism can
usually be expected between both graphs. Such problems call for inexact graph matching.

This type of problem occurs in different model-based image recognition domains. For
instance, in the case of the recognition of brain images, the model (i.e. the anatomic atlas)
is usually build as a representation of the regions that appear in a healthy human brain, and
the data images are obtained using Magnetic Resonance images (MRi) of patients. In other
application types such as cartography, the model is constructed from maps of the region
of study, while the data images are obtained from aerial or satellite photographs. A last
application to which this type of abstraction is applied is the recognition of facial features.

1The model is sometimes also called atlas or map depending on the type of problem. Some authors in the
literature also use the term pattern graph to refer to the model graph.
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As the number of features in the image increases, the size of graphs increases too, and the
matching process becomes more complex. This has been proved to be NP-hard. As a result,
many different techniques have been applied to perform the matching between graphs, and
among them we can find the use of relaxation techniques, the EM algorithm, combinatorial
optimization techniques, etc.

This thesis proposes to solve this optimization problem using a class of evolutionary
computation techniques called Estimation of Distribution Algorithms (EDAs), which are
based on learning and simulation of probabilistic graphical models (i.e. Bayesian or Gaus-
sian networks). The main drawback of other evolutionary computation techniques, such as
Genetic Algorithms (GAs) in the discrete domain and Evolutionary Strategies (ESs) in the
continuous domain, is that their behavior depends to a large extent on tuning appropri-
ately associated parameters, and for this purpose the researcher requires experience in the
resolution and use of these algorithms. EDAs do not have that many parameters and can
be applied easily to complex problems. Furthermore, EDAs have already shown a better
performance than GAs in many problems, specially in complex ones, but their use in graph
matching has not been proposed previously. In addition, this thesis proposes the definition
of a new type of attributes for creating the model and data graphs as well as related fitness
functions, which are based on probability theory. Moreover, the parallelization of EDAs in
the discrete domain is designed and tested in order to reduce the CPU cost of the most
promising methods. Finally, two real problems are described and tested: the recognition of
human brain structures and of facial features from images. The latter application has been
developed in collaboration with Roberto Cesar from the University of São Paulo in Brazil.

This thesis is organized as follows. This introductory chapter summarizes the context,
the motivation, and the main contributions of this PhD thesis. Chapter 2 explains the graph
matching problem and its different types as found in the literature. Chapter 3 proposes to
solve these problems as combinatorial optimization ones with constraints, and analyzes the
modifications and adaptations that are required in any evolutionary computation technique
when applied to graph matching problems. Chapter 4 explains the theoretical background
behind the evolutionary computation approach of estimation of distribution algorithms for
both the discrete and continuous domains. Chapter 5 reviews all the aspects that need
to be considered for parallelizing EDAs in order to reduce the computation time that these
require, and constitutes an overview of the main aspects that need to be taken into account for
applying up-to-date parallelization techniques. Chapters 6 and 7 describe the experiments
carried out with synthetic data and real problems respectively, and the performance and
behavior of the different algorithms and the results obtained are presented. Finally, Chapter 8
presents the conclusions of this PhD thesis.
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Chapter 2

The graph matching problem

‘Imagination is more important than knowledge. Knowledge is limited.
Imagination encircles the world.’

Albert Einstein

This chapter explains the graph matching problem in detail. We first introduce some
notation and terminology. Next, a classification of the different graph matching types is
presented: this PhD thesis concentrates on inexact graph matching problems, but this chap-
ter summarizes other types of graph matching too. The complexity of the different graph
matching problems is also analyzed. Finally, the state of the art is presented. The amount
of this type of work shows that the interest on the field is increasing with the years.

2.1 Basic notation and terminology

A graph G = (V,E) in its basic form is composed of vertices and edges. V is the set of vertices
(also called nodes or points) and E ⊂ V × V (also defined as E ⊂ [V ]2 in the literature) is
the set of edges (also known as arcs or lines) of graph G. The difference between a graph G
and its set of vertices V is not always made strictly, and commonly a vertex u is said to be
in G when it should be said to be in V .

The order (or size) of a graph G is defined as the number of vertices of G and it is
represented as |V | and the number of edges as |E|1.

If two vertices in G, say u, v ∈ V , are connected by an edge e ∈ E, this is denoted by
e = (u, v) and the two vertices are said to be adjacent or neighbors. Edges are said to be
undirected when they have no direction, and a graph G containing only such types of graphs
is called undirected. When all edges have directions and therefore (u, v) and (v, u) can be
distinguished, the graph is said to be directed. Usually, the term arc is used when the graph
is directed, and the term edge is used when it is undirected. In this dissertation we will
mainly use directed graphs, but graph matching can also be applied to undirected ones2.
In addition, a directed graph G = (V,E) is called complete when there is always an edge
(u, u′) ∈ E = V × V between any two vertices u, u′ in the graph.

1In some references in the literature the number of vertices and edges are also represented by |G| and ||G||
respectively.

2In this thesis we will use the terms vertex and edge for graphs representing knowledge. Later in Chapter 4
probabilistic graphical models such as Bayesian and Gaussian networks are introduced, and the terms node

and arc will be used for these in order to distinguish them.
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2.2 Definition and classification of graph matching problems
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Figure 2.1: Illustration of how the physical parts of a human body can be represented using a graph.

Graph vertices and edges can also contain information. When this information is a
simple label (i.e. a name or number) the graph is called labelled graph. Other times, vertices
and edges contain some more information. These are called vertex and edge attributes,
and the graph is called attributed graph. More usually, this concept is further specified by
distinguishing between vertex-attributed (or weighted graphs) and edge-attributed graphs3.

A path between any two vertices u, u′ ∈ V is a non-empty sequence of k different vertices
< v0, v1, . . . , vk > where u = v0, u

′ = vk and (vi−1, vi) ∈ E, i = 1, 2, . . . , k. Finally, a graph
G is said to be acyclic when there are no cycles between its edges, independently of whether
the graph G is directed or not.

2.2 Definition and classification of graph matching problems

Many fields such as computer vision, scene analysis, chemistry and molecular biology have
applications in which images have to be processed and some regions have to be searched
for and identified. When this processing is to be performed by a computer automatically
without the assistance of a human expert, a useful way of representing the knowledge is by
using graphs. Graphs have been proved as an effective way of representing objects [Eshera
and Fu, 1986].

When using graphs to represent objects or images, vertices usually represent regions (or
features) of the object or images, and edges between them represent the relations between
regions. As an example, we can use a graph to represent a person using the graph shown in
Figure 2.1: here all the main physical parts that one expects in a photograph or drawing of a
person are shown in the form of vertices in a graph, while edges represent adjacency between
the vertices. In this work, we will consider model-based pattern recognition problems, where
the model is represented as a graph (the model graph, GM ), and another graph (the data
graph, GD) represents the image where recognition has to be performed. The latter graph
is built from a segmentation of the image into regions. The graph in Figure 2.1 could serve
as the model graph in a graph matching problem.

Similar graphs can be used for representing objects or general knowledge, and they can be

3Attributed graphs are also called labelled graphs in some references, and therefore these definitions are
also known as vertex-labelled and edge-labelled graphs.
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The graph matching problem

either directed or undirected. When edges are undirected, they simply indicate the existence
of a relation between two vertices. On the other hand, directed edges are used when relations
between vertices are considered in a not symmetric way. Note that the graph in Figure 2.1
is undirected, and therefore the attributes on each edge (u, u′) are not specified to be from
u to u′ or vice-versa.

2.2.1 Exact and inexact graph matching

In model-based pattern recognition problems, given two graphs –the model graph GM and
the data graph GD– the procedure of comparing them involves to check whether they are
similar or not. Generally speaking, we can state the graph matching problem as follows:
Given two graphs GM = (VM , EM ) and GD = (VD, ED), with |VM | = |VD|, the problem is to
find a one-to-one mapping f : VD → VM such that (u, v) ∈ ED iff (f(u), f(v)) ∈ EM . When
such a mapping f exists, this is called an isomorphism, and GD is said to be isomorphic to
GM . This type of problems is said to be exact graph matching.

The term inexact applied to some graph matching problems means that it is not possible
to find an isomorphism between the two graphs to be matched. This is the case when the
number of vertices is different in both the model and data graphs4. This may be due to
the schematic aspect of the model and the difficulty to segment accurately the image into
meaningful entities. Therefore, in these cases no isomorphism can be expected between both
graphs, and the graph matching problem does not consist in searching for the exact way
of matching vertices of a graph with vertices of the other, but in finding the best matching
between them. This leads to a class of problems known as inexact graph matching. In that
case, the matching aims at finding a non-bijective correspondence between a data graph and
a model graph. In the following we will assume |VM | < |VD|.

The interest of inexact graph matching has been recently increased in the last years due
to the application of computer vision to areas such as cartography, character recognition, and
medicine. In these areas, automatic segmentation of images results in an over-segmentation
and therefore in the data graph containing more vertices than the model graph. That is
why applications on these areas do usually require inexact graph matching techniques. In
cartography, the typical example is when a graph is used to represent the knowledge extracted
from of a map storing all the features. The matching with an image consists in identifying
structures in the image with the help of the map. In character recognition, a model in the
form of a graph is generated for each character and the objective is to find which is the
model that best suits the analyzed image of a character. In medical images, graphs can be
used to represent an anatomical atlas. As a concrete case of the latter, in brain imaging
internal brain structures can be recognized with the help of a graph where each vertex
represents a brain structure in the atlas, and edges represent spatial relationships between
these structures. In the case of the recognition of human facial features from images the
regions in the model represent each of the features to be recognized such as mouth, eyes and
eyebrows. Experiments carried out in this thesis and presented in Chapter 7 are focused on
these two real problems.

4A graph matching problem can be considered to be inexact when both graphs to be matched do not
contain the same number of vertices and edges. However, it is important to note that in the case of some
attributed graph matching problems, the fact of even having the same number of vertices and edges does not
imply the existence of an isomorphism, and in the latter case that would also be an inexact graph matching
problem. In this PhD thesis we will not consider the latter type of problems when referring to inexact graph

matching.
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2.2 Definition and classification of graph matching problems
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Figure 2.2: Classification of all the graph matching types into two main classes: exact graph matching
and inexact graph matching (in which the best among all the possible non necessarily bijective
matchings has to be found).

The best correspondence of a graph matching problem is defined as the optimum of some
objective function which measures the similarity between matched vertices and edges. This
objective function is also called fitness function5.

In an inexact graph matching problem such as the ones described as examples, since we
have |VM | < |VD|, the goal is to find a mapping f ′ : VD → VM such that (u, v) ∈ ED iff
(f(u), f(v)) ∈ EM . This corresponds to the search for a small graph within a big one. An
important sub-type of these problems are sub-graph matching problems, in which we have
two graphs G = (V,E) and G′ = (V ′, E′), where V ′ ⊆ V and E′ ⊆ E, and in this case the
aim if to find a mapping f ′ : V ′ → V such that (u, v) ∈ E′ iff (f(u), f(v)) ∈ E. When such
a mapping exists, this is called a subgraph matching or subgraph isomorphism.

Exact and inexact graph matching are the terms that we will use in this thesis to differen-
tiate these two basic types of graph matching problems. However, in the literature this type
of graph matching problems are also called isomorphic and homomorphic graph matching
problems respectively.

2.2.2 Graph matching using dummy vertices

In some inexact graph matching problems, the problem is still to find a one-to-one, but
with the exception of some vertices in the data graph which have no correspondence at all.
Real graph matching problem examples of the latter case can be found in [Finch et al.,
1998b]. Similar examples can be found for medical applications, as in case of pathologies
for instance. This case also happens when the over-segmentation procedure used for the
data graph construction has been performed automatically and many regions appear to be
components not present in the model or they are simply part of the background.

Examples can be found in the case of recognizing human structures in brain images. The
anatomic atlas that the model graph represents is designed according to a healthy brain.
However, if the data image that has to be recognized contains pathologies such as a tumor,

5In the literature fitness functions also receive the name of energy functions, and due to this graph matching
algorithms are also regarded as energy minimization algorithms.
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The graph matching problem

the graph matching procedure will not be able to match the vertices corresponding to these
objects satisfactorily to any of the brain regions to be recognized. Similar examples can be
found in satellite images for instance, when the model graph has been extracted from an
image obtained some years before the actual photograph to be analyzed and new roads and
buildings are present on the place.

More formally, given two graphs GM = (VM , EM ) and GD = (VD, ED), the problem
consists in searching for a homomorphism h : VD → VM

⋃{∅}, where ∅ represents the null
value, meaning that when for a vertex a ∈ VD we have h(a) = ∅ there is no correspondence
in the model graph for vertex a in the data graph. This value ∅ is known in the literature
as the null vertex or the dummy vertex.

Note that in these cases the fitness function that measures the fitness of the homomor-
phism h has to be designed taking into account that it should encourage the graph match-
ing algorithm to reduce the number of vertices a1, a2, . . . , an ∈ VD satisfying the condition
h(ai) = ∅, i = 1, 2, . . . , n. In other words, nothing avoids that the homomorphism h for which
∀ai ∈ VD h(ai) = ∅ is valid, but this solution would not represent any satisfactory result.

It is important to note that the use of the dummy vertex can be regarded as an additional
vertex only for the model graph. However, in some problems the equivalent opposite case is
also happening: using the same example of the human brain, the graph matching algorithm
could face the case of having to recognize the data image of a patient that has undergone
a lobotomy, and therefore a lobe is missing in the image. In this case, the graph matching
problem has the particularity that there would not be a correspondence in the optimal
solution for all the model vertices, but it does require the use of dummy vertices. This aspect
is also common in other image recognition problems such as the aerial image recognition one,
in which ancien buildings and factories can leave space in a newer photograph to new parks
or roads.

2.2.3 Graph matching allowing more than one correspondence per vertex

Some other graph matching problems allow many-to-many matches, that is, given two graphs
GM = (VM , EM ) and GD = (VD, ED), the problem consists on searching for a homomorphism
f : VD → W where W ∈ P(VM )\{∅} and W ⊆ VM . In case of using also dummy vertices,
W can take the value ∅, and therefore W ∈ P(VM ).

This type of graph matching problems are more difficult to solve, as the complexity
of the search for the best homomorphism has much more combinations and therefore the
search space of the graph matching algorithm is much bigger. These types of graph matching
problems make sense when the segmentation step in the image does not satisfy the condition
of having segmented all the regions completely, and therefore some of the automatically
segmented regions are at the same time part of two or more model regions.

An important difficulty in graph matching problems that allow more than a single match-
ing per data vertex is the design of a fitness function to measure the quality of each of the
possible homomorphisms. Again, the number of model vertices matched to each single data
vertex needs to be kept as low as possible so that the graph matching algorithm is forced to
return more concrete results. These aspects are very dependent on each particular problem.

2.3 Complexity of graph matching

Graph matching is considered to be one of the most complex problems in object recognition
in computer vision [Bienenstock and von der Malsburg, 1987]. Its complexity is due to its

Endika Bengoetxea, PhD Thesis, 2002 7



2.4 State of the art in the literature

combinatorial nature. Following the classification of graph matching problems explained
in Section 2.2, as the nature of each of them is different, we will analyze their complexity
separately.

2.3.1 Exact graph matching: graph isomorphism

This whole category of graph matching problems has not yet been classified within a par-
ticular type of complexity such as P or NP-complete. Some papers in the literature tried to
prove its NP-completeness when the two graphs to be matched are of particular types or sat-
isfy some particular constraints [Basin, 1994, Garey and Johnson, 1979], but it still remains
to be proved that the complexity of the whole type remains within the NP-completeness at
most.

On the other hand, for some types of graphs the complexity of the graph isomorphism
problem has been proved to be of polynomial type. An example is the graph isomorphism
of planar graphs, which has been proven in [Hopcroft and Wong, 1974] to be of polynomial
complexity, although the cost of the leading constant also appears to be quite large.

As a result, it can be said that this issue remains as an interesting open theoretical
problem, although it also encourages researchers to try to find polynomial time solutions for
this type of graph matching problems.

2.3.2 Exact sub-graph matching: sub-graph isomorphism

This particular type of graph matching problems has been proven to be NP-complete [Garey
and Johnson, 1979]. However, some specific types of graphs can also have a lower complexity.
For instance, the particular case in which the big graph is a forest and the small one to be
matched is a tree has been shown to be of a polynomial complexity [Garey and Johnson,
1979, Reyner, 1977].

2.3.3 Inexact graph matching: graph and sub-graph homomorphisms

In inexact graph matching, where we have |VM | ≤ |VD|, the complexity is proved in [Abdulka-
der, 1998] to be NP-complete. Similarly, the complexity of the inexact sub-graph problem
is equivalent in complexity to the largest common sub-graph problem, which is known to be
also NP-complete.

2.4 State of the art in the literature

This section is a review of the literature on graph matching. All the references commented
correspond to graph matching problems and methods, although some of them do not corre-
spond with the concrete types of problems addressed in this dissertation and are included
for the interested reader so that he can have an idea on the different subjects and groups
working nowadays on the field. The interested reader can additionally find in [Jolion and
Kropatsch, 1998, Kropatsch and Jolion, 1999, Jolion et al., 2001] works on practically all as-
pects discussed on this chapter: subgraph transformations for inexact matching, isomorphism
between strong fuzzy relational graphs, a framework for region segmentation algorithms, im-
age sequence segmentation, image analysis with a graph-based parallel computing model,
and so on.
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The graph matching problem

Even if this chapter has been focused on the graph matching types that can be found in
the literature, this section focuses also in other related aspects such as the image processing
techniques, the way of building the attributes, the different algorithms and formalizations of
these problems, and their applications. The outline of this section is as follows: Section 2.4.1
reviews image processing techniques for graph matching purposes, as well as the generation
of the graphs from images. Section 2.4.2 refers to the different ways of representing the infor-
mation in graphs, and records references on geometrical properties of graph edit distances,
and graph metrics. Finally, Sections 2.4.3, 2.4.4, 2.4.5, 2.4.6, and 2.4.7 explain the different
graph matching problems that have been proposed based on genetic algorithms, probability
theory-based approaches, decision trees, neural networks, and clustering techniques respec-
tively. Each section comments examples of applications in which these methods have been
applied. Finally, Section 2.4.8 discusses the advantages and disadvantages of the main ap-
proaches analyzed in the previous sections.

2.4.1 Image processing and graph construction techniques for graph match-

ing

In most of the graph matching problems for image recognition, vertices in graphs represent
regions of images, and the division in regions is the result of a segmentation procedure. This
segmentation procedure is sometimes performed with the aid of an expert, but other times
automatic segmentation and graph construction techniques are applied to create the graphs
that are to be matched.

Attributed graph representation using fuzzy set theory

Fuzzy set theory has been used in the literature as a means to create vertex and edge
attributes to be applied to graph matching. At a theoretical level there are many key
works for these type of attributes, such as the representation of distances in images [Bloch,
1999b] and the representation of relative positions between objects [Bloch, 1999a]. Based
on this idea, we can find many references in the literature using this type of attributes for
inexact graph matching [Perchant et al., 1999, Perchant and Bloch, 1999], and for sub-graph
matching [Hwan, 2001].

Fuzzy attributed graph models are proposed for very different image type representations,
such as fingerprint verification [Fan et al., 2000] as a mechanism to structure the knowledge
captured in conceptual models, and face detection from color images using a fuzzy pattern
matching method [Wu et al., 1999].

Morphological graph matching and elastic graph matching

Elastic graph matching is a graph representation and matching technique that takes into ac-
count the possible deformation of objects to be recognized. Elastic graph matching usually
consists of two consecutive steps, namely a matching with a rigid grid, followed by a defor-
mation of the grid, which is actually the elastic part. The deformation step is introduced in
order to allow for some deformation, rotation, and scaling of the object to be matched.

An example of the application of this type of representation is the identification and
tracking of cyclones [Lee and Liu, 1999, 2000]. In the past decades, satellite interpretation
was one of the vital methods for the determination of weather patterns all over the world,
especially for the identification of severe weather patterns such as tropical cyclones as well
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as their intensity. Due to the high variation and complexity of cloud activities for the
tropical cyclone patterns, meteorological analysts all over the world so far are still relying on
subjective human justification for cyclone identification purposes. Elastic graph matching
techniques have been proposed for automatic detection of this problem.

Another usual application of this technique is the authentication of human faces, where
the deformation patterns of the face are represented as graph attributes [Duc et al., 1999,
Kotropoulos et al., 2000a,b, Tefas et al., 2002]. The different facial expression and the
rotation patterns of the human head are intended to be represented in the form of graphs.
Wavelet transforms are also used for creating the elastic face graph model, such as in [Ma
and Xiaoou, 2001] where the face graph model is constructed using the discrete wavelet
transform, and in [Duc et al., 1997, Lyons et al., 1999, Wiskott, 1999], where different 2D
Gabor wavelet representation are used. Another related problem is the recognition of facial
regions such as mouth and nose, which is also solved using these methods [Herpers and
Sommer, 1998].

Morphological graph matching applies hyperplanes or deformable spline-based models to
the skeleton of non-rigid discrete objects [di Ruberto and Dempster, 2001, Ifrah, 1997, Kumar
et al., 2001, Rangarajan et al., 2001, Tefas et al., 2001], the graph being built from skeleton
characteristic points. An approach to interactively define features and subsequently recognize
parts regarding shape features using a sub-graph matching algorithm is proposed in [Sonthi,
1997]. An illustrative example of mathematical morphology applied to curve fitting and not
to skeleton points can be found in [Bakircioglu et al., 1998], where curves on brain surfaces are
matched by defining distances between curves regarding their speed, curvature, and torsion.
Also, in [Dorai, 1996] another framework for representation and recognition of 3D free-form
objects is shown, where the surface representation scheme describes an object concisely in
terms of maximal surface patches of constant shape index. Finally, the application of planar
surfaces to the modelling the data graph can be solved with probabilistic relaxation as shown
in [Branca et al., 2000].

Another geometrical approach is introduced in [Shams, 1999], using generalized cylinders
called geons as visual primitives to represent object models. Geons constitute a structural
level intermediate between local features and whole objects, used here as a basis for pow-
erful generalization between different view points. This work makes use of graph matching
techniques and cross-correlation methods to find 2D projections of geons as partial matches
between several images.

Examples of other applications of these techniques are: symmetry-based indexing of
image databases [Sharvit et al., 1998], shape recognition from large image libraries [Huet and
Hancock, 1999], recognition of shape features via multiple geometric abstractions [Sonthi,
1997], shape recognition using probability theory-based methods [Khoo and Suganthan, 2002,
Shao and Kittler, 1999], structural matching by discrete relaxation [Wilson and Hancock,
1997], representation and recognition of 3D free-form objects [Cheng et al., 2001, Dorai,
1996], and hand posture recognition [Triesch and von der Malsburg, 2001].

Multiple graph matching

Some graph matching problems are based on the idea of having more than one model, and on
performing graph matching to a database of models so that the model that best approaches
the characteristics of the data graph is selected. Therefore, the aim here is to recognize a
model rather than going deeply to recognize each of the segments of the data image. An
illustrative example is found in [Messmer and Bunke, 1999] in which decision trees are used
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for graph and subgraph isomorphism detection in order to match a graph to the best of a
dictionary of graphs.

Due to the computation cost of using databases and to perform image processing on each,
several references can be found about the subject of how to perform efficiently graph matching
to all the models. For instance, in [Berretti et al., 2001] the usage of an indexing metric
to organize large archives of graph models and for (sub)graph error correcting isomorphism
problem is proposed. [Sharvit et al., 1998] proposes an approach for indexing pictorial
databases based on a characterization of the symmetry in edge maps.

From a more theoretical point of view, [Williams et al., 1997] describes the development
of a Bayesian framework for multiple graph matching. The starting point of this proposal is
the Bayesian consistency measure developed by Wilson and Hancock [Wilson and Hancock,
1996] which is generalized from matching graph pairs to multiple graphs. In [Huet and
Hancock, 1999] a graph-matching technique for recognizing line-pattern shapes in large image
databases is described. The methodological contribution of the paper is to develop a Bayesian
matching algorithm that uses edge-consistency and vertex attribute similarity. Recognition is
performed by selecting from the database the image with the largest a posteriori probability.

One of the problems faced most commonly as multiple graph matching is the human
face recognition [Kotropoulos et al., 2000a,b]. The particularity of [Mariani, 2000] is that
the images of the database are all taken from the same person viewed from different angles,
which aim is to estimate the orientation of the head. Following the same problem, [Hancock
et al., 1998] compares the performance of two computer-based face database identification
systems based on human ratings of similarity and distinctiveness, and human memory per-
formance. Multiple graph matching has also been applied to many other problems such as
the comparison of saliency map graphs [Shokoufandeh et al., 1999].

2.4.2 Distance measures, conceptual graphs, and graph edit distances and

metrics

The graph edit distance between two graphs is defined as the number of modifications that
one has to undertake to arrive from one graph to be the other. The distance between
two graphs is defined as the weighted sum of the costs of edit operations (insert, delete, and
relabel the vertices and edges) to transform one graph to the other. The fact of applying these
concepts and removing vertices or edges in graphs is analyzed in many works, as removal
will lead to smaller graphs and therefore the graph matching problem can be reduced in
complexity.

[Fernandez and Valiente, 2001] proposes a way of representing attributed relational
graphs, the maximum common subgraph and the minimum common supergraph of two
graphs by means of simple constructions, which allow to obtain the maximum common
subgraph from the minimum common supergraph, and vice versa. A distance measure be-
tween pairs of circular edges and relations among them is introduced in [Foggia et al., 1999].
This measure is to be applied in domains with high variability in the shape of the visual
patterns (i.e. where a structural approach is particularly useful). In [Bunke, 1997] the rela-
tion between graph edit distance and the maximum common subgraph is analyzed, showing
that under a fitness function introduced in this paper, graph edit distance computation is
equivalent to solving the maximum common subgraph problem. Other related theoretical
subjects are addressed in [Wang et al., 1995], in which two variants of the approximate graph
matching problem are considered and analyzed: the computation of the distance between
the graphs GM and GD, and the definition of the minimum distance between GM and GD
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when subgraphs can be freely removed from GD.

Other interesting approach of spectral type to solve graph matching translate this prob-
lem to the search of the maximal clique in the association graph. Examples on this are [Doob
et al., 1980, Massaro and Pelillo, 2001].

As steps forward in this field, in [Myers et al., 2000] a framework for comparing and
matching corrupted relational graphs is introduced. The authors develop the idea of the
edit-distance and show how this can be used to model the probability distribution for struc-
tural errors in the graph-matching problem. This probability distribution is aimed at locating
matches using maximum a posteriori label updates. The resulting graph-matching algorithm
is compared with the one of [Wilson and Hancock, 1996], where the use of edit-distances is
presented as an alternative to the exhaustive compilation of label dictionaries. In addition,
[Ing-Sheen and Kuo-Chin, 2001] presents a region-based color image retrieval system using
geometric properties, in which relational distance graph matching between two spatial rela-
tional graphs is performed to find the best matches with the minimum relational distance.
Then, shape matching is applied to obtain the best match with the minimum geometric
distance. Finally, in [Jolion, 2003] a new model for graph decimation is proposed with the
aim of reducing the computational complexity of algorithms used for clustering, matching,
feature extraction and so on.

Many useful applications of these techniques can be found in the literature. An illustrative
example is shown in [Haris et al., 1999], where a method for extraction and labelling of the
coronary arterial tree is proposed. In [Geusebroek et al., 1999], distance graph matching
is applied to the segmentation of tissues, by basing the characterization of tissues on the
topographical relationship between the cells. The neighborhood of each cell in the tissue
is modelled by the distances to the surrounding cells, and comparison with an example or
prototype neighborhood reveals topographical similarity between tissue and model. Optimal
video clip ordering on a network in order to reduce computer network traffic in multimedia
equipments is solved in [Ng and Shum, 1998] by representing the network as a graph and using
graph edit distances and graph matching. The recognition of handwritten digits coming from
a standard character database is also solved using this method [Foggia et al., 1999]. Chinese
character recognition regarding stroke order and character recognition by analyzing graph
distances have been proposed [Liu, 1997a]. Other work applying this approach involving
clustering with distance measures is shown in [Gold et al., 1999].

Error correction graph matching

In error-correcting graph matching (or error-tolerant graph matching as it is also called)
one considers a set of graph edit operations, and defines the edit distance of two graphs G1

and G2 as the shortest (or least cost) sequence of edit operations that transform G1 into
G2. Error-correcting graph matching is a powerful concept that has various applications in
pattern recognition and machine vision, and its application is focused on distorted inputs. It
constitutes a different approach very similar to other graph matching techniques. In [Bunke
and Shearer, 1998] this topic is addressed and a new distance measure on graphs that does
not require any particular edit operations is proposed. This measure is based on the maxi-
mal common subgraph of two graphs. A general formulation for error-correcting subgraph
isomorphism algorithms is presented in [Llados et al., 2001] in terms of adjacency graphs,
and [Bunke, 1999] presents a study on the influence of the definition of fitness functions for
error correcting graph matching.which reveals guidelines for defining fitness functions for
optimization algorithms in error correcting graph matching. In addition, in [Messmer and
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Bunke, 1998b] an algorithm for error-correcting subgraph isomorphism detection from a set
of model graphs to an unknown input graph is introduced.

Applications of this technique are manyfold. [Fuchs and Men, 2000] present a procedure
to compute error-correcting subgraph isomorphism in order to encode a priory knowledge
for application to 3D reconstruction of buildings for cartography. Other examples are: re-
lating error-correction and decision trees [Messmer and Bunke, 1998a], related to indexing
of graph models [Berretti et al., 2001], crystallographic map interpretation [Oldfield, 2002],
and construction of specific frameworks for error-tolerant graph matching [Bunke, 1998].

Conceptual graphs

Conceptual graphs have been used to model knowledge representations since their intro-
duction in the early 80’s. The formalism of conceptual graphs introduced in [Sowa, 1984]
is a flexible and consistent knowledge representation with a well-defined theoretical basis.
Moreover, simple conceptual graphs are considered as the kernel of most knowledge repre-
sentation formalisms built upon Sowa’s model. This formalism can capture semantics in the
representation of data, and it offers some useful constructs which makes it a likely platform
for a knowledge-based system. An extension of this concept to graph matching is introduced
in [Baget and Mugnier, 2002], where reasoning in Sowa’s model can be expressed by a graph
homomorphism called projection. This paper presents a family of extensions of this mode,
based on rules and constraints, keeping graph homomorphism as the basic operation. The
use of conceptual graphs is also extended to some other works [Chen, 1996, Emami, 1997,
Finch et al., 1997, Lai et al., 1999].

Apart from this type of graphs, graph matching has also been proposed, from both
a theoretical or a practical view point, in combination with: matching graphs [Eroh and
Schultz, 1998], minimal condition subgraphs [Gao and Shah, 1998], finite graphs [Bacik,
2001], weighted mean of a pair of graphs [Bunke and Gunter, 2001], median graphs [Jiang
et al., 2001], and decomposition approaches [Messmer and Bunke, 2000]. Furthermore, dif-
ferent ways of representing patterns are analyzed in terms of symbolic data structures such
as strings, trees, and graphs in [Bunke, 2001].

2.4.3 Graph matching using genetic algorithms

The fact of formulating complex graph matching problems as combinatorial optimization
ones is not novel, and many references applying different techniques in this field can be
found in the literature. Genetic algorithms are just an example of this.

Some of the works in the literature concentrate firstly on the type of crossover and muta-
tion operators that are most suitable for graph matching problems. [Khoo and Suganthan,
2002] present a comparison between different genetic operators, and compares the perfor-
mance of genetic algorithms when using two different types of individual representation.
Furthermore, in [Singh and Chaudhury, 1997] an evolutive algorithm without crossover op-
erators suitable for genetic algorithms is presented in order to obtain faster convergence to
the solution. The authors also illustrate methods to parallelize their algorithm.

Another important aspect concerns the use of Bayesian measures. [Cross et al., 1997]
describe a framework for performing relational graph matching using genetic search. The
authors cast the optimization process into a Bayesian framework using the fitness measure
previously introduced in [Wilson and Hancock, 1996]. This study shows that such Bayesian
consistency measure could be efficiently optimized using a hybrid genetic search procedure
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that incorporates a local search strategy using a hill-climbing step. The authors demon-
strate analytically that this hill-climbing step accelerates convergence significantly. This
idea is extended in [Cross et al., 2000], which is also a convergence analysis for the problem
of attributed graph matching using genetic search. [Myers and Hancock, 2001] constitutes
an extension of the Bayesian matching framework introduced in [Wilson and Hancock, 1997]
by taking into account the cases with ambiguities in feature measurements. This paper also
develops an evolutionary optimization framework that is applied on a genetic algorithm
adapted for this search. Finally, the main idea in [Myers and Hancock, 2000] is that at-
tributed graph matching problems (or consistent labelling problems as called by the authors)
usually have more than one valid and satisfactory solution, and the aim of the authors is to
propose a method to obtain different solutions at the same time during the genetic search,
using an appropriately modified genetic algorithm.

As an example of real applications, works on the field on the human brain images recog-
nition example can be found in [Boeres et al., 1999, Boeres, 2002, Perchant et al., 1999,
Perchant and Bloch, 1999].

2.4.4 Graph matching using techniques based on probability theory

We can find in the literature many techniques applying probability theory to graph match-
ing problems. A review on general purpose probabilistic graph matching can be found
in [Farmer, 1999], where different types of probabilistic graphs, different techniques for their
manipulation, and fitness functions appropriated to use for these problems are presented.

The first works applying probability theory to graph matching [Hancock and Kittler,
1990, Kittler et al., 1993] use an iterative approach using a method called probabilistic
relaxation, and only take into account binary relations and assuming a Gaussian error. In
these papers the use of binary relations is justified to be enough for defining the whole
structure fully. Later a Bayesian perspective is used to account for both unary and binary
attributes [Christmas et al., 1995, Gold and Rangarajan, 1996, Wilson and Hancock, 1996,
1997]. Later in [Williams et al., 1999] a comparative study of various deterministic discrete
search-strategies for graph-matching is presented, which is based on the previous Bayesian
consistency measure reported in [Wilson and Hancock, 1996, 1997]. Tabu search is proposed
in this article as a graph matching algorithm. Finally, in [Finch et al., 1998a] a new fitness
function is developed for graph matching based on a mixture model that gauges relational
consistency using a series of exponential functions of the Hamming distances between graph
neighborhoods. The effective neighborhood potentials are associated with the mixture model
by identifying the single probability function of zero Kullback-Leibler divergence. This fitness
function is simply a weighted sum of graph Hamming distances. Unfortunately, all these
works do not consider dependencies between more than two vertices, although an attempt
to consider more complex dependencies can be found in [Farmer, 1999] based on a new
representation using association probabilistic graphs.

Other papers that can be classified under this section are mentioned next. [Shams et al.,
2001] is a comparison between some conventional algorithms for solving attributed graph
matching to the mutual information maximization method and an adaptation of multi-
dimensional Gabor wavelet features. [Osman et al., 2000] constitutes an approach to based
on modelling human performance for mental representation of objects by a machine learning
and matching system based on inductive logic programming and graph matching principles.
Finally, in [Liu et al., 2000] a method for recognition of Chinese characters is illustrated
where both model and input characters are represented as complete relational graphs. The
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graph-matching problem is solved with the Hungarian method.

Applying probabilistic relaxation to graph matching

Probabilistic relaxation is also used for solving the graph matching problem when formulated
in the Bayesian framework for contextual label assignment [Christmas et al., 1995], and the
same idea is applied in [Wilson and Hancock, 1997] combining several popular relational dis-
tance measures and an active process of graph-editing. More recently, [Wilson and Hancock,
1999] improves this Bayesian framework for matching hierarchical relational models.

Other articles related to this field are the application of planar surfaces to generate
the data graph, and recognition performing graph matching with probabilistic relaxation
in [Branca et al., 2000], application to representation and recognition of shapes in ob-
jects [Shao and Kittler, 1999], a generalization of the probabilistic relaxation labelling model
by applying the relaxation to a graph of labels rather than to a pair of labels combined
with random graphs to model scenes [Skomorowski, 1999], and a new relaxation scheme for
graph matching in computer vision formulated as a process of eliminating unlikely candi-
dates rather than finding the best match directly [Turner and Austin, 1998]. In the latter, a
Bayesian development is used leading to an algorithm which can be implemented on a neural
network architecture.

Applying the EM algorithm to graph matching

Another important approach is the EM algorithm. [Cross and Hancock, 1998] and [Finch
et al., 1998b] are examples of this, in which two similar EM frameworks are proposed for
two different graph matching problems. An algorithm for inexact graph matching that
concentrates only on the connectivity structure of the graph and does not draw on vertex
or edge attributes (structural graph matching) is proposed in [Luo and Hancock, 2001a].
An extension of the latter work is given in [Luo and Hancock, 2001b]. Also, [Kim and
Kim, 2001] present a hierarchical random graph representation for handwritten character
modelling in which model parameters of the hierarchical graph are estimated automatically
from the training data by EM algorithm and embedded training.

Applying other probability theory methods to graph matching

Other examples of probability theory-based techniques are found in references commented
on this thesis, on the following subjects: discrimination of facial regions using simulated an-
nealing [Herpers and Sommer, 1998], multi modal person authentication using probabilistic
relaxation [Duc et al., 1997, Mariani, 2000], Bayes theory applied to multiple graph match-
ing [Huet and Hancock, 1999], multiple graph matching using Bayesian inference [Williams
et al., 1997], and complex problems in proteonics using simulated annealing [Fariselli and
Casadio, 2001].

2.4.5 Applying decision trees to graph matching

Decision trees have also been applied to graph matching. An example of this is [Shearer
et al., 2001], in which decision trees are used for solving the largest common subgraph
problem instead of applying queries to a database of models. Another example can be found
in [Messmer and Bunke, 1998a] where decision trees are applied as a fast algorithm for the
computation of error-correcting graph isomorphisms. Decision trees are also been applied to
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multiple graph matching [Messmer and Bunke, 1999]. The decision tree is created using a
set of a priori known model graphs generated from exact subgraph isomorphism detection.

2.4.6 Graph matching using neural networks

Neural networks have also extensively been applied to many graph matching problems. Very
different types of neural networks have been tested trying to find the most suitable for each
particular graph matching problem. Examples of this are the use of a mean field annealing
neural network as a constraint satisfaction network for 3D object recognition [Lyul and Hong,
2002], a congregation of neural networks for the automatic recognition of cortical sulci of
human brains in MRi images [Riviere et al., 2000, 2002], hybrid RBF network track mining
techniques combined with integrated neural oscillatory elastic graph matching for tropical
cyclone identification and tracking [Lee and Liu, 2000], dynamic link matching –i.e. a neural
network with dynamically evolving links between a reference model and a data image– for
face authentication with Gabor information on deformable graphs [Duc et al., 1999], and a
3D Hopfield neural network for sign language recognition [Huang and Huang, 1998]. On the
other hand, in [Rangarajan et al., 1999b] a theoretical study of the convergence properties
of a particular neural network is presented.

Other examples of the use of neural networks are: frontal face authentication prob-
lems [Kotropoulos et al., 2000a], overlapped shape recognition [Suganthan et al., 1999],
recognition of hand printed Chinese characters [Suganthan and Yan, 1998], and a Bayesian
development implemented as a neural network architecture [Turner and Austin, 1998].

2.4.7 Graph matching using clustering techniques

The use of clustering techniques has also been applied in graph matching, and many examples
can be found in the literature such as [Carcassoni and Hancock, 2001] where clustering
techniques are applied for attributed graph-matching. In this paper authors demonstrate how
to improve method robustness to structural differences by adopting a hierarchical approach.
Another example is [Sanfeliu et al., 2000] where a new type of graphs called function-described
graphs are defined to represent an ensemble of attributed graphs for structural pattern
recognition. The unsupervised synthesis of function-described graphs is studied here in
the context of clustering a set of attributed graphs and obtaining a function-described graph
model for each cluster. The idea is therefore to take into account the matching for groups
of vertices instead of individually.

Other clustering-based approaches have also been applied to automatically recognize
form documents [Fan et al., 1998], clustering with distance measures [Gold et al., 1999],
automatic satellite interpretation of tropical cyclone patterns [Lee and Liu, 1999], and an
eigen decomposition approach [Umeyama, 1988].

2.4.8 Discussion

In this Section, we discuss the pros and cons of the main classes of approaches found in the
literature.

The complexity of the graph matching approaches make it very difficult to take into
account all types of dependencies between the vertices and edges in the model and data
graphs. That is why in most existing frameworks defined for this problem (e.g. Bayesian,
morphological and EM frameworks described in the previous sections) only unary and binary
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relations between vertices are taken into account. The advantage of such simplifications is
that the complexity of graph matching is reduced when tackling the original problem, and
this allows the use of techniques that require evaluating a lot of individuals through the search
for the best solution. On the other hand, these approaches are ignoring many relationships
that can be decisive when searching for a satisfactory matching. Due to this, and depending
on the type of problem, these simplifications could lead to non satisfactory results.

Regarding the application of genetic algorithms in graph matching problems, the per-
formance that they present is remarkable, specially when they are combined with dedicated
frameworks such as Bayesian ones. In addition, the number of evaluations that they require
to reach a solution is very low compared to other stochastic heuristic searches. However,
one of their drawbacks is that their performance is very dependent on the high number of
input parameters that have to be set. This dependence is specially dependent on the type of
cross-over and mutation operators selected. The literature presents plenty of different GAs
which are more appropriated for particular types of problems, and the user who wants to
apply these methods needs to have a lot of experience in order to tune properly the algorithm
and obtain satisfactory results. Another important drawback of GAs is the fact that when
the fitness function contains many local maxima these algorithms get easily stuck on them.
Moreover, in the definitions of similarities proposed for building the fitness functions for
GAs, again only unary and binary relationships are taken into account. This simplification
is understandable since the number of evaluations that GAs require to reach the optimum
solution in such complex problems is high, but important relationships can be missed out.

Regarding the use of neural networks, they have shown in the last years a good per-
formance in solving problems as complex as graph matching ones. The ability of neural
networks to take into account particular restrictions of problems has also been proved exper-
imentally. However, regarding the way of representing the knowledge, the main drawback of
this approach is that this information is encoded in a kind of black box that does not allow
easily to infer how the network reasons. Other approaches based on probabilistic structures
(such as Bayesian networks) have the ability to express in a format directly comprehensible
for researchers how the knowledge is represented.

2.5 Graph matching problem types selected for this thesis

In this thesis, we address the problem of inexact graph matching. This choice has been done
taking into account the NP-complete complexity of this problem, which is more difficult to
solve than the exact graph matching problem. One of the objectives of this PhD thesis
is to show the validity of the EDA paradigm when applied to graph matching problems,
and therefore the inexact sub-graph matching category has been chosen. However, as graph
and sub-graph inexact matching problems are of equivalent category, we will simply use
the term inexact graph matching to refer to both of them. In addition, we have set an
additional constraint that makes the problem even more restrictive: in order to consider a
homomorphism as valid, all the vertices in the model graph will have at least a vertex in
the data graph that has been matched to it. Examples on synthetic data and on two real
applications are explained in more detail in Chapters 6 and 7.
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Chapter 3

Graph matching as a combinatorial

optimization problem with

constraints

‘The beginning of knowledge is the discovery of something we
do not understand.’

Frank Herbert

3.1 Introduction

Let us introduce some notations. We will call GM = (VM , EM ) the model graph and GD =
(VD, ED) the data graph which contains the image segments that have to be matched against
GM , where Vi is the set of vertices and Ei is the set of edges of graph Gi (i = M,D). In
inexact graph matching problems GD is assumed to contain more segments than GM , as
that is the case when generated from an over-segmented image. Usual constraints for the
matching are that each vertex of GD is matched with exactly one vertex of GM (which
assumes that no unexpected objects are present on the image data) and that each vertex of
GM is matched at least with one vertex of GD (which assumes that all model objects are
indeed present in the image)1. In Section 3.2, we summarize how such constraints are taken
into account in existing methods.

In order to solve any problem using combinatorial optimization techniques, it is necessary
to find a means to represent each of the solutions to the problem as a vector of values
(usually this is known as an individual), as well as a fitness function to evaluate each of
these solutions so that the algorithm can distinguish among good and bad solutions. In
Section 3.3, we address the problem of representing solutions as individuals. Constraints
are introduced either in the representation itself, or as an elimination process of incorrect
individuals. In Section 3.4 we deal with the definition of fitness functions.

1This implies in particular that the method is not directly applicable to incomplete models or to images
with pathologies (in the case of medical images).
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3.2 Graph matching problems with special constraints in the

literature

Some real graph matching problems contain more specific constraints that any valid homo-
morphism has to satisfy apart from the ones commented so far. These constraints are very
specific for each graph matching problem, but they usually taken into account when gen-
erating the graph attributes. [Feder and Vardi, 1999] propose a framework based on group
theory for constraint satisfaction in NP-complete problems such as attributed graph isomor-
phism. Authors claim that this framework can also be applied to any other type of graph
matching problems. Also, the complexity of rules and constraints in conceptual graphs is
analyzed in [Baget and Mugnier, 2002]. In [Blake, 1994] the idea of partitioning the graph
matching problem into sub-problems under the control of constraints is considered. Addi-
tionally, in [Liu, 1997b] a method that provides a design advisory system for mechanical
components is developed by building a scheme for modelling constraints by defining a new
type of graphs called constraint graphs. In this work, the representation and management
of constraints are elaborated using a graph-based approach in the form of constraint graphs.
The product design optimization is formulated as a graph matching problem and solved by
integer programming techniques.

However, regarding graph matching algorithms and methods to find correct solutions,
one of most applied mechanisms for obtaining only valid solutions at the end of the search in
problems with constraints is the use of a particular type of neural networks called Hopfield
networks [Suganthan et al., 1995, Suganthan and Yan, 1998, Suganthan et al., 1999]. This
approach encodes the constraints of the problem in a way that a fitness function does not
have to take them into account. This is achieved due to the ability of the network to learn the
constraint parameter adaptively, as the adaptation scheme eliminates the need to specify the
constraint parameter empirically and generates valid and better quality mappings. Another
approach is proposed in [Gangnet and Rosenberg, 1993], which is an illustration on how
to apply constraints using the method proposed for constraint solving in [Freeman-Benson
et al., 1990]. The authors claim that their approach is simple and efficient for constraint
resolution when applied to graph matching problems. Finally, a mean field annealing neural
network is proposed as a constraint satisfaction network in [Lyul and Hong, 2002].

Examples of real graph matching problems with constraints introduced in the literature
are frontal face authentication [Ma and Xiaoou, 2001, Tefas et al., 2001], and topographical
constraints in face recognition [Wiskott, 1999].

3.3 Representations of graph matching solutions by means of

individuals

A solution to a graph matching problem is an association between vertices of GM and vertices
of GD satisfying the required constraints of the particular problem. Regarding the way of
representing a solution by means of individuals, the type of values that these can contain
allow us to classify the different individual formats or representations as

• discrete individuals: all the values in the individual are discrete,

• continuous individuals: all the values in the individual are continuous.
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The type of individual representation used is also a factor that is determined by the type
of combinatorial optimization technique to be applied2. For instance, Genetic Algorithms
(GAs) are usually applied only to discrete individuals, while other techniques such as Evolu-
tionary Strategies (ESs) can only be applied to continuous individuals. EDAs can be applied
to both types of individuals, as under this paradigm there are many different algorithms
available that will be described in the next chapter.

It is important to note that, independently of using discrete or continuous individuals,
different individual representations can be used for a same problem. When selecting an
individual representation it should be taken into account that this choice is an important
factor that will condition the evolution of the search process. Just as an example on the
type of factor that should be considered, it is convenient not to use ambiguous individual
representations in which two different individuals represent a same solution for the problem.
However, in some cases the individual representation used allows the existence of ambiguities
but this aspect is controlled deliberately.

3.3.1 Individual representations in the discrete domain

We denote by VM = {u1
M , u2

M , . . . , u
|VM |
M } and VD = {u1

D, u2
D, . . . , u

|VD|
D } the set of vertices of

GM and GD respectively. There are different ways of representing individuals with discrete
values for inexact graph matching, two examples of which are as follows:

Representation 1: Individuals with |VM | · |VD| genes or variables cij , that only take values 0
and 1.

For 1 ≤ i ≤ |VM | and 1 ≤ j ≤ |VD|, cij = 1 means that the vertex uj
D of GD is

matched with the vertex ui
M of GM .

This is the representation used for instance in [Boeres et al., 1999].

Representation 2: Individuals with |VD| genes or variables, Xi i = 1, . . . , |VD|, where each of
them that can take any value between 1 and |VM |.

For 1 ≤ k ≤ |VM | and 1 ≤ i ≤ |VD|, Xi = k means that the vertex ui
D of GD is

matched with the uk
M vertex of GM .

The latter is the representation of individuals that we have selected for EDAs and GAs for
reasons that will be explained in Section 3.3.3. Therefore, in this case individuals contain as
many variables as vertices are in GD (|VD| vertices), and each of the variables can take as
many values as vertices are in GM (|VM | values).

The biggest drawback of using any of these two representations is that some individuals
can represent solutions that are not acceptable for the problem, that is, that do not satisfy
a set of constraints defined beforehand. In this thesis we will deal with very particular
constraints. These will be discussed later in Section 3.3.3.

Representation 3: Individual representation based on a permutation of values. The individual
can also be represented as a permutation of discrete values. A permutation is a list of
numbers in which all the values from 1 to n have to appear in an individual of size n.
In this case, the values of the individual do not represent directly the matching of each

2It must be said that even in the case of using a continuous individual representation we will still have
a combinatorial optimization problem since in our approach continuous individuals are transformed to a
permutation of discrete values. This procedure is explained later in this chapter.
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GD, but the order in which each vertex of GD will be matched following a predefined
procedure. Permutation-based individual representations have been typically applied
to problems such as the Travelling Salesman Problem [Flood, 1956] or the Vehicle
Routing Problem [Fiala, 1978]. An illustrative example of applying permutations to
genetic algorithms for solving these problems can be found in [Freisleben and Merz,
1996]

For the particular graph matching problems in this thesis, we have applied individual repre-
sentations 2 and 3 for the discrete domain. In both cases, discrete individuals have a length
of |VD| variables, where the number of values that each variable can take are |VM | or |VD|
for Representations 2 and 3 respectively. In addition, due to the type of graph matching
problems that this thesis deals with, we have decided to add constraints that have to be
satisfied by any valid solution (independently of the representation used), which are defined
in Section 3.3.3

From the permutation to the solution it represents

Once having the permutation, the individual has to be translated to the solution it symbolizes
so that it can be evaluated. Because the evaluation of an individual is executed many times
by any graph matching algorithm, it is important that this translation is performed by a
fast and simple algorithm.

Evaluating a solution requires to compare vertices of GM and vertices of GD. If we have
a permutation, a solution can be evaluated by comparing the vertices in the order given by
the permutation and deciding which is the most similar by means of a similarity function,
$(i, j), defined to compute the similarity between vertices of GD. The similarity measures
used so far in the literature have been applied to two vertices [Perchant et al., 1999, Perchant
and Bloch, 1999, 2000b, Perchant, 2000, Perchant and Bloch, 2000a], one from each graph,
and their goal has been to help in the computation of the fitness of a solution, that is, the
final value of a fitness function.

Figure 3.1 shows a procedure that could be used in order to translate a permutation of
discrete values –an individual x= (x1, . . . , x|VM |, x|VM |+1, . . . , x|VD |)– to the solution that it
represents. This procedure follows an idea inspired on the partitional clustering algorithms
proposed in [McQueen, 1967] and specially in [Forgy, 1965], and it is divided in two main
steps as follows:

• In the first step the values x1 to x|VM | are directly matched to vertices of GM from 1
to |VM | respectively.

• For each of the next values of the individual, x|VM |+1 to x|VD|, and again following the
order given in the permutation, the most similar vertex of GD based on the similarity
measure $(i, j) will be selected, and its previously matched vertex of GM will be also
chosen as the matching for the new vertex.

Permutation-based representations can be used for any graph matching problem. A
detailed example of this method, as well as a deeper explanation of it can be found in
Appendix A and in [Bengoetxea et al., 2001c,d].

Another important aspect of using a permutation-based approach is the fact that the
cardinality of the search space is |VD|!, which is different from the |GM ||GD | cardinality of
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From permutations to the solution

Definitions
|VM |: number of vertices in the model graph GM

|VD|: number of vertices in the data graph GD (where |VD| > |VM |)
Size of the individual (the permutation): |VD|
x= (x1, . . . , x|VD |): individual containing a permutation

xi ∈ {1, . . . , |VD|}: value of the ith variable in the individual
PVi = {x1, . . . , xi−1}: set of values assigned in the individual to

the variables X1, . . . ,Xi−1. (PV = previous values)
$(i, j): similarity function that measures the similarity between

vertex i and vertex j (with i, j ∈ VD)

Procedure
Phase 1

For i = 1, 2, . . . , |VM |
(first |VM | values in the individual, treated in order)

Match vertex xi ∈ VD of data graph GD

with vertex i ∈ VM in model graph GM

Phase 2
For i = |VM |+ 1, . . . , |VD|
(remaining values in the individual, treated in this order)

Let k ∈ PVi be the most similar vertex to xi from
all the vertices of PVi (k = arg maxj=1...i−1 $(i, j))

Match vertex xi ∈ VD of data graph GD

with the vertex that is matched to vertex k of GM

Figure 3.1: Pseudocode to compute the solution represented by a permutation-based individual.

the previously described individual representation. Moreover, the fact of using permutations
and a similarity measure $(i, j) leads to redundancies in the solutions, as two different
permutations may correspond to the same solution. An example of this is also shown again
in Appendix A and in [Bengoetxea et al., 2001a,c].

Definition of the similarity

The definition of the similarity function $(i, j) is very important in the translation procedure
from a permutation-based individual to the solution it symbolizes. There are three main
aspects to be taken into account when defining this function for its use in the second step of
the translation procedure:

1. Which vertices have to be compared. The two vertices to compare can be of graph
GD, or both from graph GD (e.g. $(i, j) has two parameters, vertex i and vertex j,
we know that i ∈ VD, the choice is either j ∈ VM or j ∈ VD). Other approaches are
also possible, for instance combining the similarity of vertices from both GM and GD
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and assigning them a weight, or also by having a fitness function capable of returning
a value for individuals that are not correct permutations.

2. Recalculating or not the similarity measure as the individual is being gen-
erated. The function $(i, j) could be constant or not for any two vertex values. In
the latter case, the similarity value can be assumed to vary depending on the vertices
that have already been matched while the individual is being instantiated. In that
case, each time that a variable is instantiated, the values of $(i, j) will vary depending
on the effect of the new and the previous matchings. In other words, this means that
in the second step of the translation an extra clustering procedure would be required,
such as the cluster analysis proposed in [Forgy, 1965], in order to update the function
$(i, j).

3. Selection of the attributes of both vertices and edges that will be used for
measuring the similarity. This aspect is specific for each particular problem. This
choice will determine to an important degree the behavior of the algorithm.

In [Bengoetxea et al., 2001c,d] we propose a similarity measure $(i, j) that is used to
measure the similarity between vertices of the same graph GD, which has fixed similarity
values and therefore no variations apply during the instantiation of individuals.

3.3.2 Individual representations in the continuous domain

Continuous EDAs provide different algorithms for the continuous domain that could be more
suitable for some problems (see Section 4.4). Nevertheless, the representation of individuals
has to be defined in the most appropriated way to obtain the best performance with this
approach.

Individuals in this approach consist of a continuous value in <n. The main goal is to
find a representation of individuals and a procedure to obtain an univocal solution to the
matching from each of the possible permutations.

For this case we propose as an example a strategy based on the mechanism of the previous
section, trying to translate the individual in the continuous domain to a correct permutation
in the discrete domain. This translation will give us a permutation of discrete values, and we
would proceed as explained in Section 3.3.1 in order to obtain the solution that the individual
symbolizes.

Again, this new representation of individuals does not give a direct meaning of the solu-
tion it represents. This new type of representation can also be regarded as a way to change
the search from the discrete to the continuous world, which allows us to apply techniques to
estimate densities that are completely different from the ones used in discrete domains.

As this procedure to translate from the continuous world to the discrete one has to be
performed for each individual as an additional step to the method introduced in the previous
section, this process has to be fast and simple enough in order to reduce computation time.

Taking these aspects into account, we show as an example a method that can easily be
applied to graph matching problems. The individual size is set to |VD| as before, where each
of the variables of the individual can take any value following a Gaussian distribution. In
order to obtain a translation to a discrete permutation, we propose to order the continuous
values of the individual, and to set its corresponding discrete values by assigning to each
xi ∈ {1, . . . , |VD|} the respective order in the continuous individual. The procedure described
in this section is shown as pseudocode in Figure 3.2.
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From a continuous value in <n to a permutation

Definitions
n = |VD|: size of the individual, which is the number of

vertices in data graph GD (the permutation)
xC= (xC

1 , . . . , xC
|VD |): individual containing continuous

values (the input)
xD= (xD

1 , . . . , xD
|VD |): individual containing a permutation

of discrete values (the output)
xD

i ∈ 1, . . . , n: value of the ith variable in the individual

Procedure
Order the values xC

1 , . . . , xC
|VD| of individual xC using any

fast sorting algorithm such as Quicksort
Let ki be position in which each value xC

i (1 6 i 6 |VD|) occupies
after ordering all the values

The values of the individual xD will be set in the following way:
∀i = 1, . . . , |VD| xD

i = ki

Figure 3.2: Pseudocode to translate from a continuous value in <n to a discrete permutation com-
posed of discrete values.

3.3.3 Conditions for a correct individual in a graph matching problem

Each of the different image recognition problems that are solved using graph matching tech-
niques has particularities that have to be taken into account by any acceptable solution. Due
to this, the way of considering the constraints in a graph matching approach is an impor-
tant aspect that has to be considered attentively. A useful way of dealing implicitly with
constraints is to select an individual representation that does not allow the possibility for
invalid individuals to appear. Unfortunately, this representation does not always exist, and
satisfaction of the constraints need to be tackled using explicit mechanisms.

In order to show how problem specific constraints can be tackled explicitly, independently
of the representation of individuals of choice, we will consider that any individual to represent
a correct solution for graph matching examples in this thesis satisfies all the following 3
conditions:

1. All the vertices in GD must have a corresponding match with a vertex in GM . For
some type of images such as the ones in cartography this condition is not necessary:
sometimes when comparing a new photograph with a previous map of the same area
additional objects such as new roads and new houses that cannot be matched could
appear. For these cases, the use of a dummy vertex is advised (this technique is
described in Section 2.2.2). In our graph matching problems in this thesis we do not
consider such cases and assume that all of our segments correspond at least to a vertex
in GM , and as a result no dummy vertex has to be defined (i.e. ∅ label has to be
added).

Endika Bengoetxea, PhD Thesis, 2002 25



3.3 Representations of graph matching solutions by means of individuals

2. Each vertex in GD can have at most a vertex matched in GM . It is not acceptable that
a segment in the image corresponds to more than a segment in the atlas. This aspect is
analyzed in general terms for graph matching problems in Section 2.2.3. This condition
is satisfied in the human brain structure recognition problem [Perchant and Bloch, 1999]
by applying over-segmentation techniques to the image, making sure that an object
in the model appears always properly divided in the segmented image. None of the
individual representations defined described in Section 3.3.1 do not allow matching
a vertex of GD against two or more segments in GM , and thus using any of those
representations this condition would not need to be controlled in the graph matching
algorithms (Section 4.2.2 explains more details about controlling the generation of
individuals).

3. All the vertices in GM must have at least a matched vertex of GD. We have decided to
add this additional assumption to the graph matching problems in this thesis, because it
also needs to be satisfied in some real graph problems such as the one that is introduced
in Section 7.2 for the recognition of human brain images.

It is important to ensure that the final solution of any graph matching algorithm corre-
sponds to a correct individual. Moreover, whichever the representation of individuals chosen,
any acceptable individual obtained with any of the methods proposed in GAs, EDAs, or any
other graph matching approach in order to be considered as acceptable for our problem.

The reason for considering constraints only for vertices and not for the edges is that when
using graph matching for image recognition in vertices represent image regions, and the only
constraints that considered here are about the properties that the best solution must satisfy.
In this sense, the arcs are used for representing information about relations between the
regions, but the final solution simply shows the matching vertex by vertex. Constraints such
as taking into account only some specific edges are also considered in these problems, but
these are applied when defining the fitness functions. The main difference between many
fitness functions proposed in Section 3.4 are actually the edges that are considered or ignored.

The choice of a particular representation of individuals reviewed in Section 3.3.1 is im-
portant to reduce the effort of controlling the satisfaction or not of these three conditions.
If we compare Representations 1 and 2 all the requirements to check whether an individual
is correct or not can be summarized as follows (the need to analyze the first condition is not
required since we have decided not to use dummy vertices in our problems):

1. Every vertex of GD must be matched with one and only one vertex of GM (2 first condi-
tions).

• Representation 1:
|VM |∑

i=1

cij = 1 ∀j ∈ {1, . . . , |VD|}

• Representation 2:

This condition is inherent in the representation, there is no need to check
this condition.

2. Every vertex of GM must be matched at least with one vertex of GD (third condition).
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1 1 1 2 2 2 2 2 3 4 5 6 7 8

(a)

1 1 1 1 2 2 2 2 3 3 3 3 4 4

(b)

Figure 3.3: Representation of a correct individual (a), and an incorrect individual (b) for our graph
matching problem example, for the case that GM (the model graph) contains 8 vertices and GD (the
data graph representing the segmented image) contains 14 vertices.

• Representation 1:

∀i ∈ {1, . . . , |VM |} ∃j cij = 1

• Representation 2:

∀i ∈ {1, . . . , |VM |} ∃j Xj = i

This shows that the Representation 2 of individuals only requires to check actively the
third constraint. This is the reason why this representation will be used in our experiments on
this thesis. Note that the constraints we impose are a simplification of more general inexact
graph matching problems. The interest is that they restrict the set of possible solutions.

The case of Representation 3 of individuals of Section 3.3.1 is not comparable with the
other two ones. The reason for this is that the individuals themselves are not the ones that
have to satisfy these three conditions, and it is the solution that they symbolize the one that
needs to satisfy them. In fact, following the procedure described in Section 3.3.1 we ensure
that any individual will satisfy these constraints. As a result, we do not need to worry about
the correctness of the particular solutions when using this third representation of individuals.
However, the single constraint that these individuals must satisfy is that they must contain
a correct permutation, which becomes in practice a more restrictive property to satisfy than
the three conditions introduced in this section.

In order to illustrate the meaning of these constraints, we will consider as an example
a model graph GM containing 8 vertices (labelled from 1 to 8) and a data graph GD rep-
resenting the segmented image which contains 14 vertices (labelled from 1 to 14). If we
use the Representation 2 of individuals of Section 3.3.1 for our graph matching problem,
the individual in Figure 3.3a shows an example of a correct matching, where the first three
vertices of GD are matched with the vertex number 1 of GM , the next five vertices of GD are
matched with the vertex number 2 of the graph GM , and so on. In such a representation,
when generating new individuals the result can be an invalid solution (i.e. it does not satisfy
our constraint). The individual in Figure 3.3b is an example of an invalid solution for our
problem. In this case, the individual represents a matching for some of the vertices of GM ,
but there are still other vertices from this model graph (vertices 5, 6, 7 and 8) that have no
match at all.
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3.3.4 What to do with incorrect individuals?

It is important to decide what to do with these incorrect individuals. In the literature many
papers can be found in the domain of GAs where the existence of incorrect individuals is
allowed hoping that these individuals can lead to the generation of fitter correct individuals.
In many other articles [Richardson et al., 1989, Smith and Tate, 1993], individuals not
representing a valid solution for the problem are either corrected or penalized. Here, we
consider all these possibilities and compare them to each other (see Section 4.5). EDAs
have been applied to problems with constraints in very few cases [Bengoetxea et al., 2000,
2001a,b], and this dissertation shows and introduces many ways on which EDA approaches
can be adapted for this type of problems taking as an example a combinatorial optimization
problem with constraints such as inexact graph matching.

3.4 Fitness functions applied to graph matching

The objective of the fitness function is to have a means to evaluate each of the possible
individuals so that the search algorithm can compare the different solutions and act in
consequence to find the best solution. Therefore, it is important to define appropriately this
function in order to assess the search of any graph matching algorithm. The behavior of the
fitness function is also very dependent on the individual representation selected and both
elements are very linked to each other. The influence of the fitness function definition in
finding the best matching between graphs has also been subject of research [Bunke, 1999].

This section discusses the different possibilities for defining a fitness function. The deci-
sion of which fitness function to use is very important when using metaheuristics, as impor-
tant as the individual representation that is used, because it will also determine how difficult
is the search for an optimal individual that will lead to a correct recognition.

An ideal fitness function should verify the following properties (assuming that the best
fitness is the highest):

1. It should be monotonic, that is, the closer an individual is to the optimum solution
the larger its fitness has to be. This assumption is very strong since local maxima are
very often present, but these should be avoided as much as possible. However, above
all, the most important is that the optimum solution has the largest value.

2. It has to avoid ambiguities, and therefore different individuals should have a different
fitness value when they are evaluated.

3. The fitness function has to take into account only the appropriate vertex and edge
attributes, the ones that are more meaningful in the search for the optimum solution.
In many cases, it is also important to assign a different weight to vertex and edge
similarities, giving more importance to the edge attributes as these are the ones that
take best into account relationships between regions and not yet the regions themselves.

4. As a secondary aim, it has to be easy and fast to compute, as this is executed many
times and it could otherwise delay too much the execution of the whole algorithm.

Whichever the fitness function selected, it is important to take into account that the fit-
ness function is always very particular for each problem, and that the fitness function itself
influences the behavior and the final results obtained by the graph matching algorithm. In
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addition, main differences appear between fitness functions defined for discrete and continu-
ous domains. In the next sections fitness functions for discrete representations are analyzed,
while in the last one we focus on fitness functions for the continuous domain.

3.4.1 Graph attributes and similarities

Both the model and data graphs are attributed, and the recognition process is based on
similarities between these attributes in the form of fitness functions. The type of attributes
that can be used for the computation of the fitness function and the similarity between
graphs can be based on different paradigms. Examples of this are the use of fuzzy set theory
following the theoretical background developed in [Bloch, 1999a,b]. For instance, many
references on fuzzy set theory applied to graph matching concentrate on building dedicated
fitness functions. In [Perchant et al., 1999, Perchant and Bloch, 1999] the fitness function
is based on the fuzzy attributes of each of the model and data graphs and the fitness value
of each solution is computed from comparing directly the similarity between these, whereas
in [Suganthan et al., 1998] the fitness function is computed by fusing the information encoded
in the attributes using nonlinear fuzzy information aggregation operators. In both cases
the learning of the different matching for each of the attribute-pairs is formulated as an
optimization problem, although in the former a genetic algorithm is used and in the latter a
learning procedure based on gradient projection algorithm is applied.

Apart from using fuzzy set theory for graph matching, other alternatives are the use
of vector-type and geometric attributes, and attributes based on probability theory using
distribution divergences and likelihood values. We will provide examples of these attribute
types.

Once having defined vertex and edge attributes, similarities between attributes of the
model and of the data are defined. The similarity between any two vertices aD ∈ VD

and aM ∈ VM , denoted by cN (aD, aM ), is defined in terms of vertex attributes and their
semantics, and we assume to be normalized by returning a value in [0, 1] where a higher value
represents a higher similarity. Analogously, the similarity between two edges eD = (ai

D, aj
D)

of ED and eM = (ak
M , al

M ) of EM is denoted by cE(eD, eM ), is defined in terms of edge
attributes and their semantics, and we also assume it to be normalized in [0, 1]. Both
cN (aD, aM ) and cE(eD, eM ) are very particular to the problem and are defined after selecting
the type of attributes to be used.

The next step is to define a fitness function to evaluate each of the solutions generated
by the graph matching algorithm in order to find the best homomorphism h which satisfies
the conditions h : VD → VM and ∀aM ∈ VM ∃aD ∈ VD | h(aD) = aM as well as structural
and similarity constraints.

3.4.2 f1: only taking into account the matched vertices

Based on the definitions of the vertex similarity cN (aD, h(aD)) and the edge similarity
cE((ai

D, aj
D), (h(ai

D), h(aj
D))), the first proposal for a fitness function is to define the global

similarity of a homomorphism h as:

f1(h) =
α

|VD|
∑

aD∈VD

cN (aD, h(aD))+

1− α

|ED|
∑

(ai
D

,a
j
D

)∈ED

cE((ai
D, aj

D), (h(ai
D), h(aj

D))) (3.1)
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where 0 ≤ α ≤ 1 is a parameter used for tuning the relative importance of vertex and edge
similarity.

3.4.3 f2: taking into account all the vertices and similarities

The fitness function described in the previous section only considers similarity between ver-
tices (or edges) that are mapped by the homomorphism h, but it does not take into account
the fact that unmapped vertices could also have a high similarity which may be not desirable.
Authors in [Perchant and Bloch, 1999] adopt this idea and propose a fitness function for the
graph matching problem applied to medical images of the brain that has been used latter in
[Perchant et al., 1999] and [Boeres et al., 1999]. This second proposal for a global similarity
function accounting for such situations is presented in the following way:

f2(h) =
α

|VD||VM |
∑

(aD ,aM )∈VD×VM

[1− |θN (aD, aM )− cN (aD, aM )|]+

1− α

|ED||EM |
∑

(ai
D

,a
j
D

)∈ED,(ak
M

,al
M

)∈EM

[1− |θE((ai
D, aj

D), (ak
M , al

M ))− cE((ai
D, aj

D), (ak
M , al

M ))|],

(3.2)
where

θN (aD, aM ) =

{
1 if aM = h(aD),
0 otherwise,

θE((ai
D, aj

D), (ak
M , al

M )) =

{
1 if ai

M = h(ak
D) and aj

M = h(al
D),

0 otherwise,

and 0 ≤ α ≤ 1 is a parameter used to adapt the weight of vertex and edge correspondences in
f2(h). The fitness function can be easily understood by having a look to the two main terms:
the first one measures the correspondence between vertices of the model and data graphs,
and the second the correspondence between edges of both graphs. The term θN (aD, aM ) is
used to check whether two vertices are matched in the solution or not. If the two vertices
are very similar (cN (aD, aM ) ≈ 1) and the matching is not present in the solution that is
being evaluated (θN (aD, aM ) = 0) then we will obtain for the matching a low value for this
part of the represented solution ([1− |θN (aD, aM )− cN (aD, aM )|] ≈ 0). On the other hand,
if this correspondence is present in the solution (θN (aD, aM ) = 1), we obtain a good value
for this particular matching of the two vertices ([1 − |θN (aD, aM )− cN (aD, aM )|] ≈ 1). The
second term follows an analogous approach analyzing all the edges of both graphs.

3.4.4 f3: not considering edges of vertices in GD matched to the same vertex

in GM

Finally, a last improvement to the fitness function can be done by not taking into account
edges of GD between vertices that have been matched to the same vertex in GM since the
attributes of these edges are not meaningful and do not have to be compared to any edge of
GM . This idea to improve fitness functions is proposed and tested experimentally in [Boeres,
2002]. For that purpose, denote by E∗

D = {eD = (ai
D, aj

D) ∈ ED | h(ai
D) 6= h(aj

D)} ⊂ ED

the set of edges that will only be considered for computing the global similarity. As a result,
a third global similarity function is proposed:

f3(h) =
α

|VD||VM |
∑

(aD ,aM )∈VD×VM

[1− |θN (aD, aM )− cN (aD, aM )|]+
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1− α

|E∗
D||EM |

∑

(ai
D

,a
j
D

)∈E∗

D
,(ak

M
,al

M
)∈EM

[1− |θE((ai
D, aj

D), (ak
M , al

M ))− cE((ai
D, aj

D), (ak
M , al

M ))|],

(3.3)
where α, θN (aD, aM ) and θE((ai

D, aj
D), (ak

M , al
M )) are defined as in the previous section.

3.4.5 f4: function based on the divergence between distributions

We propose the use of attributes based on probability theory, as these have not yet been
applied to our graph matching problems. These require again to construct a completely
different model and to represent it in a graph format using probabilistic parameters that will
allow comparison of similarities with a data graph. Later on this chapter, two new types of
fitness functions based on probability theory will be introduced.

The attributes that we will use can be classified in vertex attributes (unary attributes)
and edge attributes (binary attributes) in the same way as described in Section 3.4.1.

The unary attribute that we consider in our examples for each of the vertices is the grey
level distribution of the region represented by the vertex. Apart from this, there are also
other three vertex attributes that will be used for other purposes but for measuring the
similarity directly. These attributes are:

• size of the region (in pixels),

• coordinates x and y of the center of gravity of the region,

• super-region number in which the region is located, which is an attribute given by the
tracking procedure used to find approximate landmarks of interesting features.

Analogously, the binary (edge) attributes that we will consider are:

• distance,

• relative position.

However, edge attributes will be represented in the form of vectors considering the center
of gravity of the destination, exactly as done in [Cesar et al., 2002b]. Vectors will be computed
from all the points of the origin to that destination-center of gravity, and we will calculate
the mean and variance of the x and y components of all these vectors. Using this type of
representation will implicitly record information of the distance and relative position.

Foundations of the new fitness functions based on probability theory

In order to consider attributes using probability, we will assume that each attribute of a
region, either if it is a vertex or edge attribute, is modelled by a random variable that follows
a normal distribution. For computing the similarity, we propose that both the model and
data graphs are complete ones3.

A vertex attribute such as the grey level can usually be fitted by a normal distribution
(although this fact depends on the type of the input image). However, attributes such

3The generic definition of a complete graph is a graph G = (V, E) such that ∀a, a′ ∈ V ∃e = (a, a′) ∈ E,
and usually the condition a 6= a′ is also assumed. Therefore the edges from a vertex to itself are not considered.
Here we assume that a complete graph does not contain such edges, with each vertex in a complete graph
containing |V | − 1 edges.
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as distance, relative position, and in general, others more dependent on the shape of the
region, could lead to problems when searching for a good solution. The modelization of
these attribute values by normal distributions is more suitable when regions have a rounded
shape.

However, when evaluating a solution, regions matched to a same model vertex can be
considered as fused in a sense, and this fused region will often not have a rounded shape.
As a result, and in order to allow a satisfactory approximation to normal distributions, it
is very important to analyze carefully how to model edge attributes in both the model and
data graphs.

The fact of using a representation based on vectorial components of the edge attributes
is a solution to this problem. Both the distance and relative position attributes are implicit
in a vectorial representation, as the distance corresponds to the modulus and the relative
position to the angle of the vector.

In previous attributes based on fuzzy set theory that can be found in the literature such
as [Perchant, 2000], these edge attributes are modelled using the necessity, and possibility
(i.e. roughly equivalent to the minimum and the maximum). In our case, we will assume
that attributes can be modelled by normal distributions, and therefore we will use the mean
and variance.

The edges will be assumed to always finish in the center of gravity of the destination
region. Therefore, the center of gravity of every region in both the model and data images
will need to be computed. Each edge will be stored using their x and y components. As
both the model and data graphs are complete ones, we will have |Vi| − 1 i = M,D edges for
each region respectively, where we will use two attributes for each.

As a result, for each vertex in both graphs we will consider the following attributes:

1. One unary attribute: the grey level distribution. As this attribute is assumed to follow
a normal distribution, in a region a it will be represented as Na;g(µa;g, σ

2
a;g), where µ

is the mean and σ2 is the variance.

2. Two edge attributes for each edge starting in the region a, and arriving at region k:
Na,k;x(µa,k;x, σ

2
a,k;x) and Na,k;y(µa,k;y, σ

2
a,k;y). As in a complete graph with n vertices

we have n − 1 edges from each vertex, we have a total of 2n − 2 edge attributes for
each vertex. Note that these definitions assume implicitly that the x and y compo-
nents are independent, and therefore the variance-covariance matrix will be of the form(

σ2
a,k;x 0

0 σ2
a,k;y

)
. Another possibility is to consider a binary attribute by means of a

2-dimensional normal distribution, in which case the variance-covariance matrix would
not contain zeroes.

Computing the attributes of each region

As attributes of the regions will be modelled by normal distributions, each attribute will
be characterized by its mean and variance values. Therefore, in an image with n regions, a
region a will be represented as an d-dimensional normal distribution, Na(µa,Σa) (one vertex

32 Endika Bengoetxea, PhD Thesis, 2002



Graph matching as a combinatorial optimization problem with constraints

attribute and 2n− 2 edge ones, which makes d = 2n− 1):

Na(µa,Σa) = ( Na;g(µa;g, σ
2
a;g),

Na,1;x(µa,1;x, σ2
a,1;x),Na,1;y(µa,1;y, σ

2
a,1;y), . . . ,

Na,a−1;x(µa,a−1;x, σ2
a,a−1;x),Na,a−1;y(µa,a−1;y, σ

2
a,a−1;y),

Na,a+1;x(µa,a+1;x, σ2
a,a+1;x),Na,a+1;y(µa,a+1;y, σ

2
a,a+1;y), . . . ,

Na,n;x(µa,n;x, σ2
a,n;x),Na,n;y(µa,n;y, σ

2
a,n;y)

)
(3.4)

This representation will be used for regions in the model and data graphs. It is important
to take into account that the number of vertices in the model graph (|VM |) is smaller than the
number of vertices in the data graph (|VD|). Each vertex in the model graph has 2|VM | − 1
attributes and each vertex in the data graph has 2|VD| − 1 attributes.

Cases in which mixtures of normal distributions are required

Mixtures of normal distributions are a way of representing a new distribution composed by
a weighted sum of many normal distributions. Mixtures are used when the composition of
two normal distributions cannot be approximated by a single new normal distribution. The
later case occurs typically when the means of the different normal distributions are very far
from each another, and therefore a weight is given to each of the distributions in order to
express the contribution of each of them to the global combined distribution.

The weights of each original normal distribution are computed using algorithms such
as the EM [Dempster et al., 1977]. This procedure is obviously very CPU expensive. In
addition, comparing a mixture of normal distributions and a normal distribution (i.e. when
comparing the solution proposed by an individual and a region in the model) is a lot more
complicated than comparing two normal distributions in terms of number of operations
required.

In our particular example, as proved on the following section, the fact of representing
edge attributes as the two components (x and y) of a vector will allow us to approximate a
combination of normal distributions to a new normal distribution, without having the need
to use mixtures.

Attributes of the fused regions modelled by normal distributions

Let us consider as an example the case illustrated in Figure 3.4. This figure shows on the
left two regions (A and B) of a model image, and on the right we have a typical result of
an over-segmentation procedure, where the regions detected on a data image have lead to a
data graph with more subregions for each model region. Therefore each correspondence of
the regions in the model appears usually subdivided in the data image (the region A in the
model has been divided in three subregions after the automatic over-segmentation procedure,
regions 1, 2, and 3, and region B has been subdivided in two, regions 11 and 12).

In order to evaluate a solution, we would require to fuse regions 1, 2, and 3 in the data
image, and then compare the similarity to the model region A. Similarly, data image regions
11 and 12 should be fused and afterwards compared to the model region B. The fusion of
attributes of vertices in GD such as the grey level (i.e. the one selected for our problems)
represented as a normal distribution can be approximated to a new normal distribution for
evident reasons, and it does not require further discussion.
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Figure 3.4: Illustration of two regions in the model graph (left), and the typical result after following
an over-segmentation process on an image to be recognized (right). This figure also illustrates the
centers of gravity of each of the regions. These will be used as a destination point representative of
the whole vector from any point of the origin to the destination.
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Figure 3.5: Example showing how the edge attributes are computed in both the model and data
graphs.

On the other hand, as already explained, the edge attributes that are of our interest
for comparing the similarity between regions are the distance and relative position. Given
a homomorphism h, and in order to evaluate it, before starting with any comparison the
regions in the data image that are matched to a same vertex in the model in h have to be
fused, as they are supposed to be part of a same region. Figure 3.4 shows which centers of
gravity that will be used for each region, and Figure 3.5 is an illustrative example on how
this computation is done.

From the previous figures it is obvious that in the data graph we have edge attributes that
are computed between subregions, but the equivalent regions in the model have a different
center of gravity, and therefore the solution that can be obtained is also different. The
proof that remains to be performed is illustrated in Figure 3.6, which essentially consists in
showing that it is possible to compute the edge attributes between the model regions A and
B starting from the edge attributes in the data graph of the data regions 1, 2, 3, 11 and 12.
Next, we prove that this computation is possible and how it can be performed. In addition,
we show that the fusion of edge attributes in the regions 1 2 and 3 into one, as well as such
of the regions 11 and 12 into another, can effectively be modelled by a normal distribution
using the vector components as representative data.

We will take as an example for this proof the regions and their centers of gravity of
Figure 3.4. Let SB be the size (in pixels) of region B in the model. Analogously, let S11

and S12 be the sizes of regions 11 and 12 respectively in the data graphs. As these two
regions in the data graph are the equivalent as region B in the model graph, we assume that
SB ≡ S11+S12. Using geometrical properties it can easily be proved the x and y coordinates
of the center of gravity of model region B –BB =

(
BB

x , BB
y

)
– can be computed from the
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Figure 3.6: Summary of the problem of obtaining the edge attributes between regions A and B in
the model graph, knowing the values of the edge attributes in the data graph.

centers of gravity of data image regions 11 and 12 –B11 =
(
B11

x , B11
y

)
and B12 =

(
B12

x , B12
y

)
.

This result can be easily generalized for a model region R which is divided in m smaller
subregions r1, r2, . . . , rm in the data image with respective sizes in pixels Sr1, Sr2 , . . . , Srm .
Then, it can be proved that the fused center of gravity of region R can be computed as

BR =
(
BR

x , BR
y

)
≡
(∑m

i=1 Bri
x · Sri∑m

i=1 Sri

,

∑m
i=1 Bri

y · Sri∑m
i=1 Sri

)
(3.5)

Similarly, we can also prove that the edge attributes of any model region can also be
computed starting from the edge attributes of the equivalent data image regions. Given a
destination model region R divided in m smaller subregions r1, r2, . . . , rm in the data graph
with respective sizes Sr1 , Sr2, . . . , Srm , knowing that the fused center of gravity is the one
described previously, and that SB ≈ S∗ =

∑m
i=1 Sri

, it can be easily shown that from any
point p1 = (x1, y1) within the origin regions the following is satisfied:

−−−→vp1BB ≈
m∑

i=1

Sri

S∗ ·
−−−→vp1Bri (3.6)

This results is a linear combination of normal distributions. As such a combination of
normal distributions is also a normal distribution, then we have proved that the when fusing
the edge attributes of the r1, r2, . . . , rm regions leads also to a region which edge attributes
follow a normal distribution.

Evaluating a solution using the new approach

If individual regions of the data graph are to be compared to regions in the model graph, we
could use one of these methods:

• The distance –or divergence– between both distributions could be used for comparison.

• Another possibility is to use the likelihood function to evaluate the similarity between
regions.

We tested the use of both methods and compared them. Next, all the explanations and
further formalization of these two methods are presented.

This fourth proposal of fitness function is based on the Kullback-Leibler divergence [Kull-
back and Leibler, 1951], which measures the difference between two different distributions.
The Kullback-Leibler divergence is defined for any two types of distributions, although it
can be written in a simple form if the two distributions to be compared are normal ones.
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As explained in previous section, we will assume that all the attributes of all the regions in
both the model and data graph follow normal distributions, and this assumption will help
us to perform simpler operations to compute the divergence.

However, it is compulsory for this divergence that the dimensions of both normal distri-
butions to be compared are the same. In fact, each of the regions of both the atlas and data
graphs will be represented as a (2n− 1)-dimensional normal distribution, where this dimen-
sion is (2|VM | − 1) and (2|VD| − 1) for each vertex of the model or data graphs respectively.
Therefore, given a homomorphism, the question is how to find a way of comparing model
and data vertices taking into account these restrictions for comparison. This comparison
will be used as a similarity value.

In essence, when evaluating a solution given by a homomorphism h, each of the attributes
of the regions in the data graph that are matched to the same vertex in the homomorphism
(i.e. regions ai

D, aj
D, . . . , az

D ∈ VD|h(ai
D) = h(aj

D) = · · · = h(az
D) = ar

M ∈ VM ) have to
be combined in a way that the combination of the normal distributions representing each
attribute is approximated to a new normal distribution. This combination of regions will be
done by fusing the regions which are labelled with the same model graph, in other words, the
kth fused region aF

k is defined in the following way: aF
k = {al

D ∈ VD, k ∈ VM |h(al
D) = ak

M}.
It is important to note that after fusion of the data image regions and their attributes

the result is a new region with 2|VM | − 1 attributes.
After fusing all the data image regions to their corresponding fused region aF

i i =
1, . . . , |VM |, their attributes are also combined, and this results in 2|VM | − 1 attributes.
Therefore, any fused region aF can be represented as a new d-dimensional normal distribu-
tion N F (µF ,ΣF ) with d = 2|VM | − 1 (since there are 1 vertex attribute and 2|VM | − 2 edge
attributes) following the definition of Na(µa,Σa) given in Equation 3.4 for any region a.

Afterwards, in order to compare how similar are the regions of the model and those of
the data image we will only need to compare the d-dimensional normal distribution of the
fused region aF

k and the d-dimensional normal distribution of the model region ak
M , with

d = (2|VM | − 1) in both graphs and k = 1, . . . , |VM |.
The main requirement of this method to be applied is to prove that the vertex and edge

attributes of the fused regions can be satisfactorily approximated to normal distributions,
knowing that the attributes of each of the vertices in VD follow a normal distribution. This
proof was shown in Section 3.4.5.

The Kullback-Leibler divergence. Kullback and Leibler introduced a divergence mea-
sure that is known as the Kullback-Leibler divergence [Kullback and Leibler, 1951]. The idea
behind a divergence is to have a measure to quantify the information quantity given by data
to discriminate between one or another probability distributions. In the discrete domain,
having a finite set of values S = {a1, a2, . . . , an}, and if the P and Q probability distributions
are given by P (ai) = pi and Q(ai) = qi i = 1, 2, . . . , n , then the Kullback-Leibler divergence
is expressed by

DK−L(P,Q) =

n∑

i=1

pi log
pi

qi
(3.7)

Regarding the continuous case, given two density functions f(x) and g(x) for the space χ,

we have that dP
dQ

(x) = f(x)
g(x) , and therefore the Kullback-Leibler divergence is given by

DK−L(P,Q) =

∫

χ

f(x) log
f(x)

g(x)
dx (3.8)
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In the case of having any two normal distributions of dimension d denoted by N (µ1,Σ1)
and N (µ2,Σ2) respectively, the Kullback-Leibler divergence is computed in [Kullback and
Leibler, 1951] as

DK−L (N (µ1,Σ1),N (µ2,Σ2)) =
1

2

[
(µ1 − µ2)

tΣ−1
2 (µ1 − µ2)

]

+
1

2

(
trace

(
Σ−1

2 Σ1 − I
)

+ log
|Σ2|
|Σ1|

)
(3.9)

where I is the unary matrix. This expression is further simplified when the elements of
both d-dimensional normal distributions are independent. In the latter case, the matrices

Σj j = 1, 2 of dimensions d×d would be of the form





σ2
j,1 0 0 . . . 0

0 σ2
j,2 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . σ2

j,d



. It can

be proved that under these conditions the Kullback-Leibler distance is given by:

DK−L(N (µ1,Σ1),N (µ2,Σ2)) =
1

2

[
d∑

i=1

(µi
1 − µi

2)
2

σi
2

]

+
1

2

(
d∑

i=1

(
σi

1

σi
2

− 1

)
+ log

(
d∏

i=1

σi
2

σi
1

))
(3.10)

In our case, given a solution, for each of the model regions ak
M two d-dimensional normal

distributions with d = 2|VM | − 1 will be compared: The normal distribution of the model
vertex itself and the one obtained after fusing all the data regions associated to the kth

fused region aF
k . Note also that the Kullback-Leibler divergence is not symmetrical, and

that DK−L(P,Q) 6= DK−L(Q,P ). Therefore, as a reference has to be defined, we decided to
choose as the reference the data graph vertex that is compared to each of the vertices of the
model graph (note that the fitness function is also defined as f4(h) : VD → VM ). Therefore,

we consider the DK−L

(
N
(
µak

M
,Σak

M

)
,N
(
µaF

k
,ΣaF

k

))
values for all the model regions.

Definition of the fitness function. Taking all the previous explanations into account,
we propose a first fitness function definition based on the Kullback-Leibler distance. In this
definition, denoted as f4, when computing a solution proposed, we first fuse the regions in the
data graph, and then we compare each of the vertex and edge attributes of the fused region
to the vertex of the matched region. Taking the illustrative example of the previous section,
the similarity between region A in the model and the combination of regions 1, 2, and 3 in
the data graph will be computed using their respective d-dimensional normal distributions
N (µA,ΣA),N (µ1,Σ1),N (µ2,Σ2),N (µ3,Σ3), with the sizes in pixels of each of the regions
being SA, S1, S2, and S3 respectively. For this, the last three distributions have to be

combined. Knowing that Σj j = 1, 2, 3 would be of the form





σ2
j,1 0 0 . . . 0

0 σ2
j,2 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . σ2

j,d



,

we will denote the resultant distribution by N (µ123,Σ123), having:

µ123 =
S1 · µ1 + S2 · µ2 + S3 · µ3

S1 + S2 + S3
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Σ123 =





τ2
123,1 0 0 . . . 0

0 τ2
123,2 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . τ2

123,d



 (3.11)

where τ2
123,i =

S1·σ2
1,i+S1·(µ123,i−µ1,i)2+S2·σ2

2,i+S2·(µ123,i−µ2,i)2+S3·σ2
3,i+S3·(µ123,i−µ3,i)2

S1+S2+S3
i = 1, . . . , d,

and µ123 = (µ123,1, µ123,2, . . . , µ123,d). Note that the dimension of both d-dimensional normal
distributions is d = 2|VM | − 1.

The component of this region in the proposed fitness function will be defined as follows:

f4(h)aM
= DK−L(N (µaM

,ΣaM
),N (µ123,Σ123))

=
1

2

[
d∑

i=1

(µaM ,i − µ123,i)
2

σ2
123,i

]
+

1

2

(
d∑

i=1

(
σ2

aM ,i

σ2
123,i

− 1

)
+ log

(
d∏

i=1

σ2
123,i

σ2
aM ,i

))

(3.12)

And finally, the global fitness function will be computed as

f4(h) =
∑

aM∈VM

f4(h)aM
(3.13)

Generalizing this fitness function for a region ak
M of the model that is matched to the

equivalent m smaller subregions r1, r2, . . . , rm in the data graph (i.e. h(r1) = h(r2) = · · · =
h(rn) = R ) with respectively sizes Sr1, Sr2 , . . . , Srm , we have firstly that the combination
of all the subregions in the data graph is given by the d-dimensional normal distribution
N (µfused

ak
M

,Σfused
ak

M

), knowing that

µfused
ak

M

=

∑m
i=1 Sri

· µri∑m
i=1 Sri

Σ2
fused

ak
M

=





τ2
fused

ak
M

,1 0 0 . . . 0

0 τ2
fused

ak
M

,2 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . τ2

fused
ak

M
,d




(3.14)

where

τ2
fused

ak
M

,i =

∑d
j=1

(
Srj
· σ2

rj ,i + Srj
·
(

µfused
ak

M
,j − µri,j

)2
)

∑d
j=1 Srj

for i = 1, . . . , d, and µfused
ak

M

=

(
µfused

ak
M

,1, µfused
ak

M
,2, . . . , µfused

ak
M

,d

)
. Finally, the fitness

function is defined as

f4(h) =
∑

ak
M

∈VM

f4(h)ak
M

=
∑

ak
M

∈VM

DK−L

(
N
(
µak

M
,Σak

M

)
,N
(

µfused
ak

M

,Σfused
ak

M

))

(3.15)
As this fitness function expresses the divergence of probability distributions, in this case
the graph matching algorithm is committed to return the individual that minimizes this
expression, and not to maximize as in the previous three fitness functions.
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3.4.6 f5: function based on likelihood

This fifth proposal of fitness function is based on the likelihood of the data given the model. In
this case, the regions in the model are also represented as a d-dimensional normal distribution,
for a dimension for each of the vertex and edge attributes, as well as for the previous fitness
function f4(h): the mean and variance of each of the attributes for all the regions of the
model are computed as a previous step, and these are used for computing the likelihood.
Regarding the data graph, a similar representation is assumed, and also the data information
required to compute the likelihood is stored. This information is later used to compute each
of the homomorphisms.

For this approach, we select at random a set of N pixels from each of the regions in
the data graph. We decided to choose this number N as a constant for all type of regions
independently of their size, although when fusing the regions in the data image only a number
of pixels proportional to the size of the fused region are taken later into account. The number
N of pixels selected has to be big enough to ensure representation of each of the regions in
the data image. We denote the representation of pixels for the kth region of the data image
by xk

1, xk
2, . . . , xk

N , with k = 1, . . . , |VD|. The total size of this sample is M = N |VD|.
The next step is to compute the attribute values of the selected pixels in each region. In

the case of the vertex attributes, we consider again the grey level and the texture value. For
the edge attributes, we compute again the binary attributes using as a reference the pointed
vertex the center of gravity of the regions that have to be fused in the homomorphism as
explained in the previous sections. As a result, the number of attributes to be recorded by
each sample pixel is 2|VD| − 1. The attributes for the ith pixel of the kth region is denoted

by yk
i =

(
yk

i,1, y
k
i,2, . . . y

k
i,2|VD|−1

)
.

Computing the likelihood of the data regarding each attribute. Given the proba-
bility distribution of a single attribute j of a particular region k of the model, N (µk,j, σ

2
k,j),

the likelihood is a measurement with N possible values yk
1,j, y

k
2,j, . . . , y

k
N,j defined as:

Lj(y
k
1,j , y

k
2,j, . . . , y

k
N,j;N (µk,j, σ

2
k,j)) =

N∏

i=1

[
1√

2π σk,j

exp

(

− 1

2σ2
k,j

(yk
i,j − µk,j)

2

)]

=

(
1√

2π σk,j

)N

exp

(
− 1

2σ2
k,j

N∑

i=1

(yk
i,j − µk,j)

2

)

(3.16)

In order to evaluate a given homomorphism h, we proceed in a similar way as in the
previous sections: firstly, the regions in the data image following the labels given by the
homomorphism h are identified, and |VM | fused regions are obtained. Secondly, the centers
of gravity of these fused regions are computed, and the vertex and edge attributes are
recomputed. As a result, each of the fused regions contains 1 vertex attribute and 2|VM | − 2
edge attributes. Thirdly, a set of N pixels are selected from each of the fused regions.
Fourthly, the likelihood of the d-dimensional probability distribution representing a model
region ak

M ∈ VM , with d = 2|VM | − 1, is computed as:

L
(
yk

1 ,y
k
2 , . . . ,y

k
N ;N

(
µak

M
,Σak

M

))
=

2|VM |−1∏

j=1

Lj(y
k
1,j, y

k
2,j , . . . , y

k
N,j ;N (µk,j, σk,j)) (3.17)
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where Lj is defined in Equation 3.16. The result obtained in Equation 3.17 is used in f5(h)
to compute the similarity between region k of the model and the kth fused region in the data
image.

Evaluation of a homomorphism: definition of the fitness function. Following the
definitions of the previous section, a homomorphism h can be evaluated by means of the
likelihood of the models for every vertex in the model graph regarding the pixels sampled
in the data image. For that, the similarities of all the vertices of the model graph with
such of the corresponding fused region in the data image are considered to define the global
similarity –GS– of a given homomorphism h as follows:

GS =

|VM |∏

k=1

L
(
yk

1,y
k
2, . . . ,y

k
N ;N

(
µak

M
,Σak

M

))

=

|VM |∏

k=1

2|VM |−1∏

j=1

Lj(y
k
1,j, y

k
2,j , . . . , y

k
N,j;N (µak

M
,j, σak

M
,j))

=

|VM |∏

k=1

2|VM |−1∏

j=1

N∏

i=1

1√
2π σak

M
,j

exp

(
− 1

2σ2
ak

M
,j

(yk
i,j − µak

M
,j)

2

)
(3.18)

=




|VM |∏

k=1

2|VM |−1∏

j=1

(
1√

2π σak
M

,j

)N


 exp




|VM |∑

k=1

2|VM |−1∑

j=1

N∑

i=1

(

−
(yk

i,j − µak
M

,j)
2

2σ2
ak

M
,j

)



where N
(
µak

M
,Σak

M

)
k = 1, . . . , |VM | are the ones defined in the previous sections, and all

the yk
1,y

k
2, . . . ,y

k
N are the attribute values of the N pixels chosen at random from the fused

region k, which is formed by the aD ∈ VD such that h(aD) = k.

However, in order to define the fitness function f5(h) using this similarity definition, the
expression in Equation 3.18 can be simplified, since a proportional fitness function is valid
for our purpose. A simpler yet proportional definition of this equation is described below:

GS = C exp




|VM |∑

k=1

2|VM |−1∑

j=1

N∑

i=1

(
−

(yk
i,j − µak

M
,j)

2

2σ2
ak

M
,j

)

 ∝
|VM |∑

k=1

2|VM |−1∑

j=1

N∑

i=1

(yk
i,j − µak

M
,j)

2

−2σ2
ak

M
,j

(3.19)

where C =



∏|VM |
k=1

∏2|VM |−1
j=1

(
1√

2π σ
ak

M
,j

)N


. As a result, the fitness function f5(h) can be

defined as the simple expression

f5(h) =

|VM |∑

k=1

2|VM |−1∑

j=1

N∑

i=1

(yk
i,j − µak

M
,j)

2

−2σ2
ak

M
,j

(3.20)

In this case, as well as with f1(h), f2(h), and f3(h), the graph matching algorithm is com-
mitted to return the individual that maximizes this expression.
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3.5 Conclusion

This chapter presents the graph matching problem as a combinatorial optimization one,
analyzing the main aspects that have to be taken into account for that: the definition of
an individual representation and its associated fitness function. Three different individual
representations have been presented in the discrete domain, as well as five different fitness
functions.

For the continuous domain, an individual representation based on permutations has been
introduced. This representation allows to apply the fitness functions defined for the discrete
domain for specific graph matching algorithms in the continuous domain.

It is important to note that all the definitions given in this chapter can be applied by any
combinatorial optimization algorithm. In the next chapters algorithms such as estimation of
distribution algorithms, genetic algorithms, and evolutionary strategies apply these fitness
functions to search for the best homomorphism.
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Chapter 4

Estimation of distribution

algorithms

‘That is what learning is. You suddenly understand something you’ve
understood all your life, but in a new way. ’

Doris Lessing

4.1 Introduction

Generally speaking, all the search strategy types can be classified either as complete or
heuristic strategies. The difference between them is that complete strategies perform a sys-
tematic examination of all possible solutions of the search space whereas heuristic strategies
only concentrate on a part of them following a known algorithm.

Heuristic strategies are also divided in two groups: deterministic and non-deterministic
strategies [Pearl, 1984]. The main characteristic of deterministic strategies is that under the
same conditions the same solution is always obtained. Examples of this type are forward,
backward, stepwise, hill-climbing, threshold accepting, and other well known algorithms, and
their main drawback is that they have the risk of getting stuck in local maximum values.
Non-deterministic searches are able to escape from these local maxima by means of the
randomness [Zhigljavsky, 1991] and, due to their stochasticity, different executions might
lead to different solutions under the same conditions.

Some of the stochastic heuristic searches such as simulated annealing only store one so-
lution at every iteration of the algorithm. The stochastic heuristic searches that store more
than one solution every iteration (or every generation as each iteration is usually called in
these cases) are grouped under the term of population-based heuristics, an example of which
is evolutionary computation. In these heuristics, each of the solutions is called individual.
The group of individuals (also known as population) evolves towards more promising areas
of the search space while the algorithm carries on with the next generation. Examples of
evolutionary computation are Genetic Algorithms (GAs) [Goldberg, 1989, Holland, 1975],
evolutionary strategies (ESs) [Rechenberg, 1973], evolutionary programming [Fogel, 1962]
and genetic programming [Koza, 1992]. See [Bäck, 1996] for a review on evolutionary algo-
rithms.

The behavior of evolutionary computation algorithms such as GAs depends to a large
extent on associated parameters like operators and probabilities of crossing and mutation,
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size of the population, rate of generational reproduction, the number of generations, and so
on. The researcher requires experience in the resolution and use of these algorithms in order
to choose the suitable values for these parameters. Furthermore, the task of selecting the best
choice of values for all these parameters has been suggested to constitute itself an additional
optimization problem [Grefenstette, 1986]. Moreover, GAs show a poor performance in some
problems1 in which the existing operators of crossing and mutation do not guarantee that
the building block hypothesis is preserved2.

All these reasons have motivated the creation of a new type of algorithms classified
under the name of Estimation of Distribution Algorithms (EDAs) [Larrañaga and Lozano,
2001, Mühlenbein and Paaß, 1996], trying to make easier to predict the movements of the
populations in the search space as well as to avoid the need for so many parameters. These
algorithms are also based on populations that evolve as the search progresses and, as well
as genetic algorithms, they have a theoretical foundation on probability theory. In brief,
EDAs are population-based search algorithms based on probabilistic modelling of promising
solutions in combination with the simulation of the induced models to guide their search.

In EDAs the new population of individuals is generated without using neither crossover
nor mutation operators. Instead, the new individuals are sampled starting from a probabil-
ity distribution estimated from the database containing only selected individuals from the
previous generation. At the same time, while in other heuristics from evolutionary compu-
tation the interrelations between the different variables representing the individuals are kept
in mind implicitly (e.g. building block hypothesis), in EDAs the interrelations are expressed
explicitly through the joint probability distribution associated with the individuals selected
at each iteration. In fact, the task of estimating the joint probability distribution associated
with the database of the selected individuals from the previous generation constitutes the
hardest work to perform. In particular, the latter requires the adaptation of methods to learn
models from data that have been developed by researchers in the domain of probabilistic
graphical models.

The underlying idea of EDAs will be introduced firstly for the discrete domain, and
then it will be reviewed for the continuous domain. As an illustrative example, we will
consider the problem that arises in supervised classification known as feature subset selection
(FSS) [Inza et al., 2000, 2001]. Given a file of cases with information on n predictive variables,
X1,X2, . . . ,Xn, and the class variable C to which the case belongs, the problem consists in
selecting a subset of variables that will induce a classifier with the highest predictive capacity
in a test set. The cardinality of the search space for this problem is 2n.

Figure 4.1 shows a generic schematic of EDA approaches, which follow essentially the
following steps:

1. Firstly, the initial population D0 of R individuals is generated. The generation of
these R individuals is usually carried out by assuming a uniform distribution on each
variable, and next each individual is evaluated.

2. Secondly, in order to make the l−1th population Dl−1 evolve towards the next Dl one,
a number N (N < R) of individuals are selected from Dl−1 following a criterion. We
denote by DN

l−1 the set of N selected individuals from generation l − 1.

1Problems in which GAs behave worse than simpler search algorithms are known as deceptive problems,
in which the GAs get usually stuck in local minima and return worse results.

2The building block hypothesis [Holland, 1975] states that GAs find solutions by first finding as many
building blocks as possible, and then combining them together to give the highest fitness. Following this
hypothesis, we can search more effectively by exploiting similarities in the solutions.
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Figure 4.1: Illustration of EDA approaches in the optimization process.

3. Thirdly, the n–dimensional probabilistic model that better represents the interdepen-
dencies between the n variables is induced. This step is also known as the learning pro-
cedure, and it is the most crucial one, since representing appropriately the dependencies
between the variables is essential for a proper evolution towards fitter individuals.

4. Finally, the new population Dl constituted by R new individuals is obtained by carrying
out the simulation of the probability distribution learned in the previous step. Usually
an elitist approach is followed, and therefore the best individual of population DN

l−1

is kept in Dl. In this latter case, a total of R − 1 new individuals is created every
generation instead of R.

Steps 2, 3 and 4 are repeated until a stopping condition is verified. Examples of stop-
ping conditions are: achieving a fixed number of populations or a fixed number of different
evaluated individuals, uniformity in the generated population, and the fact of not obtaining
an individual with a better fitness value after a certain number of generations.
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4.2 Probabilistic graphical models

4.2.1 Bayesian networks

This section will introduce the probabilistic graphical model paradigm [Howard and Mathe-
son, 1981, Lauritzen, 1996, Pearl, 1988] that has extensively been used during the last decade
as a popular representation for encoding uncertainty knowledge in expert systems [Hecker-
man and Wellman, 1995]. Only probabilistic graphical models of which a structural part is
a directed acyclic graph will be considered, as these adapt properly to EDAs. The following
is an adaptation of the paper [Heckerman and Geiger, 1995], and will be used to introduce
Bayesian networks as a probabilistic graphical model suitable for its application in EDAs.

Let X = (X1, . . . ,Xn) be a set of random variables, and let xi be a value of Xi, the ith

component of X . Let y = (xi)Xi∈Y be a value of Y ⊆ X. Then, a probabilistic graphical
model for X is a graphical factorization of the joint generalized probability density function,
ρ(X = x) (or simply ρ(x)). The representation of this model is given by two components:
a structure and a set of local generalized probability densities.

The structure S for X is a directed acyclic graph (DAG) that describes a set of conditional
independences3 [Dawid, 1979] about the variables on X. P aS

i represents the set of parents
–variables from which an arrow is coming out in S– of the variable Xi in the probabilistic
graphical model which structure is given by S. The structure S for X assumes that Xi and
its non descendants are independent given P aS

i , i = 2, . . . , n. Therefore, the factorization
can be written as follows:

ρ(x) = ρ(x1, . . . , xn) =
n∏

i=1

ρ(xi | paS
i ). (4.1)

Furthermore, the local generalized probability densities associated with the probabilistic
graphical model are precisely the ones appearing in Equation 4.1.

A representation of the models of the characteristics described above assumes that the
local generalized probability densities depend on a finite set of parameters θS ∈ ΘS , and as
a result the previous equation can be rewritten as follows:

ρ(x | θS) =

n∏

i=1

ρ(xi | paS
i ,θi) (4.2)

where θS = (θ1, . . . ,θn).
After having defined both components of the probabilistic graphical model, and taking

them into account, the model itself can be represented by M = (S,θS).
In the particular case of every variable Xi ∈X being discrete, the probabilistic graphical

model is called Bayesian network. If the variable Xi has ri possible values, x1
i , . . . , x

ri

i , the

local distribution, p(xi | pa
j,S
i ,θi) is an unrestricted discrete distribution:

p(xi
k | pa

j,S
i ,θi) = θ

xk
i |paj

i

≡ θijk (4.3)

where pa
1,S
i , . . . ,pa

qi,S
i denotes the values of P aS

i , that is the set of parents of the variable Xi

in the structure S; qi is the number of different possible instantiations of the parent variables

3Given Y , Z, W three disjoints sets of variables, Y is said to be conditionally independent of Z given W

when for any y, z, w the condition ρ(y | z, w) = ρ(y | w) is satisfied. If this is the case, then we will write
I(Y , Z | W ).
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Figure 4.2: Structure, local probabilities and resulting factorization in a Bayesian network for four
variables (with X1, X3 and X4 having two possible values, and X2 with three possible values).

of Xi. Thus, qi =
∏

Xg∈P a
S

i

rg. The local parameters are given by θi = ((θijk)
ri

k=1)
qi

j=1). In

other words, the parameter θijk represents the conditional probability that variable Xi takes
its kth value, knowing that its parent variables have taken their jth combination of values.
We assume that every θijk is greater than zero.

Figure 4.2 contains an example of the factorization of a particular Bayesian network with
X = (X1,X2,X3,X4) and r2 = 3, ri = 2 i = 1, 3, 4. From this figure we can conclude that
in order to define and build a Bayesian network the user needs to specify:

1.- a structure by means of a directed acyclic graph that reflects the set of conditional
independencies among the variables,

2.- the prior probabilities for all root nodes (nodes with no predecessors), that is p(xi
k |

∅,θi) (or θi−k), and

3.- the conditional probabilities for all other nodes, given all possible combinations of their
direct predecessors, p(xi

k | pa
j,S
i ,θi) (or θijk).

4.2.2 Simulation in Bayesian networks

The simulation of Bayesian networks can be regarded as an alternative to exact propagation
methods that were developed to reason with networks. This method creates a database with
the probabilistic relations between the different variables previous to other procedures. In
our particular case, the simulation of Bayesian networks is used merely as a tool to generate
new individuals for the next population based on the structure learned previously.

Many approximations to the simulation of Bayesian networks have been developed in
recent years. Examples of these are the likelihood weighting method developed independently
in [Fung and Chang, 1990] and [Shachter and Peot, 1990], and later analyzed in [Shwe
and Cooper, 1991], the backward-forward sampling method [Fung and del Favero, 1994],
the Markov sampling method [Pearl, 1987], and the systematic sampling method [Bouckaert,
1994]. [Bouckaert et al., 1996] is a good comparison of the previous methods applied to
different random Bayesian network models using the average time to execute the algorithm
and the average error of the propagation as comparison criteria. Other approaches can be
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PLS
Find an ancestral ordering, π, of the nodes in the Bayesian network
For j = 1, 2, . . . , R

For i = 1, 2, . . . , n
xπ(i) ← generate a value from p(xπ(i) | pai)

Figure 4.3: Pseudocode for the Probabilistic Logic Sampling method.

also found in [Chavez and Cooper, 1990, Dagum and Horvitz, 1993, Hryceij, 1990, Jensen
et al., 1993].

The method used in this report is the Probabilistic Logic Sampling (PLS) proposed
in [Henrion, 1988]. Following this method, the instantiations are done one variable at a time
in a forward way, that is, a variable is not sampled until all its parents have already been
so. This requires previously to order all the variables from parents to children –any ordering
of the variables satisfying such a property is known as ancestral ordering. We will denote
π = (π(1), . . . , π(n)) an ancestral order compatible with the structure to be simulated. The
concept of forward means that the variables are instantiated from parents to children. For
any Bayesian network there is always at least one ancestral ordering since cycles are not
allowed in Bayesian networks. Once the values of pai –the parent values of a variable Xi–
have been assigned, its values are simulated using the distribution p(xπ(i) | pai). Figure 4.3
shows the pseudocode of the method.

4.2.3 Gaussian networks

In this section we introduce one example of the probabilistic graphical model paradigm that
assumes the joint density function to be a multivariate Gaussian density [Whittaker, 1990].

An individual x= (x1, . . . , xn) in the continuous domain consists of a continuous value
in <n. The local density function for the ith variable Xi can be computed as the linear-
regression model

f(xi | paS
i ,θi) ≡ N (xi;mi +

∑

xj∈pai

bji(xj −mj), vi) (4.4)

where N (xi;µi, σ
2
i ) is a univariate normal distribution with mean µi and variance vi = σ2

i

for the ith variable.
Taking this definition into account, an arc missing from Xj to Xi implies bji = 0 in the

former linear-regression model. The local parameters are given by θi = (mi, bi, vi), where
bi = (b1i, . . . , bi−1i)

t is a column vector. A probabilistic graphical model built from these
local density functions is known as a Gaussian network [Shachter and Kenley, 1989].

The components of the local parameters are as follows: mi is the unconditional mean of
Xi, vi is the conditional variance of Xi given P ai, and bji is a linear coefficient that measures
the strength of the relationship between Xj and Xi. Figure 4.4 is an example of a Gaussian
network in a 4–dimensional space.

In order to see how Gaussian networks and multivariate normal densities are related,
the joint density function of the continuous n–dimensional variable X is by definition a
multivariate normal distribution iff:
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Figure 4.4: Structure, local densities and resulting factorization for a Gaussian network with four
variables.

f(x) ≡N (x;µ,Σ) ≡ (2π)−
n
2 |Σ|− 1

2 e−
1
2
(x−µ)tΣ−1(x−µ) (4.5)

where µ is the vector of means, Σ is covariance matrix n×n, and |Σ| denotes the determinant
of Σ. The inverse of this matrix, W = Σ−1, which elements are denoted by wij, is known as
the precision matrix.

This density can also be written as a product of n conditional densities using the chain
rule, namely

f(x) =

n∏

i=1

f(xi | x1, . . . , xi−1) =

n∏

i=1

N (xi;µi +

i−1∑

j=1

bji(xj − µj), vi) (4.6)

where µi is the unconditional mean of Xi, vi is the variance of Xi given X1, . . . , Xi−1, and
bji is a linear coefficient reflecting the strength of the relationship between variables Xj and
Xi [de Groot, 1970]. This notation allows us to represent a multivariate normal distribution
as a Gaussian network, where for any bji 6= 0 with j < i this network will contain an arc
from Xj to Xi.

Extending this idea it is also possible to generate a multivariate normal density starting
from a Gaussian network. The unconditional means in both paradigms verify that mi = µi for
all i = 1, . . . , n, [Shachter and Kenley, 1989] describe the general transformation procedure to
build the precision matrix W of the normal distribution that the Gaussian network represents
from its v and {bji | j < i}. This transformation can be done with the following recursive
formula for i > 0, and W (1) = 1

v1
:

W (i + 1) =



 W (i) +
bi+1b

t

i+1

vi+1
, −bi+1

vi+1

−b
t

i+1

vi+1
, 1

vi+1



 (4.7)

where W (i) denotes the i × i upper left submatrix, bi is the column vector (b1i, . . . , bi−1i)
t

and bt
i is its transposed vector.
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For instance, taking into account the example in Figure 4.4 where X1 ≡ N (x1;m1, v1),
X2 ≡ N (x2;m2, v2), X3 ≡ N (x3;m3 +b13(x1−m1)+b23(x2−m2), v3) and X4 ≡ N (x4;m4 +
b34(x3−m3), v4), the procedure described above results in the following precision matrix W :

W =





1
v1

+
b213
v3

, b13b23
v3

, − b13
v3

, 0
b23b13

v3
, 1

v2
+

b223
v2

, − b23
v3

, 0

− b13
v3

, − b23
v3

, 1
v3

+
b234
v4

, − b34
v4

0, 0, − b34
v4

, 1
v4




. (4.8)

The representation of a multivariate normal distribution by means of a Gaussian net-
work is more appropriated for model elicitation and understanding rather than the standard
representation, as in the latter it is important to ensure that the assessed covariance matrix
is positive–definite. In addition, the latter requires to check that the database D with N
cases, D = {x1, . . . ,xN}, follows a multivariate normal distribution.

4.2.4 Simulation in Gaussian networks

In [Ripley, 1987] two general approaches for sampling from multivariate normal distributions
were introduced. The first method is based on a Cholesky decomposition of the covariance
matrix, and the second, known as the conditioning method, generates instances of X by
sampling X1, then X2 conditionally to X1, and so on. This second method is analogous to
PLS, the sampling procedure introduced in Section 4.2.2 for Bayesian networks, but with
the particularity of being designed for Gaussian networks.

The simulation of a univariate normal distribution can be carried out by means of a
simple method based on the sum of 12 uniform variables. Traditional methods based on the
ratio-of-uniforms [Box and Muller, 1958, Brent, 1974, Marsaglia et al., 1976] could also be
applied alternatively.

4.3 Estimation of distribution algorithms in discrete domains

4.3.1 Introduction

This section introduces the notations that will be used to describe EDAs in discrete domains.
It also constitutes a review of the EDA approaches for combinatorial optimization problems
that can be found in the literature.

Let Xi (i = 1, . . . , n) be a random variable. A possible instantiation of Xi will be denoted
xi. p(Xi = xi) –or simply p(xi)– will denote the probability that the variable Xi takes the
value xi. Similarly, X = (X1, . . . ,Xn) will represent an n–dimensional random variable, and
x = (x1, . . . , xn) one of its possible realizations. The mass probability of X will be denoted
by p(X = x) –or simply p(x). The conditional probability of the variable Xi given the value
xj of the variable Xj will be written as p(Xi = xi | Xj = xj) (or simply p(xi | xj)). D will
denote a data set, i.e., a set of R instantiations of the variables (X1, . . . ,Xn).

Figure 4.5 shows the pseudocode of EDAs in combinatorial optimization problems using
the notation introduced, where x = (x1, . . . , xn) will represent the individuals of n genes,
and Dl will denote the population of R individuals in the lth generation. Similarly, DN

l will
represent the population of the selected N individuals from Dl−1. In EDAs the main task is
to estimate p(x | DN

l−1), that is, the joint conditional probability over one individual x being
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EDA

D0 ← Generate R individuals (the initial population) randomly

Repeat for l = 1, 2, . . . until a stopping criterion is met

DN
l−1 ← Select N < R individuals from Dl−1 according to

a selection method

pl(x) = p(x | DN
l−1) ← Estimate the probability distribution

of an individual being among the selected individuals

Dl ← Sample R individuals (the new population) from pl(x)

Figure 4.5: Pseudocode for EDA approaches in discrete domains.

among the selected individuals. This joint probability must be estimated every generation.
We will denote by pl(x) = pl(x | DN

l−1) the joint conditional probability at the lth generation.

The most important step is to find the interdependencies between the variables that
represent one point in the search space. The basic idea consists in inducing probabilistic
models from the best individuals of the population. Once the probabilistic model has been
estimated the model is sampled to generate new individuals (new solutions), which will be
used to generate a new model in the next generation. This procedure is repeated until
a stopping criterion is satisfied. Moreover, the most difficult step for EDAs is actually
to estimate satisfactorily the probability distribution pl(x), as the computation of all the
parameters needed to specify the underlying probability model becomes impractical. That
is why several approximations propose to factorize the probability distribution according to
a probability model.

The next sections introduce EDA approaches that can be found in the literature. All the
algorithms and methods are classified depending on the maximum number of dependencies
between variables that they can account for (maximum number of parents that a variable
Xi can have in the probabilistic graphical model). The reader can find in [Larrañaga and
Lozano, 2001] a more complete review of this topic.

4.3.2 Without interdependencies

All methods belonging to this category assume that the n–dimensional joint probability dis-
tribution factorizes like a product of n univariate and independent probability distributions,
that is pl(x) =

∏n
i=1 pl(xi). This assumption appears to be inexact due to the nature of any

difficult optimization problem, where interdependencies between the variables will exist to
some degree. Nevertheless, this approximation can lead to an acceptable behavior of EDAs
for some problems like the ones on which independence between variables can be assumed.

There are several approaches corresponding to this category that can be found in the liter-
ature. Examples are Bit-Based Simulated Crossover –BSC– [Syswerda, 1993], the Population-
Based Incremental Learning –PBIL– [Baluja, 1994], the compact Genetic Algorithm [Harik
et al., 1998], and the Univariate Marginal Distribution Algorithm –UMDA– [Mühlenbein,
1998].

As an example to show the different ways of computing pl(xi), in UMDA this task is
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done by estimating the relative marginal frequencies of the ith variable within the subset of
selected individuals DN

l−1. We describe here this algorithm in more detail as an example of
approaches on this category.

UMDA –Univariate Marginal Distribution Algorithm

This algorithm assumes all the variables to be independent in order to estimate the mass
joint probability. More formally, the UMDA approach can be written as:

pl(x;θl) =
n∏

i=1

pl(xi;θ
l
i) (4.9)

where θl
i =

(
θl
ijk

)
is recalculated every generation by its maximum likelihood estimation, i.e.

θ̂l
ijk =

N l−1
ijk

N l−1
ij

, N l
ijk is the number of cases in which the variable Xi takes the value xk

i when its

parents are on their jth combination of values for the lth generation, with N l−1
ij =

∑
k N l−1

ijk .
The latter estimation can be allowed since the representation of individuals chosen assumes
that, all the variables are discrete, and therefore the estimation of the local parameters
needed to obtain the joint probability distribution –θ̂ l

ijk– is done by simply calculating the

relative marginal frequencies of the ith variable within the subset of selected individuals DN
l−1

in the lth generation.

4.3.3 Pairwise dependencies

In an attempt to express the simplest possible interdependencies among variables, all the
methods in this category propose that the joint probability distribution can be estimated
well and fast enough by only taking into account dependencies between pairs of variables.
Figure 4.6 shows examples of graphical models where these pairwise dependencies between
variables are expressed.

Algorithms in this category require therefore an additional step that was not required in
the previous one, which is the construction of a structure that best represents the probabilistic
model. In other words, the parametric learning of the previous category –where the structure
of the arc-less model remains fixed– is extended to a structural one.

An example of this second category is the greedy algorithm called MIMIC (Mutual In-
formation Maximization for Input Clustering) proposed in [de Bonet et al., 1997], which
is explained in more detail below. Other approaches in this group are the ones proposed
in [Baluja and Davies, 1997] and the one called BMDA (Bivariate Marginal Distribution
Algorithm) [Pelikan and Mühlenbein, 1999].

MIMIC –Mutual Information Maximization for Input Clustering

MIMIC is an EDA proposed for the first time in [de Bonet et al., 1997]. The main idea is to
describe the true mass joint probability as closely as possible by using only one univariate
marginal probability and n− 1 pairwise conditional probability functions.

Given a permutation π = (i1, i2, . . . , in), we define the class of probability functions,
Pπ(x), as

Pπ(x) = {pπ(x) | pπ(x) = p(xi1 | xi2) · p(xi2 | xi3) · . . . · p(xin−1 | xin) · p(xin)} (4.10)
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a) MIMIC structure

b) Tree structure c) BMDA

Figure 4.6: Graphical representation of proposed EDA in combinatorial optimization with pairwise
dependencies (MIMIC, tree structure, BMDA).

where p(xin) and p(xij | xij+1), j = 1, . . . , n−1, are estimated by the marginal and conditional
relative frequencies of the corresponding variables within the subset of selected individuals
DN

l−1 in the lth generation. The goal for MIMIC is to choose the appropriate permutation
π∗ such that the associated pπ∗(x) minimizes the Kullback-Leibler information divergence
between the true probability function, p(x), and the probability functions, pπ(x), of the class
Pπ(x). More formally,

DK−L(p(x), pπ(x)) = Ep(x)

[
log

p(x)

pπ(x)

]
=
∑

x

p(x) log
p(x)

pπ(x)
. (4.11)

This Kullback-Leibler information divergence can be expressed using the Shanon entropy
of a probability function, h(p(x)) = −Ep(x)[log p(x)], in the following way:

DK−L(p(x), pπ(x)) = −h(p(x)) + h(Xi1 | Xi2) +

h(Xi2 | Xi3) + . . . + h(Xin−1 | Xin) + h(Xin) (4.12)

where h(X | Y ) denotes the mean uncertainty in X given Y , that is:

h(X | Y ) =
∑

y

h(X | Y = y)pY (y) (4.13)

and
h(X | Y = y) = −

∑

x

p(X = x | Y = y) log pX|Y (x | y) (4.14)

expresses the uncertainty in X given that Y = y.
The latter equation can be rewritten by taking into account that −h(p(x)) does not

depend on π. Therefore, the task to accomplish is to find the sequence π∗ that minimizes
the expression

Jπ(x) = h(Xi1 | Xi2) + . . . + h(Xin−1 | Xin) + h(Xin). (4.15)

In [de Bonet et al., 1997] the authors prove that it is possible to find an approximation
of π∗ avoiding the need to search over all n! permutations by using a straightforward greedy
algorithm. The proposed idea consists in selecting firstly Xin as the variable with the smallest
estimated entropy, and then in successive steps to pick up the variable –from the set of
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4.3 Estimation of distribution algorithms in discrete domains

MIMIC - Greedy algorithm to obtain π∗

(1) in = arg min
j

ĥ(Xj)

–search for the variable with shortest entropy

(2) ik = arg min
j

ĥ(Xj | Xik+1
)

j 6= ik+1, . . . , in k = n− 1, n− 2, . . . , 2, 1
–every step, from all the variables not selected up to that step, look
for the variable of shortest entropy conditioned to the one before

Figure 4.7: MIMIC approach to estimate the mass joint probability distribution.

variables not chosen so far– such that its average conditional entropy with respect to the
previous one is the smallest.

Figure 4.7 shows the pseudocode of MIMIC.

4.3.4 Multiple interdependencies

Several other EDA approaches in the literature propose the factorization of the joint prob-
ability distribution to be done by statistics of order greater than two. Figure 4.8 shows
different probabilistic graphical models that are included in this category. As the number
of dependencies between variables is greater than in the previous categories, the complexity
of the probabilistic structure as well as the task of finding the best structure that suits the
model is bigger. Therefore, these approaches require a more complex learning process.

The following is a brief review of the most important EDA approaches that can be found
in the literature within this category:

• The FDA (Factorized Distribution Algorithm) is introduced in [Mühlenbein et al.,
1999]. This algorithm applies to additively decomposed functions for which, using the
running intersection property, a factorization of the mass-probability based on residuals
and separators is obtained.

• In [Etxeberria and Larrañaga, 1999] a factorization of the joint probability distribution
encoded by a Bayesian network is learnt from the database containing the selected in-
dividuals in every generation. The algorithm developed is called EBNA (Estimation of
Bayesian Networks Algorithm), and it makes use of the Bayesian Information Criterion
(BIC) score as the measure of the quality of the Bayesian network structure together
with greedy algorithms that perform the search in the space of models. This algorithm
is explained in more detail later in this section as an example of its category.

• In [Pelikan et al., 1999] the authors propose an algorithm called BOA (Bayesian Opti-
mization Algorithm) which uses a Bayesian metric –the Bayesian Dirichlet equivalent
(BDe) [Heckerman et al., 1995]– to measure the goodness of every structure found.
A greedy search procedure is also used for this purpose. The search starts in each
generation from scratch.
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FDA EBNA, BOA EcGA

Figure 4.8: Graphical representation of proposed EDA in combinatorial optimization with multiply
dependencies (FDA, EBNA, BOA and EcGA).

• The LFDA (Learning Factorized Distribution Algorithm) is introduced in [Mühlenbein
and Mahning, 1999], which follows essentially the same approach as in EBNA.

• The Extend compact Genetic Algorithm (EcGA) proposed in [Harik, 1999] is an algo-
rithm of which the basic idea consists in factorizing the joint probability distribution
as a product of marginal distributions of variable size.

EBNA –Estimation of Bayesian Network Algorithm

EBNA is an EDA proposed in [Etxeberria and Larrañaga, 1999] that belongs to the category
of algorithms that take into account multiple interdependencies between variables. This
algorithm proposes the construction of a probabilistic graphical model with no restriction in
the number of parents that variables can have.

In brief, the EBNA approach is based on a score+search method: a measure is selected
to indicate the adequacy of any Bayesian network for representing the interdependencies
between the variables –the score– and this is applied in a procedure that will search for the
structure that obtains a satisfactory score value –the search process.

Scores for Bayesian networks.
In this algorithm, given a database D with N cases, D = {x1, . . . ,xN}, a measure of the

success of any structure S to describe the observed data D is proposed. This measure is
obtained by computing the maximum likelihood estimate –θ̂– for the parameters θ and the
associated maximized log likelihood, log p(D | S, θ̂). The main idea in EBNA is to search
for the structure that maximizes log p(D | S, θ̂) using an appropriate search strategy. This
is done by scoring each structure by means of its associated maximized log likelihood.

Using the notation introduced in Section 4.3.1, we obtain

log p(D | S,θ) = log
N∏

w=1

p(xw | S,θ)

= log

N∏

w=1

n∏

i=1

p(xw,i | paS
i ,θi)

=
n∑

i=1

qi∑

j=1

ri∑

k=1

log(θijk)
Nijk (4.16)
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EBNABIC

M0 ← (S0,θ0)
D0 ← Sample R individuals from M0

For l = 1, 2, . . . until a stop criterion is met
DN

l−1 ← Select N individuals from Dl−1

S∗
l ← Find the structure which maximizes BIC(Sl,D

N
l−1)

θl ← Calculate {θl
ijk =

N l−1
ijk

+1

N l−1
ij +ri

} using DN
l−1 as data set

Ml ← (S∗
l ,θl)

Dl ← Sample R individuals from Ml using PLS

Figure 4.9: Pseudocode for EBNABIC algorithm.

where Nijk denotes the number of cases in D in which the variable Xi has the value xk
i and

P ai is instantiated as its jth value, and Nij =
∑ri

k=1 Nijk.

Knowing that the maximum likelihood estimate for θijk is given by θ̂ijk =
Nijk

Nij
, the

previous equation can be rewritten as

log p(D | S, θ̂) =
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
. (4.17)

For the case of complex models, the sampling error associated with the maximum likeli-
hood estimator might turn out to be too big to consider the maximum likelihood estimate as
a reliable value for the parameter –even for a large sample. A common response to this diffi-
culty is to incorporate some form of penalty depending on the complexity of the model into
the maximized likelihood. Several penalty functions have been proposed in the literature. A
general formula for a penalized maximum likelihood score could be

n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
− f(N)dim(S) (4.18)

where dim(S) is the dimension –i.e. the number of parameters needed to specify the model–
of the Bayesian network following the structure given by S. This dimension is computed as
dim(S) =

∏n
i=1 qi(ri−1). The penalization function f(N) is a non-negative one. Examples of

values given to f(N) in the literature are the Akaike’s Information Criterion (AIC) [Akaike,
1974] –where it is considered as a constant, f(N) = 1– and the Jeffreys-Schwarz criterion
which is also known as the Bayesian Information Criterion (BIC) [Schwarz, 1978] –where
f(N) = 1

2 log N .
Following the latter criterion, the corresponding BIC score –BIC(S,D)– for a Bayesian

network structure S constructed from a database D and containing N cases is as follows:

BIC(S,D) =
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
− log N

2

n∑

i=1

(ri − 1)qi (4.19)

where Nijk and Nij and qi are defined as above.
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EBNAK2

M0 ← (S0,θ0)
D0 ← Sample R individuals from M0

For l = 1, 2, . . . until a stop criterion is met
DN

l−1 ← Select N individuals from Dl−1

S∗
l ← Find the structure which maximizes K2(Sl,D

N
l−1)

θl ← Calculate {θl
ijk =

N l−1
ijk

+1

N l−1
ij +ri

} using DN
l−1 as data set

Ml ← (S∗
l ,θl)

Dl ← Sample R individuals from Ml using PLS

Figure 4.10: Pseudocode for EBNAK2 algorithm.

On the other hand, by assuming that all the local probability distributions θijk in EBNA
follow a Dirichlet distribution with the hyperparameters αijk = 1, these are calculated every
generation using their expected values as obtained in [Cooper and Herskovits, 1992]:

E[θl
ijk | S,DN

l−1] =
N l−1

ijk + 1

N l−1
ij + ri

. (4.20)

The whole approach is illustrated in Figure 4.9, which corresponds to the one developed
originally in [Etxeberria and Larrañaga, 1999]. In this paper, the authors use the penalized
maximum likelihood as the score to evaluate the goodness of each structure found during
the search. In particular, they propose the use of the BIC score. Due to the application
of scores other than BIC, the original EBNA that is illustrated in Figure 4.9 is commonly
known as EBNABIC .

Another score that has also been proposed in the literature is an adaption of the K2
algorithm [Cooper and Herskovits, 1992], which is also known as EBNAK2. Given a Bayesian
network, if the cases occur independently, there are no missing values, and the density of the
parameters given the structure is uniform, then the authors show that

p(D | S) =

n∏

i=1

qi∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

Nijk!. (4.21)

EBNAK2 assumes that an ordering on the variables is available and that, a priori, all
structures are equally likely. It searches, for every node, the set of parent nodes that maxi-
mizes the following function:

g(i,P ai) =

qi∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

Nijk!. (4.22)

Following this definition, the corresponding K2 score –K2(S,D)– for a Bayesian network
structure S constructed from a database D and containing N cases is:

K2(S,D) =
n∑

i=1

g(i,P ai) =
n∑

i=1




qi∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

Nijk!



 (4.23)
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where Nijk and Nij and qi are defined as above.

EBNAK2 is proposed as a greedy heuristic. It starts by assuming that a node does
not have parents, then in each step it adds incrementally that parent whose addition most
increases the probability of the resulting structure. EBNAK2 stops adding parents to the
nodes when the addition of a single parent can not increase this probability. Obviously, as
well as with EBNABIC , this approach does not guarantee to obtain the structure with the
highest probability.

Search methods.
Regarding the search method that is combined with the score, in order to obtain the best

existing model all possible structures must be searched through. Unfortunately, this has been
proved to be NP-hard [Chickering et al., 1994]. Even if promising results have been obtained
through global search techniques [Etxeberria et al., 1997a,b, Larrañaga et al., 1996a,b,c],
their computation cost makes them impractical for our problem. As the aim is to find a
satisfactory model as good as possible –even if not the optimal– in a reasonable period of
time, a simpler search method that avoids analyzing all the possible structures is preferred.
An example of the latter is the so called B Algorithm [Buntine, 1991]. The B Algorithm is a
greedy search heuristic which starts from an arc-less structure and adds iteratively the arcs
that produce maximum improvement according to the BIC approximation –although other
measures could also be applied. The algorithm stops when adding another arc would not
increase the score of the structure.

Local search strategies are another way of obtaining good models. These start from a
given structure, and every step the addition or deletion of an arc that improves most the
scoring measure is performed. Local search strategies stop when no modification of the
structure improves the scoring measure. The main drawback of local search strategies is
their heavy dependence on the initial structure. Nevertheless, as [Chickering et al., 1995]
showed that local search strategies perform quite well when the initial structure is reasonably
good, the model of the previous generation could be used as the initial structure when the
search is based on the assumption that p(x | DN

l ) will not differ very much from p(x | DN
l−1)

The initial model M0 in EBNA is formed by a structure S0, which is an arc-less DAG,
and the local probability distributions given by the n unidimensional marginal probabilities
p(Xi = xi) = 1

ri
, i = 1, . . . , n –that is, M0 assigns the same probability to all individuals.

The model of the first generation –M1– is learnt using Algorithm B, while the rest of the
models are learnt by means of a local search strategy which take the model of the previous
generation as the initial structure.

4.4 Estimation of distribution algorithms in continuous do-

mains

4.4.1 Introduction

This section complements the previous two ones, as it introduces the EDA algorithms for
their use in optimization in continuous domains. The continuous EDAs will be discussed
following the same layout as in the previous sections. All the continuous EDA approaches will
be also classified using an analogous comparison based on the complexity of the estimation
of the probability distribution. In this case, as we are in the continuous domain, the density
function will be factorized as a product of n conditional density functions.
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The notation for continuous EDAs does not vary significantly from the one presented for
discrete EDAs, as continuous EDAs follow essentially equivalent steps to approximate the
best solution, and therefore Figure 4.5 is still valid to describe the continuous EDA approach
(it would be enough with substituting pl(x) by fl(x)). Nevertheless, regarding the learning
and simulation steps, EDAs in the continuous domain have some characteristics that make
them very particular.

Let Xi ∈ X be a continuous variable. Similarly as in the discrete domain, a possible
instantiation of Xi will be denoted xi, and D will denote a data set, i.e., a set of R instan-
tiations of the variables (X1, . . . ,Xn). In the continuous domain, again x = (x1, . . . , xn)
represents an individual of n variables, Dl denotes the population of R individuals in the lth

generation, and DN
l represents the population of the selected N individuals from Dl, and

as for the discrete case, the main task is still to estimate the joint density function at every
generation. We will denote by fl(x | DN

l−1) the joint conditional density function at the lth

generation.
The most difficult step in here is also the search of interdependencies between the different

variables. Again, in continuous EDAs probabilistic models are induced from the best N
individuals of the population. Once the structure is estimated, this model is sampled to
generate the R new individuals that will form the new generation. As the estimation of the
joint density function is a tedious task, approximations are applied in order to estimate the
best joint density function according to the probabilistic model learned at each generation.

As with the discrete domain, all the continuous EDA approaches can be divided in
different categories depending on the degree of dependency that they take into account.
Following the classification in [Larrañaga and Lozano, 2001], we will divide all the continuous
EDA in three main categories.

4.4.2 Without dependencies

This is the category of algorithms that do not take into account dependencies between any
of the variables. In this case, the joint density function is factorized as a product of n
one-dimensional and independent densities. Examples of continuous EDAs in this category
are the Univariate Marginal Distribution Algorithm for application in continuous domains
(UMDAc) [Larrañaga et al., 2000], Stochastic Hill-Climbing with Learning by Vectors of Nor-
mal Distributions (SHCLVND) [Rudlof and Köppen, 1996], Population-Based Incremental
Learning for continuous domains (PBILc) [Sebag and Ducoulombier, 1998], and the algo-
rithm introduced in [Servet et al., 1997]. As an example of all these, UMDAc is shown more
in detail.

UMDAc

The Univariate Marginal Distribution Algorithm for application in continuous domains
(UMDAc) was introduced in [Larrañaga et al., 2000]. In this approach, every generation
and for every variable some statistical tests are performed to obtain the density function
that best fits the variable. In UMDAc the factorization of the joint density function is given
by

fl(x;θl) =
n∏

i=1

fl(xi,θ
l
i). (4.24)

Unlike UMDA in the discrete case, UMDAc is a structure identification algorithm mean-
ing that the density components of the model are identified with the aid of hypothesis tests.
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UMDAc

** learning the joint density function **
for l = 1, 2, . . . until the stopping criterion is met

for i = 1 to n do

(i) select via hypothesis test the density function fl(xi;θ
l
i) that

best fits DN,Xi

l−1 , the projection of the selected individuals over the ith variable

(ii) obtain the maximum likelihood estimates for θl
i = (θl,k1

i , . . . , θl,ki

i )

Each generation the learnt joint density function is expressed as:

fl(x;θl) =
∏n

i=1 fl(xi, θ̂
l

i )

Figure 4.11: Pseudocode to estimate the joint density function followed in UMDAc.

Once the densities have been identified, the estimation of parameters is carried out by means
of their maximum likelihood estimates.

If all the univariate distributions are normal distributions, then for each variable two
parameters are estimated at each generation: the mean, µl

i, and the standard deviation, σl
i.

It is well known that their respective maximum likelihood estimates are:

µ̂i
l = Xi

l
=

1

N

N∑

r=1

xl
i,r; σ̂i

l =

√√√√ 1

N

N∑

r=1

(
xl

i,r −Xi
l
)2

(4.25)

This particular case of the UMDAc is called UMDAG
c (Univariate Marginal Distribution

Algorithm for Gaussian models).

Figure 4.11 shows the pseudocode to learn the joint density function followed by UMDAc.

4.4.3 Bivariate dependencies

MIMICG
c

This algorithm was introduced in [Larrañaga et al., 2000] and is basically an adaptation of the
MIMIC algorithm [de Bonet et al., 1997] to the continuous domain. In this, the underlying
probability model for every pair of variables is assumed to be a bivariate Gaussian.

Similarly as in MIMIC, the idea is to describe the underlying joint density function
that fits the model as closely as possible to the empirical data by using only one univariate
marginal density and n − 1 pairwise conditional density functions. For that, the following
theorem [Whittaker, 1990] is used:

Theorem 4.1: [Whittaker, 1990, pp. 167] Let X be a n–dimensional normal density
function, X ≡ N (x;µ,

∑
), then the entropy of X is

h(X) =
1

2
n(1 + log 2π) +

1

2
log |∑ | . (4.26)
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MIMICG
c

Choose in = arg minj σ̂2
Xj

for k = n− 1, n− 2, . . . , 1

Choose ik = arg minj σ̂2
Xj
−

σ̂2
XjXik+1

σ̂2
Xik+1

j 6= ik+1, . . . , in

Figure 4.12: Adaptation of the MIMIC approach to a multivariate Gaussian density function.

When applying this result to univariate and bivariate normal density functions to define
MIMICG

c , we obtain that

h(X) =
1

2
(1 + log 2π) + log σX (4.27)

h(X | Y ) =
1

2

[
(1 + log 2π) + log

(
σ2

Xσ2
Y − σ2

XY

σ2
Y

)]
(4.28)

where σ2
X(σ2

Y ) is the variance of the univariate X(Y ) variable and σXY denotes the covariance
between the variables X and Y .

The learning of the structure in MIMICG
c is shown in Figure 4.12. It follows a straightfor-

ward greedy algorithm composed of two steps. In the first one, the variable with the smallest
sample variance is chosen. In the second step, the variable X with the smallest estimation

of
σ2

X
σ2

Y
−σ2

XY

σ2
Y

regarding the variable Y chosen in the previous iteration is selected, and X is

linked to Y in the structure.

4.4.4 Multiple interdependencies

Algorithms in this section are approaches of EDAs for continuous domains in which there is
no restriction on the number of interdependencies between variables to take into account on
the density function learnt at every generation. In the first example introduced, the density
function corresponds to a non restricted multivariate normal density that is learned from
scratch at each generation. The next two examples are respectively an adaptation and an
improvement of this first model. Finally, this section also introduces edge exclusion test
approaches to learn from Gaussian networks, as well as two score+search approaches to
search for the most appropriated Gaussian network at each generation.

EMNAglobal

This approach performs the estimation of a multivariate normal density function at each
generation. Figure 4.13 shows the pseudocode of EMNAglobal (Estimation of Multivariate
Normal Algorithm – global). In EMNAglobal, at every generation we proceed as follows: the
vector of means µl = (µ1,l, . . . , µn,l), and the variance–covariance matrix Σl are computed.
The elements of the latter are represented as σ2

ij,l with i, j = 1, . . . , n. As a result, at every

generation all the 2n +

(
n− 1

2

)
parameters need to be estimated: n means, n variances
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EMNAglobal

D0 ← Generate R individuals (the initial population) at random

for l = 1, 2, . . . until the stopping criterion is met

DN
l−1 ← Select N < R individuals from Dl−1 according to the

selection method

fl(x) = f(x | DN
l−1) = N (x;µl,Σl) ← Estimate the multivariate

normal density function from the selected individuals

Dl ← Sample R individuals (the new population) from fl(x)

Figure 4.13: Pseudocode for the EMNAglobal approach.

and

(
n− 1

2

)
covariances. This is performed using their maximum likelihood estimates in

the following way:

µ̂i,l =
1

N

N∑

r=1

xl
i,r i = 1, . . . , n

σ̂2
i,l =

1

N

N∑

r=1

(xl
i,r −X

l
i)

2 i = 1, . . . , n

σ̂2
ij,l =

1

N

N∑

r=1

(xl
i,r −X

l
i)(x

l
j,r −X

l
j) i, j = 1, . . . , n i 6= j. (4.29)

At a first glance the reader could think that this approach requires much more computa-
tion than in the other cases in which the estimation of the joint density function is done with
Gaussian networks. However, the mathematics on which this approach is based are quite
simple. On the other hand, approaches based on edge exclusion tests on Gaussian networks
also require the computation of as many parameters as the ones needed by this approach
in order to carry out a hypothesis test on them. Moreover, the second type of Gaussian
network approaches based on score+search methods also require a lot of extra computation,
as the searching process needs to look for the best structure over the whole space of possible
models. The reader can find more details about EMNAglobal in [Larrañaga et al., 2001].

EMNAa

EMNAa (Estimation of Multivariate Normal Algorithm – adaptive) is an adaptive version
of the previous approach.

The biggest particularity of this algorithm is the way of obtaining the first model,
N (x;µ1,Σ1), the parameters of which are estimated from the best individuals selected in
the initial population. After this step, EMNAa behaves as a steady–step genetic algorithm.
The pseudocode for EMNAa is given in Figure 4.14.

Every iteration, an individual from the current multivariate normal density model is
sampled. Next, the goodness of this simulated individual is compared to the worst individual

62 Endika Bengoetxea, PhD Thesis, 2002



Estimation of distribution algorithms

EMNAa

D0 ← Generate R individuals (the initial population) at random

Select N < R individuals from D0 according to the selection method

Obtain the first multivariate normal density N (x;µ1,Σ1)

for l = 1, 2, . . . until the stopping criterion is met

Generate an individual xl
ge from N (x;µl,Σl)

if xl
ge is better than the worst individual, xl,N , then

1.- Add xl
ge to the population and drop xl,N from it

2.- Obtain N
(
x;µl+1,Σl+1

)

Figure 4.14: Pseudocode for the EMNAa approach.

of the current population. If the fitness value of the new individual has a better value, then
the new individual replaces the worst one in the population. In the latter case, it is also
necessary to update the parameters of the multivariate normal density function.

The updating of the density function is done using the following formulas that can be
obtained by means of simple algebraic manipulations [Larrañaga et al., 2001]:

µl+1 = µl +
1

N

(
xl

ge − xl,N
)

(4.30)

σ2
ij,l+1 = σ2

ij,l −
1

N2

(
xl

ge,i − xl,N
i

)
·

N∑

r=1

(
xl,r

j − µl
j

)
− 1

N2

(
xl

ge,j − xl,N
j

)
·

N∑

r=1

(
xl,r

i − µl
i

)

+
1

N2

(
xl

ge,i − xl,N
i

)(
xl

ge,j − xl,N
j

)
− 1

N

(
xl,N

i − µl+1
i

)(
xl,N

j − µl+1
j

)

+
1

N

(
xl

ge,i − µl+1
i

)(
xl

ge,j − µl+1
j

)
(4.31)

where xl
ge represents the individual generated in the lth iteration. Note also that in the

EMNAa approach the size of the population remains constant every generation independently
of the fitness of the individual sampled.

EMNAi

EMNAi (Estimation of Multivariate Normal Algorithm – incremental) is a new approach
following a similar idea of EMNAa, as both algorithms generate each generation a simple
individual which fitness value is compared to the worst individual in the current population.
However, the biggest difference between them is what happens with the worst individual
when its fitness value is lower than the new individual: in EMNAi the worst individual
remains in the population, and therefore the population increases in size in those cases. Its
main interest is that the rules to update the density function are simpler than in EMNAa.

The reader is referred to [Larrañaga et al., 2001] for more details about this algorithm.
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EGNAee, EGNABGe, EGNABIC

For l = 1, 2, . . . until the stopping criterion is met

DN
l−1 ← Select N individuals from Dl−1

(i) Ŝl ← Structural learning via:
edge exclusion tests → EGNAee

Bayesian score+search → EGNABGe

penalized maximum likelihood + search → EGNABIC

(ii) θ̂l ← Calculate the estimates for the parameters of Ŝl

(iii) Ml ← (Ŝl, θ̂
l)

(iv) Dl ← Sample R individuals from Ml using the continuous version
of the PLS algorithm

Figure 4.15: Pseudocode for the EGNAee, EGNABGe, and EGNABIC algorithms.

EGNAee, EGNABGe, EGNABIC

The optimization in continuous domains can also be carried out by means of the learning and
simulation of Gaussian networks. An example of this is the EGNA approach (Estimation
of Gaussian Networks Algorithm), which is illustrated in Figure 4.15. This approach has
three versions: EGNAee [Larrañaga et al., 2000, Larrañaga and Lozano, 2001], EGNABGe

and EGNABIC [Larrañaga et al., 2001]. The basic steps of these algorithms each iteration
are as follows:

1. Obtain the Gaussian network structure by using one of the different methods pro-
posed, namely edge–exclusion tests, Bayesian score+search, or penalized maximum
likelihood+search.

2. Computation of estimates for the parameters of the learned Gaussian network struc-
ture.

3. Generation of the Gaussian network model.

4. Simulation of the joint density function expressed by the Gaussian network learned in
the previous steps. An adaptation of the PLS algorithm to continuous domains is used
for this purpose.

The main difference between all these EGNA approaches is the way of inducing the Gaus-
sian network: in EGNAee the Gaussian network is induced at each generation by means of
edge exclusion tests, while the model induction in the EGNABGe and EGNABIC is car-
ried out by score+search approaches. EGNABGe makes use of a Bayesian score that gives
the same value for Gaussian networks reflecting identical conditional (in)dependencies, and
EGNABIC uses a penalized maximum likelihood score based on the Bayesian Information
Criterion (BIC). In both EGNABGe and EGNABIC a local search is used to search for good
structures. These model induction methods are reviewed in the next subsection.
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Applications of these EGNA approaches can be found in Cotta et al. (2001), Bengoetxea
et al. (2001a), Lozano and Mendiburu (2001) and Robles et al. (2001).

Next, three different methods that can be applied to induce Gaussian networks from data
are introduced. The first of them is based on edge exclusion tests, while the other two are
score+search methods.

Edge exclusion tests

Dempster (1972) introduced a type of graphical Gaussian models on which the structure of
the precision matrix is modelled rather than the variance matrix itself. The aim of this is to
simplify the joint n–dimensional normal density by checking if a particular element wij with
i = 1, . . . n− 1 and j > i of the n × n precision matrix W can be set to zero. In [Wermuth,
1976] it was shown that fitting these models is equivalent to check the conditional indepen-
dence between the corresponding elements of the n–dimensional variable X . [Speed and
Kiiveri, 1986] showed that this procedure is equivalent to check the possibility of deleting
the arc connecting the nodes corresponding to Xi and Xj in the conditional independence
graph. That is why these tests are commonly known as edge exclusion tests. As the fact
of excluding any edge connecting Xi and Xj is analogous to accepting the null hypothesis
H0 : wij = 0 with the alternative hypothesis HA : wij unspecified, many graphical model
selection procedures have a first step performing the (n2 ) single edge exclusion tests. In this
first step, likelihood ratio statistic is evaluated and compared to a χ2 distribution. However,
the use of this distribution is only asymptotically correct. In [Smith and Whittaker, 1998]
the authors introduced an alternative to these tests based on the likelihood ratio test that
is discussed next.

The likelihood ratio test statistic to exclude the arc between Xi and Xj from a graphical
Gaussian model is defined as Tlik = −n log(1 − r2

ij|rest
), where rij|rest is the sample partial

correlation of Xi and Xj adjusted for the rest of the variables. This can be expressed
in terms of the maximum likelihood estimate for every element of the precision matrix as
rij|rest = −ŵij(ŵiiŵjj)

− 1
2 [Whittaker, 1990].

In [Smith and Whittaker, 1998] the density and distribution functions of the likelihood
ratio test statistic is obtained through the null hypothesis. These expressions are of the form:

flik(t) = gX (t) +
1

4
(t− 1)(2n + 1)gX (t)N−1 +©(N−2)

Flik(x) = GX (x) +−1

2
(2n + 1)xgX (x)N−1 +©(N−2) (4.32)

where gX (t) and GX (x) are the density and distribution functions of a X 2
1 variable respec-

tively.

Score+search methods

The idea behind this other approach consists in defining a measure to evaluate each candidate
Gaussian network (i.e. the score) and to use a method to search in the space of possible
structures the one with the best score (i.e. the search).

All the search methods discussed for Bayesian networks can also be applied for Gaussian
networks. In Section 4.3.4 two scores called BIC and K2 were introduced, as well as two
search procedures called B Algorithm and local search. Variants of these two search strategies
could also be applied for Gaussian networks.
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Regarding the score metrics for the continuous domain, different score metrics can be
found in the literature in order evaluate how accurately a Gaussian network represents data
dependencies. We will discuss the use of two types of them: the penalized maximum likeli-
hood metric and Bayesian scores.

Penalized maximum likelihood: If L(D | S,θ) is the likelihood of the database D =
{x1, . . . ,xN} given a Gaussian network model M = (S,θ), then we have that:

L(D | S,θ) =

N∏

r=1

n∏

i=1

1√
2πvi

e
− 1

2vi
(xir−mi−

∑
xj∈pai

bji(xjr−mj))2
. (4.33)

The maximum likelihood estimates for θ = (θ1, . . . ,θn), namely θ̂ = (θ̂1, . . . , θ̂n),
are obtained either by maximizing L(D | S,θ) or also by maximizing the expression
lnL(D | S,θ). The definition of the latter is as follows:

ln L(D | S,θ) =

N∑

r=1

n∑

i=1

[− ln(
√

2πvi)−
1

2vi
(xir −mi−

∑

xj∈pai

bji(xjr −mj))
2] (4.34)

where θ̂ = (θ̂1, . . . , θ̂n) are the solutions of the following equation system:






∂
∂mi

ln L(D | S,θ) = 0 i = 1, . . . , n

∂
∂vi

ln L(D | S,θ) = 0 i = 1, . . . , n

∂
∂bji

ln L(D | S,θ) = 0 j = 1, . . . , i− 1 and Xj ∈ P ai

(4.35)

As proved in [Larrañaga et al., 2001], the maximum likelihood estimates for θi =
(mi, bji, vi) with i = 1, . . . , n and j = 1, . . . , i − 1 and Xj ∈ P ai are obtained as
follows:

m̂i = X i

b̂ji =
SXjXi

S2
Xj

v̂i = S2
Xi
−

∑

Xj∈P ai

SXjXi

S2
Xj

+ 2
∑

Xj∈P ai

∑

Xk∈P aik>j

SXjXk
SXjXi

SXkXi

S2
Xj

S2
Xk

(4.36)

where Xi = 1
N

∑N
r=1 xir is the sample mean of variable Xi, S2

Xj
= 1

N

∑N
r=1

(
xjr −Xj

)2

denotes the sample variance of variable Xj , and SXjXi
= 1

N

∑N
r=1

(
xjr −Xj

) (
xir −Xi

)

denotes the sample covariance between variables Xj and Xi. Note that in the case of
P ai = ∅, the variance corresponding to the ith variable becomes only dependent on
the value S2

Xi
, as all the rest of the terms in the formula become 0.
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As stated before, a general formula for a penalized maximum likelihood score is

N∑

r=1

n∑

i=1



− ln(
√

2πvi)−
1

2vi



xir −mi−
∑

xj∈pai

bji(xjr −mj)




2

− f(N)dim(S).

(4.37)
The number of parameters, dim(S), required to fully specify a Gaussian network model
with a structure given by S can be obtained using the following formula:

dim(S) = 2n +

n∑

i=1

| P ai | . (4.38)

In fact, for each variable Xi we need to compute its mean, µi, its conditional variance,
vi, and its regression coefficients, bji. The comments on f(N) in Section 3.3.2 are also
valid here.

Bayesian scores: The Bayesian Dirichlet equivalent metric (BDe) [Heckerman et al., 1995]
has a continuous version for Gaussian networks [Geiger and Heckerman, 1994] called
Bayesian Gaussian equivalence (BGe). This metric has the property of being score
equivalent. As a result, two Gaussian networks that are isomorphic –i.e. they represent
the same conditional independence and dependence assertions– will always obtain the
same score.

The metric is based upon the fact that the normal–Wishart distribution is conjugate
with regard to the multivariate normal. This fact allows us to obtain a closed formula
for the computation of the marginal likelihood of the data once given the structure.

[Geiger and Heckerman, 1994] proved that the marginal likelihood for a general Gaus-
sian network can be computed using the following formula:

L(D | S) =

n∏

i=1

L
(
DXi∪P ai | Sc

)

L
(
DP ai | Sc

) (4.39)

where each term is on the form given in Equation 4.40, and where DXi∪P ai is the
database D restricted to the variables Xi ∪ P ai.

Combining the results provided by the theorems given in [de Groot, 1970, Geiger and
Heckerman, 1994] we obtain:

L(D | Sc) = (2π)−
nN
2

(
ν

ν + N

)n
2 c(n, α)

c(n, α + N)
|T0|

α
2 |TN |−

α+N
2 (4.40)

where c(n, α) is defined as

c(n, α) =

[
2

αn
2 π

n(n−1)
4

n∏

i=1

Γ

(
α + 1− i

2

)]−1

. (4.41)

This result yields a metric for scoring the marginal likelihood of any Gaussian network.

The reader is referred to [Geiger and Heckerman, 1994] for a discussion on the three
components of the user’s prior knowledge that are relevant for the learning in Gaussian
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networks: (1) the prior probabilities p(S), (2) the parameters α and ν, and (3) the
parameters µ0 and T0.

4.5 Estimation of distribution algorithms for inexact graph

matching

After having introduced the notation for EDAs in Sections 4.2.1 and 4.3.1, we will define
the way of solving the inexact graph matching problem using any of the EDA approaches
introduced so far.

4.5.1 Discrete domains

The representation of individuals that will be used in this section is the one proposed in
the second representation of individuals in Section 3.3. The permutation-based representa-
tion will be used when applying continuous EDAs, as this representation is more suited for
them –a deeper explanation of this is given in Section 4.5.2. When using discrete EDAs, a
permutation-based representation will add an extra step for translating the individual to the
solution it symbolizes before the individual can be evaluated applying the fitness function,
with the consequent lack of performance. In the second representation of Section 3.3 we
have individuals that contain directly the solution they symbolize, and therefore the fitness
function is applied directly.

Let GM = (VM , EM ) be the model graph, and GD = (VD, ED) the data graph ob-
tained from a segmented image. The size of the individuals will be n = |VD|, that is,
X = (X1, . . . ,X|VD |) is a n-dimensional variable where each of its components can take |VM |
possible values (i.e. in our case ri = |VM | for i = 1, . . . , |VD|). We denote by x1

i , . . . , x
|VM |
i

the possible values that the ith variable, Xi, can have.

In the same way, for the unrestricted discrete distributions θijk, the range of i, j and k for
graph matching using the representation of individuals proposed is as follows: i = 1, . . . , |VD|,
k = 1, . . . , |VM |, and j = 1, . . . , qi, where qi = |VM |npai and npai denotes the number of
parents of Xi.

4.5.1.1 Estimating the probability distribution

We propose three different EDAs to be used to solve inexact graph matching problems in the
discrete domain. The fact that the difference in behavior between algorithms is to a large
extent due to the complexity of the probabilistic structure that they have to build, these
three algorithms have been selected so that they are representatives of the many different
types of discrete EDAs. Therefore, these algorithms can be seen as representatives of the
three categories of EDAs introduced in Section 4.3: (1) UMDA [Mühlenbein, 1998] is an
example of an EDA that considers no interdependencies between the variables (i.e. the
learning is only parametrical, not structural). This assumption can be allowed in the case of
inexact graph matching depending on the complexity of the problem, and mostly depending
on |VM | and |VD|. It is important to realize that a balance between cost and performance
must be achieved, and therefore, in some complex problems the use of UMDA can be justified
when trying to shorten the computation cost. Nevertheless, other algorithms that do not
require such assumptions should return a better result if fast computation is not essential.
(2) MIMIC [de Bonet et al., 1997] is an example that belongs to the category of pairwise
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dependencies. Therefore, there is an extra task in MIMIC, which is the construction of the
probabilistic graphical model that represents the pairwise dependencies. As a result, when
applying this algorithm to graph matching, the computation time for the structural learning
is proportional to the number of vertices of the graphs (|VM | and |VD|). This shows again
that due to the higher cost that MIMIC has UMDA can be used in order to obtain best
results in a fixed period of time. (3) EBNA [Etxeberria and Larrañaga, 1999] is an example
of the category of EDAs where multiple interdependencies are allowed between the variables,
on which the structural learning is even more complex than in the two previous algorithms.
The models constructed with EDAs describe the interdependencies between the different
variables more accurately than those of MIMIC (and, obviously, better than with UMDA).
Nevertheless, as the size of the graphs to match has a direct influence on the complexity
of the Bayesian network to be build (the complexity and the computation time increase
exponentially with |VM | and |VD|), the use of other simpler probabilistic graphical models
–which restrict the number of parents that a variable can have in the probabilistic structure–
such as the two proposed above is justified.

Finally, a last remark about the fact that within the same algorithm there are sometimes
different techniques to find the probabilistic structure that best suits the n–dimensional
probabilistic model. In the case of Bayesian networks for instance, there are two ways
of building the graph: by detecting dependencies, and through score and search [Buntine,
1996, de Campos, 1998, Heckerman, 1995, Krause, 1998, Sangüesa and Cortés, 1998]. These
different possibilities can also have an influence on the structure estimated at each generation
to represent the model. In the case of EBNA a score+search method using the BIC score is
used, although any other score could also be used.

4.5.1.2 Adapting the simulation scheme to obtain correct individuals

Section 3.3.3 introduces the conditions that have to be satisfied to consider an individual as
correct for the particular graph matching problems that we are considering in this thesis.
In the same section we also showed that, in order to consider a solution as correct, the only
condition to check is that all the vertices in graph GM contain at least a matching, that is,
that every vertex of GM appears in the individual at least once. If we include a method in
EDAs to ensure that this condition will be satisfied by each individual sampled, this would
prevent the algorithm from generating incorrect individuals like the one in Figure 3.3b.

There are at least three ways of facing the problem of the existence of incorrect individuals
in EDAs: controlling directly the simulation step, correction a posteriori, and changing the
fitness function. The first technique can only be applied to EDAs, as it is based on modifying
the previously estimated probability distribution and therefore it cannot be put into practice
on other types of algorithms. The last two techniques can be applied to EDAs and other
heuristics that deal with constraints. In [Michalewicz, 1992, Michalewicz and Schoenauer,
1996] we can find examples of GAs applied to problems where individuals must satisfy specific
constraints for the problem.

Next, we discuss some examples of these techniques to control the generation of the
individuals. Even if all of them are presented as a solution to graph matching, they can
equally be applied to any other problem where individuals must satisfy any constraints.

Controlling directly the simulation step
Up to now in most of the problems where EDAs have been applied no constraints had to be

taken into account. This is the reason why very few articles about modifying the simulation
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step for this purpose can be found –some of them are for instance [Bengoetxea et al., 2000,
2002a] and [Santana and Ochoa, 1999]. In our inexact graph matching problem the nature
of the individuals is special enough to require a modification of this simulation step. Two
different ways of modifying the simulation step are introduced in this section.

However, it is important to note that altering the probabilities at the simulation step,
whichever the way, implies that the learning of the algorithm is also denaturalized somehow.
It is therefore very important to make sure that the manipulation is only performed to guide
the generation of potentially incorrect individuals towards correct ones.

• Last Time Manipulation (LTM): forcing the selection of values still to ap-
pear only at the end. This method consists in not altering the simulation step
during the generation of the individual until the number of vertices of GM remaining
to match and the number of variables to be simulated in the individual are equal. For
instance, this could happen when three vertices of GM have not been matched yet and
the values of the last three variables have to be calculated for an individual. In this
case, we will force the simulation step so that only these three values could be sampled
in the next variable.

In order to force the next variable of the individual to take only one of the values that
have not still appeared, the value of the probabilities that are used to perform the sim-
ulation will be changed. In this way, we will set the probability of all the values already
appeared in the individual to 0, and the probabilities of the values not still appeared will
be modified accordingly. More formally, the procedure to generate an individual will
follow the order π = (π(1), π(2), . . . , π(|VD |)), that is, all the variables will be instanti-
ated in the following order:

(
Xπ(1),Xπ(2), . . . ,Xπ(|VD |)

)
. If we are instantiating the mth

variable (i.e. we are sampling the variable Xπ(m)), the following definitions apply: let
be V NO(VM )m = {ui

M ∈ VM | @Xj ∈ X j ∈ {π(1), . . . , π(m−1)}, Xj = i} the set
that contains all the vertices of GM not yet matched in the individual in the previous
m− 1 steps (V NO stands for Vertices Not Obtained), vnsm = |VD|−m is the number
of variables still to be simulated, θπ(m)lk is the probability of the variable Xπ(m) to take

the value xk
π(m) (its kth value) knowing that its parents are already on their lth possible

combination of values (as π follows an ancestral ordering, we know that the parent
variables of Xπ(m) have already been instantiated in the previous m − 1 steps), and
Pm

Indiv =
∑

k | uk
M

∈VM\V NO(VM )m θπ(m)lk. With these definitions, following this method

we will only modify the θπ(m)lk values when the condition |V NO(VM )m| = vnsm is

satisfied. When this is the case, the probability for the value xk
π(m) to appear next in

the variable Xπ(m) of the individual knowing that its parents are in the lth combination
of values, θ∗

π(m)lk, will be adapted as follows:

θ∗π(m)lk =

{
θπ(m)lk · 1

1−P m
Indiv

if u
π(m)
M ∈ V NO(VM )m

0 otherwise.
(4.42)

Once the probabilities have been modified, it is guaranteed that the only values assigned
to Xπ(m) will be one of the vertices of VM not still obtained (a vertex from V NO(VM )m),
as the probability to obtain next any vertex from VM\V NO(VM )m has been set to 0.
This modification of the θπ(m)lk has to be repeated for the rest of the variables of the
individual, but taking into account that in the next step there is one more value which
probability has to be set to 0, and thus Pm

Indiv must be computed again. Following this
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Adaptation 1 of PLS: Last Time Manipulation (LTM)

Definitions
vnsm: number of variables not simulated before the mth step
V NO(VM )m: set of vertices of VM not matched by simulation before

the mth step
Pm

Indiv: sum of the probabilities to appear next in the individual any vertex
of VM already matched before the mth step

θijk: probability to appear the value k next in the variable Xi knowing that
the values defined in the individual for its parents are on their jth

possible combination of values

Procedure
Find an ancestral ordering, π, of the nodes in the Bayesian network
For m = π(1), π(2), . . . , π(|VD|) (number of variables, to sample following
the ancestral ordering π)

If (|V NO(VM )m| == vnsm)
For k = 1, 2, . . . , |VM | (number of values for each variable)

Modify the probabilities: the modified probability for the
value k to appear next in the variable Xπ(m) of the
individual for the lth combination of values of its
parents, θ∗

π(m)lk, is

θ∗
π(m)lk =

{
θπ(m)lk · 1

1−P m

Indiv

if u
π(m)
M ∈ V NO(VM )m

0 otherwise

where Pm
Indiv =

∑
k | uk

M
∈VM\V NO(VM )m θilk, and l is the

combination of values of the parent variables of Xπ(m)

(which have been previously instantiated in the previous
m− 1 iterations)

Xπ(m) ← generate a value from θ∗
π(m)lk = p

(
Xπ(m) = k | pal

π(m)

)

Else

Xπ(m) ← generate a value from θπ(m)lk = p
(
Xπ(m) = k | pal

π(m)

)

Figure 4.16: Pseudocode for Last Time Manipulation (LTM).

method, at the last step (m = |VD|), only one value v will have its probability set to
θ∗
π(m)lv = 1 and for the rest of the values θ∗

π(m)lw = 0 ∀w 6= v. Therefore, the only
value that will be assigned to the variable X|VD | will be v.

This technique does not modify the probabilities of the variables in any way until
|V NO(VM )m| = vnsm. Therefore, the simulation step will remain as it is, without
any external manipulation unless the latter condition is satisfied. However, when that
condition is satisfied the method will modify the actual distribution that the values
will follow.

Figure 4.16 shows the pseudocode of this first adaptation of PLS. A detailed example
of LTM can also be found in Appendix B.

• All Time Manipulation (ATM): increasing the probability of the values not
appeared from the beginning. This second technique is another way of manipu-
lating the probabilities of the values for each variable within the individual, but this
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time the manipulation takes place not only at the end but from the beginning of the
generation of the individual. The value of the probabilities remains unaltered only
after all the possible values of the variables have already appeared in the individual
(that is, when V NO(VM ) = ∅).
For this, again the order of sampling the variables π will be followed, instantiating
them in the same order

(
Xπ(1),Xπ(2), . . . ,Xπ(|VD |)

)
. Every step the probabilities of

a variable will be modified before its instantiation. The required definitions for the
mth step (the sampling of the variable Xπ(m)) are as follows: let |VD| be number of
variables of each individual, let also be V NO(VM )m, vnsm, and θπ(m)lk as defined
before. The latter probability will be modified with this method obtaining the new
θ∗
π(m)lk as follows:

θ∗π(m)lk =






θπ(m)lk · K−P m
Indiv

K·(1−P m
Indiv)

if ui
M ∈ V NO(VM )m and

|V NO(VM )m| 6= vnsm

θπ(m)lk

K
if ui

M 6∈ V NO(VM )m and
|V NO(VM )m| 6= vnsm

θπ(m)lk · 1
1−P m

Indiv
if ui

M ∈ V NO(VM )m and

|V NO(VM )m| = vnsm

0 if ui
M 6∈ V NO(VM )m and

|V NO(VM )m| = vnsm

(4.43)

where K =
⌈

N−vnsm

vnsm−|V NO(VM )m|

⌉
, and Pm

Indiv =
∑

uk
m∈VM\V NO(VM )m θπ(m)lk.

In fact, the two last cases are defined only to avoid the division by zero problem, but
these two cases can also be calculated when using limits, as the |V NO(VM )m| = vnsm

case can be understood as the limit when K −→∞:

|V NS(VD)| = |V NO(VM )| ⇒

θ∗ijk = lim
K→∞

(
θijk ·

K − PIndiv

K · (1− PIndiv)

)
=

= θijk · lim
K→∞

(
1− PIndiv

K

1− PIndiv

)
= θijk ·

1

1− PIndiv

and

|V NS(VD)| = |V NO(VM )| ⇒

θ∗ijk = lim
K→∞

(
θijk

K

)
= 0

The reason to modify the probabilities in such a manner is that at the beginning, when
vnsm is much bigger than |V NO(VM )m|, there is still time for all the values to appear
in the individual, and thus the probabilities are not modified very much. Only when
|V NO(VM )m| starts to be very close to vnsm will the effect of the manipulation be
stronger, meaning that there are not much variables to be instantiated regarding the
values not appeared yet on the individual. Finally, when |V NO(VM )m| = vnsm, there
is no chance to leave the probabilities as they are, and only the values not appeared
yet have to be selected. For this, the probabilities of the values already appeared are
set to 0, and the other ones are modified in the same way as in the previous method.
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Adaptation 2 of PLS: All Time Manipulation (ATM)

Definitions
vnsm: number of variables not simulated before the mth step.
V NO(VM )m: set of vertices of VM not matched by simulation before

the mth step
Pm

Indiv: sum of the probabilities to appear next in the individual any
vertex of VM already matched before the mth step

θijk: probability to appear the value k next in the variable Xi

knowing that the values defined in the individual for its parents
are on their jth possible combination of values.

Procedure
Find an ancestral ordering, π, of the nodes in the Bayesian network
For m = π(1), π(2), . . . , π(|VD|) (number of variables, to sample
following the ancestral ordering π)

If (|V NO(VM )m| > 0)
For k = 1, 2, . . . , |VM | (number of values for each variable)

Modify the probabilities: the modified probability for
the value k to appear next in the variable Xπ(m) of
the individual for the lth combination of values of its
parents, θ∗

π(m)lk, is

θ∗
π(m)lk =






θπ(m)lk · K−P m

Indiv

K·(1−P m

Indiv)
if ui

M ∈ V NO(VM )m and

|V NO(VM )m| 6= vnsm

θπ(m)lk

K
if ui

M 6∈ V NO(VM )m and
|V NO(VM )m| 6= vnsm

θπ(m)lk · 1
1−P m

Indiv

if ui
M ∈ V NO(VM )m and

|V NO(VM )m| = vnsm

0 if ui
M 6∈ V NO(VM )m and

|V NO(VM )m| = vnsm

where K =
⌈

N−m
m−n

⌉
, l is the combination of values of the

parent variables of Xπ(m) (which have been previously
instantiated in the previous m− 1 iterations),
and Pm

Indiv =
∑

k | uk

M
∈VM\V NO(VM )m θilk

Xπ(m) ← generate a value from θ∗π(m)lk = p
(
Xπ(m) = k | pal

π(m)

)

Else

Xπ(m) ← generate a value from θπ(m)lk = p
(
Xπ(m) = k | pal

π(m)

)

Figure 4.17: Pseudocode for All Time Manipulation (ATM).

Figure 4.17 shows the pseudocode of this second adaptation of the simulation. A
detailed example of ATM can also be found in Appendix B.

This second technique modifies the probabilities nearly from the beginning, giving
more chance to the values not already appeared, but it also takes into account the
probabilities learned by the Bayesian network in the learning step. It does not modify
the probabilities in any way when |V NO(VM )m| = 0, that is, when all the values have
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already appeared in the individual.

Correction a posteriori
This technique is completely different from the ones proposed before, as it is not based

on modifying the probabilities generated by the algorithm at all: the idea is to correct the
individuals that do not contain an acceptable solution to the problem after they have been
completely generated. In order to do this correction, once the individual has been completely
generated and has been identified as not correct (|V NO(VM )|VD || > 0), a variable which
contains a value that appears more than once in the individual is chosen randomly and
substituted by one of the missing values. This task is performed |V NO(VM )|VD || times, that
is, until the individual is correct.

The fact that no modification is done at all in the learned probabilities means that this
method does not demerit the learning process, and thus the learning process is respected
as when using PLS. As the generation of the individuals is not modified at all with respect
to PLS, the only manipulation occurs on the wrong individuals, and the algorithm can be
supposed to require less generations to converge to the final solution. Furthermore, this
method can also be used with other evolutionary computation techniques such as GAs.

Changing the fitness function
This last method is not based neither on modification of the probabilities during the

process of the generation of the new individuals nor in adapting them later before adding
them to the population. Instead, the idea is completely different and consists in applying a
penalization in the fitness value of each individual.

The penalization has to be designed specifically for each problem in order to avoid un-
expected results. For instance, on the experiments carried out with this technique and com-
mented later in Section 6.2, the penalization has been defined as follows: if f(x) is the value
obtained by the fitness function for the individual x= (x1, . . . x|VD|), and if |V NO(VM )|VD||
is the number of vertices of GM not present in the individual, the modified fitness value,
f∗(x) will be changed as follows:

f∗(x) =
f(x)

|V NO(VM )|VD ||+ 1
. (4.44)

Another important difference regarding the other methods to control the generation of in-
dividuals explained so far is that the penalization does allow the generation of incorrect
individuals, and therefore these will still appear in the successive generations. This aspect
needs to be analyzed for every problem when a penalization is applied. Nevertheless, as these
incorrect individuals will be given a lower fitness value, it is expected that their number will
be reduced in future generations. It is therefore important to ensure that the penalization
applied to the problem is strong enough. On the other hand, the existence of these individ-
uals can be regarded as a way to avoid local maxima, expecting that, starting from them,
fittest correct individuals would be found.

4.5.2 Continuous domains

Similarly as in Section 4.5.1, we will define the graph matching problem using a particular
notation for continuous EDAs.

The selected representation of individuals for continuous domains was introduced pre-
viously in Section 3.3.2. These individuals are formed of only continuous values, and as
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already explained no combination of values from both the discrete and continuous domains
is considered in this thesis. As explained in that section, in order to compute the fitness value
of each individual, a previous translation step is required from the continuous representation
to a permutation-based discrete one (as shown in Figure 3.2), and finally in a second step
from there to a representation in the discrete domain like the one explained in Section 3.3
–the latter procedure has already been described in Figure 3.1. All these translations have
to be performed for each individual, and therefore these operations result in an overhead
in the execution time which makes the evaluation time longer for the discrete domain when
using this method. It is important to note that the meaning of the values for each variable is
not directly linked to the solution the individual symbolizes, and therefore we will not refer
directly to graphs GM and GD in this section.

Section 3.3.2 defined that the size of these continuous individuals is n = |VD|, that is,
there are X =

(
X1, . . . ,X|VD |

)
continuous variables, each of them having any value in a

range of (-100, 100) for instance. We denote by xi the values that has the ith variable, Xi.

Estimating the density function

We propose different continuous EDAs belonging to different categories to be used in inexact
graph matching. As explained in the previous sections, these algorithms are expected to
increase their complexity when more complex learning algorithms are used and when more
complicated structures are allowed to be learned. Again, these algorithms should be regarded
as representatives of their categories introduced in Section 4.4.1: (1) UMDAc [Larrañaga
et al., 2000, 2001] as an example of an EDA that considers no interdependencies between
the variables; (2) MIMICc [Larrañaga et al., 2000, 2001] which is an example that belongs to
the category of pairwise dependencies; and finally, (3) EGNABGe and EGNABIC [Larrañaga
et al., 2000, Larrañaga and Lozano, 2001] as an example of the category of EDAs where
multiple interdependencies are allowed between the variables, where no limits are imposed
on the complexity of the model to learn. It is important to note that any other algorithm
mentioned in Section 4.4.1 could perfectly have been chosen as a representative of its category
instead of the ones we have selected.

It is important to note that even if EGNABGe is expected to obtain better results, the
fact of not setting limits to the number of interdependencies that a variable can have could
also mean that the best structure is a simple one. For instance, a structure learned with
EGNABGe could perfectly contain at most pairwise dependencies. This fact is completely
dependent on the complexity of the graph matching problem applied in our case. This means
that in such cases the difference in results obtained with EGNABGe and MIMICc would not
show significant differences, while the computation time in EGNABGe will be significantly
higher.

Adapting the simulation scheme to obtain correct individuals

In the discrete domain the need to introduce adaptations in the simulation arises because of
the additional constraint in our proposed graph matching problems for all the solutions to
contain all the possible values of VM .

However, in the case of the continuous domain no such restriction exists, and the fact
of using a procedure to convert each continuous individual to a permutation of discrete
values ensures that the additional constraint is always satisfied for any continuous individual.
Therefore, all the possible continuous individuals in the search space do not require to any
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adaptation in the simulation step, and therefore no measures need to be introduced at this
point.

76 Endika Bengoetxea, PhD Thesis, 2002



Chapter 5

Parallel estimation of distribution

algorithms

‘I do not fear computers. I fear the lack of them.’

Isaac Asimov

5.1 Introduction

The reduction in the execution time is a factor that becomes very important when using
many applications nowadays. In spite of the enhancement on computer hardware, this
problem is always happening, as the increase in power is always related to the application
of new methods that were also too time consuming in previous computer systems. Parallel
programming techniques provide feasibility of solving new problems or longer size ones.

The computation time is sometimes forgotten or avoided in some research works, as
the validity of new methods or algorithms among others is in many times the most impor-
tant point to be considered in the first stages. However, if one wants to apply parallelism
techniques in a real life application (or even to commercialize it) the fact of reducing the
computation time of the program becomes an important aspect to take into account. When
willing to make faster the execution of a program, specially for algorithms that are very
computationally consuming, we have four main choices:

1. We can optimize the code so that it does not repeat tasks or that minimizes the time
of accessing slow functions such as disk access.

2. We can improve the hardware on which the algorithm is executing. This is done
sometimes by recording the whole program in a ROM-type chip, but also by buying a
faster processor, adding more processors to the computer, or by increasing the size of
RAM memory of the computer.

3. Compilers that will convert automatically a sequential source program into a parallel
one have also been proposed, but nowadays they mostly work for easily parallelizable
programs such as vector and matrix operations.

4. We can rewrite the code making use of parallelization techniques.

From all these solutions, the first one can improve considerably the computation time
of a program, but its main drawbacks are that this reduction has a limit and that highly
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optimized code is normally very difficult to maintain. The second solution is always possible,
but it requires an important economic cost depending on how much we want the hardware
to be optimized. In addition, it is important to analyze which is the hardware resource that
makes the program go slower, as many times users tend to invest money in adding more
and faster processors when the fact is that most of the time the bottleneck is the lack of
RAM memory1. The third solution implies the use of high performance compilers that are
able to provide parallel versions of a sequential source code in order to allow execution in
different processors at the same time. These compilers use techniques to detect loops within
the code where matrix or vector operations are performed, and they apply special techniques
for parallelization. Unfortunately, these compilers are not intelligent enough to parallelize
every sequential program and to detect data communication and computation parts within
them that could be parallelized, and as a result these will not be a solution in our case.
Furthermore, these compilers are usually very hardware dependent and appear to be very
expensive. The interested reader can find more information about this subject in [Polaris,
1994, Wolfe, 1996].

Taking all the aforementioned reasons into account, we will concentrate on the last so-
lution, the application of parallelization techniques. These are very powerful and effective
for most of the cases, and they are often very easy to be applied to existing sequential pro-
grams. In addition, the proliferation of dedicated parallel libraries makes the application of
parallelization techniques to be quite easy for a beginner on this field. This chapter intends
to explain the basics of the existent parallelism techniques, the state of the art of the par-
allelization field, as well as to give an introduction to the most important ones using as an
example the EDA program itself.

5.2 Sequential programs and parallelization

5.2.1 The design of parallel programs

Different techniques and methodologies can be applied for creating parallel solutions. How-
ever, the best parallel solution that can be developed is usually quite different from the
sequential one. It is of fundamental importance to choose the proper methodology for par-
allel design in order to obtain the best parallel approach, in which concurrency aspects are
taken into account in depth before focusing on machine-dependent issues.

In [Foster, 1995] one of the many possible parallel design methodologies is introduced.
This methodology contains four distinct stages that are performed one after another: par-
titioning, communication, agglomeration, and mapping. During the first and second stages
the programmer focuses on concurrency and scalability, while in the third and fourth stages
the attention is on locality and other performance-related issues. These four stages are
illustrated in Figure 5.1, and are explained as follows:

Partitioning: the parts on the problem that can be parallelized are identified and selected.
This task is performed independently of the hardware type available, and issues such
as the number of processors available are not taken into account at this stage.

1The lack of enough RAM memory forces the computer to work into the hard disk. The disk access time
is measured on the order of milliseconds, while RAM memory is in the order of nanoseconds. Therefore this
factor implies a considerable delay on the overall execution time of the whole program and the operating
system.
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Problem

partition


agglomerate


communicate


map


Figure 5.1: Parallel design methodology when parallelizing programs, as described in [Foster, 1995].
The four stages are illustrated: starting from a problem specification, (1) the problem is partitioned
in smaller tasks that are divided in processes, (2) communication requirements between the different
processes are determined, (3) processes are agglomerated, and finally (4) processes are mapped to
processors.

Communication: the communication that is required to coordinate all the processes is
identified and analyzed. Communication data structures and proper communication
protocols are defined.

Agglomeration: this stage focuses on performance requirements and implementation costs.
Some of the processes are combined into larger groups in order to improve performance
and implementation costs.

Mapping: processes are organized regarding the number of processors available. The main
objectives are to balance the work load of each process and to minimize communication
costs.

Usually, parallel programs will create and destroy dynamically processes in order to obtain
a balance in work load on amount of processes between processors. The design of parallel
algorithms is presented here as sequential work, but often considerations at some stages
require reconsidering previously designed aspects. Next, these four steps will be discussed
in more detail.
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Partitioning the problem

The main objective of the partition step is to divide the problem in the smallest possible
tasks, in order to obtain what is called a fine-grained decomposition of the problem2.

Partition is applied to both the whole computation job and the data associated to the
processes. Usually, programmers focus first on the data partition (i.e. the way of partitioning
the data is determined) and finally processes are associated to the partitioned data. This
partitioning technique is known as domain decomposition.

Another approach is to focus first in partitioning the global job in processes and to
work out afterwards which is the best way to partition the data. This is called functional
decomposition.

These two techniques are complementary, and they can be applied to different parts of a
single problem or even both can be applied at the same time to the whole problem in order
to obtain different parallel algorithms to solve a single problem.

Process communication schemes in parallel programs

After partitioning the problem in sub-tasks assigned to processes, the programmer has to
determine the way in which all these working processes will be coordinated and organized. As
processes will require to receive information associated to another processes, the information
flow between all the processes has to be analyzed with care. This task is performed in the
communication phase of the parallel program design. For this, it is essential to take into
account all the synchronization and communication aspects between all the processes.

A general idea to understand how to coordinate the different processes collaborating for
a global job is the use of a producer-consumer scheme, which is a general approach of how
two types of processes can be organized. The general case is the one in which there are a set
of processes playing the role of the producers, where they produce elements that are stored
in a buffer or an intermediate work pool. The rest of the processes will play the role of the
consumer, which will read elements from the buffer or work pool and will use them for some
determined task. Figure 5.2 illustrates this approach.

P6
 P7
 P8
 P9
 P10


P1
 P2
 P3
 P4
 P5


Buffer


Figure 5.2: The producer-consumer approach.

However, there are also many other ways to organize the communication and synchro-
nization between all the processes. In any case, it is always important to determine the
nature of the communication channel to select the best way of communicating processes.
In [Foster, 1995], these aspects are focused on the communication, of which different types
are classified taking into account four orthogonal axes:

2A fine-grained decomposition represents the greatest flexibility possible to parallelize programs, as it
divides the whole problem in the maximum number of tasks.
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Local/Global: in local communication each process communicates with a small set of pro-
cesses. In global communication it communicates with the rest of them.

Structured/Unstructured: in structured communication, all the processes form a regular
structure when communicating. Regular structures can be a tree, a pipeline, or a grid
for instance. On the other hand, in unstructured communication arbitrary graphs are
formed.

Static/Dynamic: the identity of the communicating partner processes is always the same
in static communication. When it is dynamic, the identity of the communicating
partners can be different each time.

Synchronous/Asynchronous: in synchronous communication, there are producers and
consumers of messages that execute in a coordinated way, with producer/consumer
pairs cooperating in data transfer operation. In asynchronous communication, a con-
sumer can obtain its data without the collaboration of the producer.

There are many working schemes that could be chosen for coordinating the execution of
all the processes. None of them is better than the others for all the practical cases, and the
programmer has to decide which is the one that best fits the organization of each parallel
program.

Next, a short review of five typical and basic working schemes for organizing processes
in parallel programming is given. Each of them is applied in those tasks in which their
use has been shown to be the most effective. The programmer should be aware of all these
possibilities and choose the one that he considers to be the optimum, as this choice as well as
the information flow is of fundamental importance to obtain a satisfactory performance on
parallel programs. A bad design could lead to a dramatic worsen on the performance of the
whole program, resulting in some cases in even worse execution times than with a sequential
program.

Generally speaking, the different basic working schemes are the following: phase parallel,
divide and conquer, pipeline, master-slave, and work pool.

Phase parallel. A parallel program that follows this method will be divided in a series
of two main steps. In the computation step, each of the processes will perform an inde-
pendent computation in parallel. In the following step, all the processes will synchronize
(either by using lock variables, semaphores or any other blocking communication method,
see Section C.3 in Appendix C) and all the results will be gathered. Figure 5.3 shows this
approach.

Divide and conquer. This algorithm for parallel programming is very similar to its se-
quential homologous as it can be appreciated in Figure 5.4. A parent process divides its
computing weight in many smaller parts an it assigns them to a number of child processes.
The children processes will proceed similarly, and then they will gather their children’s re-
sults and send them back to their parent. This set of division on the job and gathering and
sending of results is made recursively. The main drawback of this method is that a balance
is required for an equitable division of tasks among processes. When using this scheme it is
important to consider the dynamic nature of the problem, as well as to analyze the possibility
of fully parallelizing it.
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Figure 5.3: The phase parallel approach.
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Figure 5.4: The divide and conquer approach.

Pipeline. In this approach, all the processes form a chain as shown in Figure 5.5. This
chain is feed with a continuous flow of data, and processes execute the computations asso-
ciated to each different step on the pipeline, one after another for each data-unit, but all
work at the same time on different data-units. This behavior is similar to the execution
of instructions in a segmented processor, in which it is important to take into account the
dependence types of the input data.

P1
 P2
 P3
 P4


Figure 5.5: The pipeline approach.

Master-slave. As already explained, this working scheme –also known as manager-worker
or process farm– is among the most applied. A process takes the role of the master or
manager, executes parts of the global job that cannot be parallelized, and divides and sends
to the rest of slave or worker processes the part of the global job that can be executed in
parallel. This approach is illustrated in Figure 5.6. When a slave or worker process finishes
its task, it sends back to the master the results obtained. Afterwards, the master is then
sending more work to the slave. The main drawback is that the master process coordinates
the whole information exchange, which in some cases results in a bottleneck.
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In some particular problems, the master also performs part of the job instead of simply
waiting for the rest of the workers, and therefore it also plays at the same time the role of a
worker.

P1


P2
 P3
 P4
 P5
 P6


Figure 5.6: The master-slave approach.

Work pool. This method is often used with the model of shared variables. Figure 5.7 shows
that this approach requires a global data-structure that is used as a work pool. Initially some
basic amount of work has to be added to this pool. The main difference between this model
and the previous master-slave one is that in this case all the processes are of the same type,
as there is no master process on the scheme. All the processes that take part in the job can
access it and produce: (1) no work, (2) a part of the work that will be placed on the pool,
or (3) many parts of the work that will also be placed on the pool.

P1
 P2
 P3
 P4
 P5


Work pool


Figure 5.7: The work pool approach.

The parallel part of the program finishes when the work pool is empty. This method
makes easier to balance the work load between all the processes. However, it is not easy to
implement it when the message passing model is to be used (see Section C.3.5 in Appendix C)
as this model does not allow an efficient access to the shared structure. The pool can be
implemented as an unordered set, or an ordinary queue with or without priority.

Agglomeration

The agglomeration phase focuses on the performance of the system that has been designed so
far: for instance, the fact of having many more processes than processors is highly inefficient
in terms of execution time, as most of the time the system will not be able to keep executing
all the processes at the same time. When agglomerating, we move from the theoretical design
phase towards the realistic one, where the hardware resources available will be taken into
account. The agglomeration is therefore the opposite step of the partitioning phase, in which
the fine-grained solution is revised and the number of global tasks reduced. In addition
to the reduction in the number of processes, in the agglomeration phase the replication
of the data between different tasks will be determined to be worthwhile or not in terms
of efficiency. In brief, the two objectives for the agglomeration phase is firstly to reduce
the number of processes (by combining them and creating larger ones), and secondly to
provide an appropriated number of them so that the processors can deal with, and to reduce
communication costs.
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Even if the number of tasks will be reduced in this step, it is usually the case that at the
end more processes than processors will be scheduled. The reason for this is that processes
will make use of other resources such as input/output devices: processes that are waiting for
input/output devices will leave their processor free for a time, and in the meanwhile another
process could make a profit and advance in its job.

Mapping

Finally, the mapping phase will distribute the processes among the available processors.
The mapping phase does not arise on single-processor or on shared-memory computers that
provide automatic task scheduling.

The goal of mapping algorithms is to minimize execution time. Two strategies are used
for achieving this goal:

1. Processes that are able to execute independently are executed in different processors,
in order to increase concurrency.

2. Processes that communicate frequently are assigned to the same processor, in order to
increase locality.

Unfortunately, these two strategies sometimes conflict between them. In addition, the
fact that usually there are more processes than processors is another factor that makes the
mapping problem more complex.

There are several algorithms, such as load-balancing algorithms, that provide solutions
to the mapping problem. This problem is known to be NP-hard, and discussion on this topic
is out of the scope of this thesis. The interested reader is referred to [Foster, 1995] for more
information on this topic.

5.2.2 Parallelizing an already existing sequential program

The algorithm to design parallel programs introduced in the previous section is suitable when
an algorithm has to been redesigned from scratch. However, in many cases the programmer
has already a sequential program to solve the problem that is executing too slowly just
because of specific bottlenecks at different stages of the algorithm.

When a sequential version of the program is available, and we have access to its source
code, it is not necessary to apply the four stages of the previous design model. Instead,
a common practice is to identify the parts in the code that represent the most important
bottlenecks in the program and to apply parallelization mechanisms to these parts.

Identifying bottlenecks in programs can be a difficult task if we do not know exactly how
the program behaves. In addition, sometimes different input data could lead to very different
CPU-time requirements of the different routines of the sequential algorithm. Hopefully, there
are many tools to perform an analysis of the execution time rate of each of the routines on
the program. An example of these tools is the gprof, which is a GNU tool that records all
the required information for an exhaustive analysis. This tool is used together with the gcc
ANSI C++ compiler, and an example of its application is shown later in Section 5.5.2. Such
a tool helps the programmer to determine the routines that constitute the main bottlenecks
in the program, which should be parallelized.

Once the routines to be parallelized have been identified, we could use one of the many
communication and synchronization paradigms available. Many of these are described in
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Section C.3.6 in Appendix C. For these, the task that the selected routines performs is di-
vided in subtasks and, as well as in the previous section, communication and synchronization
between them is determined and implemented.

An example of a way of coordinating the different processes collaborating for a global
job is the use of a producer-consumer scheme, which was introduced in Section 5.2.1. Very
often this approach is used for the case of a single producer and one or more consumers. It is
important to mention that the client-server scheme is also a particular case of the producer-
consumer: we could assume that the producers are clients that basically produce requests
and store them in a structure such as a buffer, and the server will play the role of consuming
requests by attending them.

Section 5.5 shows an example on how to apply these techniques for the case of having
already a sequential program in which routines that represents bottlenecks are identified and
parallelized.

5.3 Parallel architectures and systems

5.3.1 Parallel computer architectures

As the performance of any parallel program is heavily dependent on the hardware available,
it is important to have a general understanding of the existing parallel machines in order to
select the best one for our purpose. Obviously, one can always execute parallel programs on
an ordinary PC or workstation with a single CPU and its particular memory, but the fact
of having more than 2 or 4 processes or threads will lead to a competition between all of
them for the use of the CPU rather than to the desired collaboration between them. The
drastic reduction in computer prices in the last years has made possible for more users to
acquire machines with more than a processor. Moreover, the existence of very fast local
area networks allows single processor computers to communicate with each other with rates
similar as communication within an internal bus of a machine.

We present in this section a classification of the different parallel systems. The classifica-
tion is done based on the number of processors and the arrangement of CPUs and memory
within the different parallel systems. One of the first classifications is the one based on
Flynn’s specification [Flynn, 1972]. An illustration of this classification is shown in Fig-
ure 5.8. Following this general classification, the main difference between computer systems
is done regarding the number of processors and their type in the next way:

Single Instruction Single Data (SISD): This is an ordinary workstation system, where
there is a single CPU and a single address map accessible by the CPU. This is not
considered as a parallel system.

Single Instruction Multiple Data (SIMD): This type of systems can be considered as
a first approach to parallel computing, and they are nowadays disappearing. In a
typical SIMD machine we can have hundreds of CPUs, even thousands, all of them
with a small private memory space. They all execute at the same time the same
instruction over different data (at least, if the instruction makes it possible). These
systems were thought for parallel computation of vector and matrix operations. When a
CPU requires data stored in another’s memory address map an explicit communication
procedure has to be executed before. The main problems of these machines are their
inflexibility as well as their high dependence on synchronization between all the CPUs
of the system.
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Figure 5.8: Illustration of all the different computer architectures. Here all the possible forms are
shown, and many of them exist today. In some of these systems the number of processors is just one,
but in other there can be thousands of them.

Multiple Instruction Multiple Data (MIMD): In this approach with many CPUs, all
the processors have their particular memory space too, but the way of execution is very
asynchronous and each processor can execute a different instruction, or even a different
program. There is a complete independence in execution between all the CPUs. These
systems are very convenient for nowadays’s parallel systems. A diagram of the most
used memory models is also presented in Figure 5.9. MIMD systems’ performance
shows a high dependence on the memory architecture, and depending on it we can
classify these systems as follows:

Shared memory. The system has a single memory space, so that any computer can access
any local or remote memory in the system, independently of the process that
is the owner. Having a single memory space allows having shared memory
for communication between all the executing workers or tasks, which makes it
be an efficient communication mechanism. This is very convenient for parallel
programs where the amount of data to process is very big, as the data requires
no copying in order for all the CPUs to access it at the same time. In other
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Figure 5.9: Illustration of the most used memory models for parallel computer architecture taxon-
omy.

cases, all this data should be exchanged between CPUs’ address maps during
the execution of the parallel program with the consequent lack on efficiency.
An aspect to remember is that the disadvantage of using shared memory access
is that shared variables lead to the existence of race conditions between parallel
programs or routines, and therefore synchronization mechanisms have to be
included in our parallel programs.

Distributed memory. In this case each processor has a particular address map that the
rest cannot access at all. It is therefore essential that a process sends all the data
to another if they have to collaborate to compute something. This communica-
tion operations are explicit (i.e. they have to be programmed). These systems
have the advantage of being very easily scalable, but the lack of a shared address
map adds a time penalty for each inter-process communication. An example of
this type of computer systems are the so called Massively Parallel Processors
(MPP).

Shared distributed memory. This hybrid model has the goal of having the advantages
of both systems (i.e. the easy communication mechanism of shared memory
and the scalability of distributed systems). These systems would contain their
own memory address map, but the architecture is designed so that any node
can access the memory of another with a slight time penalty. This type of
architecture is a current trend on multiprocessor architectures.

In the recent years the development of two main fields in computing, such as the faster
processors and the improvements of networks in communication speed, have also made avail-
able some new computer systems within the distributed memory MIMD model that could
be regarded as virtual parallel computers. It is important to distinguish properly between
three different possible machines that follow the MIMD model:

Network of workstations: in this model many very fast separated computers are con-

Endika Bengoetxea, PhD Thesis, 2002 87



5.3 Parallel architectures and systems

nected through a fast Local Area Network (LAN). Each computer has its own console,
can work as an independent machine, and occasionally they can all collaborate in a
common task. This type of systems are known as NOW (Network Of Workstations).

Cluster: clusters are made of different machines, but there is a single console to control
all the computers. However, in order to have full control of each of the nodes, it is
necessary to do a connection through the console.

Multicomputers: in multicomputers all the different computers behave as a single one,
and the user or programmer can control the whole execution of all the CPUs from a
single node. No connection is necessary to a single node in order to control what is
going on in the multicomputer.

This type of MIMD model machines are mainly built with clusters of workstations, where
each workstation in the cluster acts as a separate computer. Processes on these systems can-
not use shared memory, as the memory space of every workstation is physically separated
from the others, and therefore message passing primitives are used for inter-process commu-
nication between processes executing in different workstations. In some special cases, these
systems also are able to use virtual shared memory.

However, there are also special types of computer clusters composed of ordinary hardware
architectures (i.e. ordinary PCs) with public domain software (i.e. Linux OS and dedicated
libraries designed for fast message passing). A node plays the role of the server and controls
the whole cluster, serving files to the rest of the nodes (i.e. the client-nodes). In addition, in
some cases a node can also be a shared memory system (a multiprocessor). This particular
type of clusters are known as Beowulf Clusters (BC) [Beowulf, 1994].

The main advantage of NOWs is their lower cost compared to other parallel machines,
scalability, and code portability. The main drawback is the lack of available software specially
designed for this type of systems in order to make the cluster behave as a single virtual
machine. However, the existence of specialized public domain libraries such as Parallel
Virtual Machine (PVM) and implementations of the Message Passing Interface (MPI) makes
programmers easier to work with them (later in Section 5.3.3 these two libraries are analyzed
in detail).

Finally, it is worth mentioning how typically all these parallel systems are combined with
the different communication and synchronization methods. Typically, when shared memory
is available the selected communication approach is to use shared buffers and variables that
all execution units can access using as a result an explicit synchronization mechanism such as
mutex semaphores. On the other hand, in distributed systems only message passing primi-
tives are possible for communication between execution units, and synchronization is implicit
on these primitives. Table 5.1 illustrates the way of combining communication paradigms
(shared memory and message passing) with different architectures (multiprocessors and mul-
ticomputers). This table shows that the native communication models for multiprocessors
and multicomputers are shared memory and message passing respectively, but that multi-
processors can also use message passing (which also can be efficient) and multicomputers can
use shared memory mechanisms (although this latter solution in practice is not so efficient).

5.3.2 Comparison of parallel programming models

As explained before, parallel architectures as well as parallel software provide a way of di-
viding a task into smaller subtasks, each of them being executed on a different processor.
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Multiprocessors Multicomputers
virtual

Shared native shared
memory memory library

implemented
Message over shared native
passing memory

Table 5.1: Table showing the combination of communication models and parallel architecture models.
The native communication models for multiprocessors and multicomputers are shared memory and
message passing respectively.

When programming this subdivision of tasks we can use several concurrent models, as de-
scribed in Section 5.2.1, such as client-server or producer-consumer. Whichever the type of
model chosen, two are the aspects that should be taken into account in order to compare
two different parallel implementations of a computationally expensive sequential program:

Granularity: This is the relative size of each of the computation units (i.e. the amount of
work for each of the workers) that execute in parallel. This concept is also known as
coarseness, or fineness of task division.

Communication: This is relative to the way that execution units communicate to each
other and how they synchronize their work.

It is important to take into account that the number of processes or workers is also an
important factor to consider every time that the parallel program will be executed. This
is very commonly a parameter of parallel programs. One might think that it is better to
use as many processes as possible so that the workload of each is very low and each of
them needs less time to complete its subtask, leading to a shorter time to complete the
whole job. However, it is important to take into account that the number of CPUs is a
limiting factor, as the maximum number of processes that can be running at the same time
is equal to the number of CPUs (the rest will be in an idle state waiting for an executing
process to pass to a blocked state and to take ownership of the freed CPU). In addition, it
is also important to note that creating a new process is a procedure that also requires some
additional time by the operating system, as well as the communication or synchronization
procedures to coordinate them all. The latter is specially costly when processes are executing
in different workstations connected through a network. That is why the number of processes
has to be carefully chosen trying to find a balance between workload and cost for creating,
communicating, and synchronizing these.

5.3.3 Communication in distributed systems: existing libraries

In the recent years some alternatives have been created in order to provide a programming
interface when writing programs for multicomputers. Three of the most known ones are the
following:

• Parallel Virtual Machine (PVM): PVM [Parallel Virtual Machine, 1989] is a software
system that allows a heterogeneous network to be seen as a parallel computer. As a
result, when a parallel program is to be executed, this is done over a virtual parallel
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machine –hence the name. PVM is maintained by the so called Heterogeneous Network
Computing research project. This project is a collaboration of the Oak Ridge National
Laboratory, the University of Tennessee and Emory University.

• OpenMP3 application program interface: OpenMP [OpenMP, 1997] is a portable,
scalable model that gives shared-memory parallel programmers a simple and flexible
interface for developing parallel applications for platforms ranging from the desktop to
the supercomputer. The design of OpenMP is based on threads that share a common
memory space.

• The Message Passing Interface (MPI): MPI [Message Passing Interface, 1993] has been
designed and standardized by the so called MPI forum which is formed by academic
and industrial experts and is thought to be used in very different types of parallel
computers. Nowadays there are many implementations of the standard available for
many platforms. MPI is used now by the most important parallel computer vendors,
as well as in universities and commercial companies.

PVM and OpenMP are standards where both the interface and implementation are de-
fined (they are closed standards regarding these aspects), while in MPI only the interface is
designed and many different implementations exist. These parallel programming alterna-
tives were designed with the main objective of providing a solution to the problems of lack of
standardization in parallel programming, that resulted in a lack of portability. Actually, dif-
ferent versions of these libraries exist for many different operating systems and architectures,
which make them be portable enough for most of the existing computer systems.

5.4 Parallelism techniques in the literature applied to graph

matching

Due to the complexity of many real graph matching problems, long execution times are
required for dealing with all the search space as well as with all the data to evaluate each
solution. As a result, parallelism techniques have been proposed in the literature to parallelize
graph matching algorithms of very different types.

Many different parallelism techniques have been applied in the literature for faster com-
putation of graph matching problems. Among them we have the use of linear combination
and parallel graph matching techniques for 3D polyhedral objects representable by 2D line-
drawings [Wang, 1999], and the use of a communication scheduling framework for commu-
nication algorithms [Bhat et al., 1999].

The subject of using parallel techniques to graph matching is also analyzed as a whole
subject in some references. Examples of this are the description of the basic combinatorial, al-
gebraic, and probabilistic techniques required for the development of fast parallel algorithms
for graph matching problems and for closely related combinatorial problems [Karpinski and
Rytter, 1998, Reif, 1993], and a study of different parallel algorithms as well as a proposal
of a new one for attributed exact graph matching [Abdulkader, 1998].

On the other hand, there are also examples on applying graph matching techniques
to improve parallelism in computer networks and operating systems. An example of this is
tackling the problem of finding an optimal allocation of tasks onto processors of a distributed
computing system [Tom and Murthy, 1999].

3The MP in OpenMP stands for Multi Processing.

90 Endika Bengoetxea, PhD Thesis, 2002



Parallel estimation of distribution algorithms

All these references concentrate on the design of the parallel program, and in analyzing
the complexity of the different graph matching approaches in order to obtain a simpler one.
In addition, they are mainly based in shared memory approaches and threads, and practically
no examples on combining fast networks and message passing standards for graph matching
problems can be found.

5.5 Parallelization of sequential EDA programs

5.5.1 Computation needs in EDAs

Experiments applying EDAs to complex problems such as inexact graph matching –see Chap-
ters 6 and 7– show that some of the EDA algorithms are very time consuming [Bengoetxea
et al., 2000, 2001a,b,c,d, 2002a]. The execution time is directly proportional to the number
of dependencies (i.e. maximum number of parents that each node can have) that the learning
algorithm takes into account, as well as to the number of vertices of both the model and
data graphs (i.e. the number of regions to recognize). This is specially evident in the case
of EBNA for the discrete domain and EGNA for the continuous domain. Unfortunately, in
real problems these graphs contain a lot of vertices due to imprecisions in image acquiring
techniques, and therefore these two EDAs can even require many days to fulfill the stopping
criterion.

Parallel programming techniques can be applied to improve these execution times by
executing processes in parallel. As a first step before starting to modify the code, it is
important to identify the steps on the algorithm that are suitable for parallelization, as some
of its steps are inherently sequential and cannot be parallelized. An example of a step that
one can think of to be easily parallelized is the simulation step. This step is used to create the
R individuals that will form the next generation after the learning step in the probabilistic
graphical model. These individuals can be created in parallel, as the simulation of each of
these individuals has to be done without taking into account the generation of the previous
ones.

Another important step that can be parallelized is the learning step in EDAs. EBNA
and EGNA algorithms are among the most complex EDAs as they try to take into account
all types of dependencies between the variables, and therefore the learning steps of these two
are specially time consuming. Due to this reason, we will concentrate in parallelizing these
two algorithms. However, before proceeding to any parallelization design, it is essential to
know how the learning is performed on these. The learning procedures in EBNA and EGNA
have been reviewed in Sections 4.3.4 and 4.4.4 respectively. The techniques described in
Section 5.2.1 were applied for this purpose.

Whichever the procedure selected for parallelization, it is important firstly to analyze in
the whole problem which of these steps is the one that consumes most of the CPU time of
the overall execution time. This is an important factor since parallelizing a function that
only supposes for instance a 5% in the global execution of the program will not have much
influence in terms of reduction of execution time. The next section is a study of execution
steps and procedures on EDAs.
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5.5.2 Analysis of the execution times for the most important parts of the

sequential EDA program

It is important to realize that the simple procedure of creating a new execution unit (either
a process or a thread) requires some additional execution time, and therefore further study
is required in order to be sure that the amount of work per process is big enough to justify
the extra time-overhead of creating the process itself.

The different EDAs described so far for both the discrete and continuous domains have
been executed and the time required for each of the internal steps and procedures has been
measured. The tool used for this measurement is the widely known gprof, which is a GNU tool
that records all the required information that we need. As already explained in Section 5.2.2,
this tool is used together with the gcc ANSI C++ compiler. Table 5.3 shows the execution
times in absolute values to obtain these results after execution in a two processor Ultra
80 Sun computer under Solaris version 7 with 1 Gb of RAM. It is important to note that
these values do not correspond to ordinary execution times because the compilation options
required for doing this analysis are different and debugging flags are active, thus making the
execution much slower. After all, the results are given in statistical terms such as percentages
of use of CPU, information that is enough for our purposes. That is also why execution in
another machine such as a PC with Linux would return similar results in terms of execution
time percentages.

Three experiments were carried out using the inexact graph matching problem with
graphs generated randomly for Study 1 (the 10 & 30, 30 & 100 and 30 & 250 examples), and
using the fitness function defined in Section 3.4.3. Some of the results obtained with these
experiments are shown in Table 5.2.

In order to understand the results shown in Table 5.2, it is important to have a better
understanding on the purpose of the procedures in the source code. There is a fitness function
that is used to compute the value of each individual. This function is represented in the table
as Fitness Func. and is the one defined in Equation 3.2. The fitness function is the same
for both discrete and continuous EDA experiments, although in the latter algorithms there
is an additional step in the continuous case as described in Section 3.3.2. These procedures
and the way of carrying out the experiments are described in detail in Section 3.4.3 as well
as in [Bengoetxea et al., 2001c,e, Mendiburu et al., 2002].

There is also a procedure that performs the learning for each of the EDAs, the learning
of the probabilistic graphical model (Bayesian network or the Gaussian network in discrete
and continuous domains respectively) expressed in the table as Learning for the discrete
and continuous EDAs. This procedure constitutes the main difference between the different
EDAs, and the relative execution time among the different EDAs of this procedure depends
essentially on the complexity of the chosen algorithm. In the continuous domain, there are
also two procedures called Means and Covariances and Matrix operations that are also part
of the learning process of the algorithms (i.e. their times are included on the Learning part
on continuous EDAs) that are on the table in order to show their relative significance in the
execution time.

Finally, the last procedure to mention is Simulation, which finality is the generation of
the R individuals of the next generation. This procedure is different in the discrete and
continuous cases, but essentially they perform the same task.

The times given in Table 5.2 only reflect the time in percentages. This information shows
clearly that in the EBNABIC and EGNABIC cases the fact of parallelizing the simulation
step would not reduce drastically the overall execution time of the whole program, as in
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EDA Execution Execution
Algorithm Procedure Time (%) Procedure Time (%)

UMDA Fitness Func. 9.6 Fitness Func. 81.9
Simulation 7.4 Simulation 9.4
Learn Bayesian N. 7.7 Learn Bayesian N. 24.2

MIMIC Fitness Func. 12.89 Fitness Func. 63.7
Simulation 6.4 Simulation 8.0
Learning (BIC) 47.3 Learning (BIC) 85.7

EBNABIC Fitness Func. 18.1 Fitness Func. 12.3
Simulation 4.0 Simulation 1.4

Means and Covariances 24.6 Means and Covariances 24.6
UMDAc Fitness Func. 14.3 Fitness Func. 34.7

Simulation 2.1 Simulation 0.9
Learning 23.6 Learning 23.1
Fitness Func. 13.7 Fitness Func. 34.1

MIMICc Means and Covariances 23.5 Means and Covariances 22.6
Simulation 4.4 Simulation 3.5
Learning 5.6 Learning 55.0
Means and Covariances 21.4 Means and Covariances 7.2

EGNABGe Fitness Func. 12.2 Fitness Func. 10.9
Simulation 1.9 Simulation 0.3
Learning (BIC) 53.1 Learning (BIC) (*)
Means and Covariances 3.5 Means and Covariances (*)

EGNABIC Fitness Func. 1.6 Fitness Func. (*)
Simulation 0.6 Simulation (*)
Learning 34.2 Learning (*)
Means and Covariances 15.9 Means and Covariances (*)

EGNAee Matrix operations 17.2 Matrix operations (*)
Fitness Func. 9.2 Fitness Func. (*)
Simulation 5.3 Simulation (*)
Learning 40.4 Learning (*)
Matrix operations 33.7 Matrix operations (*)

EMNAglobal Means and Covariances 6.8 Means and Covariances (*)
Fitness Func. 5.4 Fitness Func. (*)
Simulation 10.3 Simulation (*)

Table 5.2: Time to compute for two graph matching problems synthetically generated with sizes 10
& 30 (first column) and 50 & 250 (second column). All the figures are given in relative times, i.e.
100% = full execution time. The values with the symbol (*) would require more than a month of
execution time to be properly computed.

the big case (last column) this step does not represent a significant execution time of the
algorithm (only the 0.6% and 4% of the execution time). These two experiments show clearly
that the most time consuming function is the BIC function, the one that is used to evaluate
the different Bayesian and Gaussian networks in their respective versions.

It is also important to realize from the tables presented that the relative significance of
the learning procedures in the execution time is more important when the size of the problem
is also bigger. These data also show that the learning is not linear regarding the size of the
problem, showing the already known NP-hard nature.
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10 & 30 example: 50 & 250 example:
EDA Algorithm execution time execution time

UMDA 00:02:22 04:28:25
MIMIC 00:02:25 05:27:33
EBNABIC 00:04:44 37:01:45
UMDAc 00:28:52 33:37:51
MIMICc 00:29:42 33:25:03
EGNABGe 00:34:14 146:43:30
EGNABIC 03:52:04 (*)
EGNAee 00:44:34 (*)
EMNAglobal 01:46:34 (*)

Table 5.3: Time to compute the analysis in Table 5.2 for the 10 & 30 and 50 & 250 examples
(hh:mm:ss). Again, the values with the symbol (*) required more than a month of execution time to
be properly computed.

As discrete representations are mainly used in real graph matching problems we decided
to parallelize the most CPU expensive discrete EDA that we defined: the EBNABIC . There-
fore, this thesis concentrates mainly on parallelizing the BIC score, which implementation
appears to be very important in the total execution time required by this EDA medium size
problems.

5.5.3 Interesting properties of the BIC score for parallelization

Looking at the time required to execute algorithms such as EBNA in the discrete domain and
EGNA in the continuous domain, it appears clear that parallel programming and concurrency
techniques need to be applied in order to obtain shorter execution times. Some parallel
algorithms have already been proposed in the literature for similar purposes [Freitas and
Lavington, 1999, Sangüesa et al., 1998, Xiang and Chu, 1999], and also more concretely for
the EBNA algorithm [Lozano et al., 2001].

In EBNABIC and EGNABIC the learning of the probabilistic graphical model is usually
done by starting with an arc-less structure and by adding or removing step by step the arc
that most increases the BIC score. This process is repeated until a stopping criterion is
met, and the final result is a probabilistic graphical structure that reflects the interdepen-
dencies between the variables. As a result, both EBNABIC and EGNABIC are based on a
score+search approach.

The BIC score is based on the penalized maximum likelihood. It can be written as:

BIC(S,D) =

n∑

i=1

BIC(i, S,D) (5.1)

BIC(i, S,D) =

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
− 1

2
(ri − 1)qi. (5.2)

An important property of the BIC score is that it is decomposable. This means that the
score can be calculated as the sum of the separate local BIC scores of each of the variables.
Therefore, each variable Xi has associated a local BIC score –BIC(i, S,D)– as defined in
Equation 5.2.
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As a result, this allows us to compute the component that each variable adds on the global
BIC score of the structure separately. It is important to remember that the arc adding or
removing has to ensure that the structure will still be a DAG (Directed Acyclic Graph) in
order to be accepted.

The structural learning algorithm has to find the best arc addition or removal in order
to improve the BIC score. This task is accomplished by computing the corresponding BIC
score for every arc modification. Therefore, as there are n(n− 1) possible arc modifications
in a structure with n nodes, there are also n(n − 1) possible gains on the BIC scores to
calculate each step arc modifications. The arc modification that maximizes the BIC score,
whilst maintaining the DAG structure, is applied to S. Also, if the arc (j, i) is modified (i.e.
added or removed), only the component BIC(i, S,D) is affected. In the next step the rest of
the BIC(k, S,D) k 6= i do not change, and therefore only n−2 terms have to be computed.

All the computation of the different possible arc modifications can be computed sepa-
rately. This task can be distributed to different processes that can be computing in parallel
all the BIC(i, S,D) in different processors.

5.5.4 Parallel techniques applied in this thesis

Regarding the different parallel architectures and systems shown in Section 5.3 where a par-
allel program can run and in order to offer the two possibilities of using shared memory or
message passing, we have developed two different parallel versions of EBNABIC : one is based
on using threads and shared memory, suitable for SM and SDM or multiprocessor machines
in general, and was implemented using the pthreads library. The other is based on processes
communicating using message passing, suitable for NOW, clusters, or multicomputers, imple-
mented using the MPI interface. The reason for choosing these two parallelization standards
is their proved performance, but also their portability and availability for different operating
systems such as Windows, Solaris and Linux. Appendix D shows the main parts of the source
code in EBNA, while an example of parallelizing the EBNA program in the way described is
presented later in Section 6.4. Experimental results and conclusions are shown in the latter
section for both using threads and MPI. These techniques are applied to the parallelization
of the BIC procedure due to its computation cost in complex problems.
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Chapter 6

Experiments with synthetic

examples

‘Learning is not attained by chance, it must be sought for with ardor
and attended to with diligence. ’

Abigail Adams

6.1 Introduction

This chapter introduces three different studies leading to demonstrate the validity of the
EDA approach and its behavior for the application to inexact graph matching problems.
Different aspects already considered but not shown with experimental tests are described in
these studies.

In order to avoid at the maximum the influence of a particular real problem on the
behavior of EDAs and other algorithms, random or synthetic attributed graphs have been
created and will be used as a starting point in all the experiments in this chapter. The aim of
the different sections is as follows: Study 1 analyzes and compares the performance of EDAs
and other evolutionary computation techniques such as GAs. Study 2 is an illustration of
what happens inside complex EDAs and tries to make clearer the way of approaching better
solutions. For this, the best structure that the probabilistic graphical models adopts for
better representing the selected individuals of each generation is shown. Finally, in Study 3
the parallelization process of a complex algorithm such as EBNA is carried out, and an easily
adaptable method for other similar complex approaches such as EGNA is introduced and
justified with experimental data showing the considerable improvement in execution time
that the proposed method obtains.

6.2 Study 1: measurement of the performance

6.2.1 Design of the experiment

Three different synthetic examples of graphs have been created randomly using different sizes
of model graphs –GM– and data graphs –GD. The sizes of these graphs are as follows from
the smallest to the biggest: in the first example the model graph GM contains 10 vertices
and 15 edges, and the data graph GD has 30 vertices and 39 edges. For the second example
the graph GM contains 30 vertices and 39 edges, and the graph GD 100 vertices and 247

97



6.2 Study 1: measurement of the performance

edges. Finally, in the third example GM contains 50 vertices and 88 edges, and the graph
GD has 250 vertices and 1681 edges. The sizes of these graphs have been chosen carefully.
Firstly, the size for the graphs of the first –small– example has been selected based on the
explanations given for a real problem in [Boeres et al., 1999, Boeres, 2002], which shows a
reduced example of the inexact graph matching problem of graphs extracted from healthy
human brain images introduced in [Perchant et al., 1999] and [Perchant and Bloch, 1999].
The size of the graphs for the third example are similar to the ones introduced in [Perchant
et al., 1999], in which a model graph GM that contains 43 vertices and 336 edges is matched
against another graph GD that contains 245 vertices and 1451 edges. Finally, the graphs for
the second example are half way between the first and the third examples’ ones. In what
follows, we will call 10 & 30 example, 30 & 100 example, and 50 & 250 example to the small,
second, and big graph matching cases respectively.

The number of edges chosen for all these graphs were selected knowing that the value
returned by this fitness function does not depend on |EM | and |ED|. Following the classifica-
tion of graphs between sparse and dense introduced in [Larrañaga et al., 1997], the number
of edges have been chosen to be the median of the sparse graphs of that size.

As in every optimization problem, a fitness function has to be defined in order to evaluate
the goodness of any of the possible solutions. The fitness function f2(h) introduced in
Section 3.4 (Equation 3.2) was selected for the experiments in this study just as an example
because of its previous use in real graph matching problems [Boeres, 2002, Perchant and
Bloch, 1999, Perchant et al., 1999].

For all the three cases, both the model and data graphs GM and GD have been gener-
ated randomly from scratch. The fact that no image processing is performed in the graph
construction avoids the dependence of the image processing techniques in the final result.
Obviously, as these graphs are generated randomly, they do not represent neither any knowl-
edge nor any common segments, and we do not have previous knowledge about which is the
optimum matching between vertices of GM and GD. As well as both graphs, cN (aD, aM ) and
cE(eD, eM ) were also generated randomly, and α is assigned a value of 0.8 because the best
results are obtained with this value in [Boeres et al., 1999] for their particular application.
This value is taken as an example for these experiments too.

As the aim of the experiments with these three synthetic examples is to test the perfor-
mance of EDAs in general, we have selected three discrete EDAs introduced in Section 4.5.1,
as well as four continuous EDAs introduced in Section 4.5.2. Because the main difference
between EDAs in both domains is the number of dependencies between variables that they
can take into account, the fact of having graphs with different sizes will influence parame-
ters such as the best solution obtained after a number of generations, the time to compute
the algorithm, and the evolution of the algorithm itself through the search. This section
describes the experiments and the results obtained1. The three discrete EDA algorithms
are also compared to three broadly known GAs: canonic basic (cGA) [Holland, 1975], elitist
(eGA) [Michalewicz, 1992] and steady state (ssGA) [Whitley and Kauth, 1988]. The two
first GAs evolve from a population to another by applying crossover operations to some indi-
viduals in the population, and the difference between them is that the eGA always includes
in the new population the best individual of the previous one, whereas cGA does not. The
ssGA approach is somehow different, as it only generates one individual at each iteration,
replacing only the worst individual of the population when its fitness value is worse than the

1A review of this work focusing only on the discrete domain can also be found in [Bengoetxea et al., 2001a,
2002a].
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one of the new individual.

EDAs and GAs were implemented in ANSI C++ language, and the experiments were
executed on a two processor Silicon Graphics machine SGI-Origin200 under IRIX OS version
64-Release 6.5 with 500 Mbytes of RAM.

In the discrete case, all the programs were designed to finish the search when the whole
population is formed by the same repeated individual or when a maximum of 100 generations
was reached. GAs were programmed to generate the same number of individuals as with
discrete EDAs, and therefore 100 generations were executed for all of them. The ssGA
is a special case because of generating a single individual at each iteration, but it was also
programmed in order to generate the same number of individuals by allowing more iterations.
In the continuous case, the algorithms were designed to finish when the 150th generation was
reached.

The initial population for all the discrete algorithms was generated using the same random
generation procedure based on a uniform distribution for all the possible values, and in the
case where the correction of the individuals applies, both discrete EDAs and GAs were
programmed using the same correction procedures. In the same way, the fitness function
used in all the algorithms is exactly the same. In the continuous case, the generation of the
first generation was also done following a similar procedure for generating continuous values.

In EDAs of both domains, the following parameters were used: a population of 2000
individuals (R = 2000), from which the best 1000 are selected (N = 1000) to estimate
the probability, and the elitist approach was selected (that is, always the best individual is
included for the next population and 1999 individuals are simulated). In GAs a population
of 2000 individuals was also selected, with a mutation probability of 1.0/|VD | and a crossover
probability of 1.

6.2.2 The need to obtain correct individuals

As one of the aims of this study is to analyze the behavior of EDAs in ordinary problems,
we decided to add extra constraints to the problem. For this, three conditions have been
introduced in Section 3.3.3 that need to be satisfied for any solution. It is important to realize
that both in GAs and discrete EDAs the individuals generated every generation could contain
an incorrect solution (that is, the solution might not satisfy the three conditions introduced
in Section 3.3.3). That is why some techniques to avoid the presence of incorrect individuals
have been introduced in Section 4.5.1. Continuous EDAs do not have such a problem, as the
individual representation chosen avoids it completely.

Nevertheless, as using the techniques to obtain correct individuals introduced in Sec-
tion 4.5.1 implies a computational cost as well as a direct and permanent manipulation on
the population itself, it is important to check whether the percentage of incorrect individuals
for the different algorithms is high enough to justify such a correction. We will take our 30 &
100 case as an example to confirm whether the additional manipulation process is required
or not.

Figure 6.1 shows the percentages of correct and incorrect individuals during the search
process for the three discrete Estimation of Distribution Algorithms (UMDA, MIMIC and
EBNA), as well as for the cGA, eGA and ssGA in the 30 & 100 example without applying
any technique to correct the wrong individuals (PLS only). Similarly, Figure 6.2 shows
the results of applying penalization under the same conditions. These graphics illustrate
the mean results of 20 executions for each of the algorithms. For each graphic the x axis
represents the generation number, and the y axis the percentage of individuals that are
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(a) UMDA (b) MIMIC

(c) EBNA (d) cGA

(e) eGA (f) ssGA

Figure 6.1: Figures for the correctness of the UMDA, MIMIC and EBNA (discrete EDAs) as well
as for the cGA, eGA and ssGA (GAs), applied to the second example of 30 & 100 vertices without
correction.

correct (i.e. all the vertices in VM have been assigned in the matching), the ones where a
value is missing (i.e. when only one vertex of VM has not been assigned), the ones where two
values are missing (i.e. when two vertices of VM have not been assigned), when three values
are still to be assigned, and finally the individuals in which more than three vertices have
not been assigned to a data vertex. These graphics illustrate that at the final generation
of all the algorithms practically none of the individuals is acceptable, but the percentage of
correct individuals decreases sooner when increasing the size of the graphs. It is important
to note that in this 30 & 100 example the individuals have a total size of 100 variables or
genes, and each of them have to be assigned to a value between 1 and 30 (|VM | = 30 and
|VD| = 100) has to be assigned to each of them, thus it is more probable that at least one
of the vertices in VM has not been assigned in the variables or genes than in the 10 & 30
example.

From the results we can conclude that for graphs of complexity similar or higher than in
this 30 & 100 example, the number of correct individuals gradually decreases every generation
for all the algorithms. Furthermore, the percentage of individuals that have one vertex of
VM not matched in the last generation appears to be very high for all the algorithms. These
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(a) UMDA (b) MIMIC

(c) EBNA (d) cGA

(e) eGA (f) ssGA

Figure 6.2: Figures for the correctness of the UMDA, MIMIC and EBNA discrete EDAs as well
as for the cGA, eGA and ssGA GAs, applied to the second example of 30 & 100 vertices and using
penalization.

graphs show clearly the behavior of the different algorithms, as well as the nature of the
fitness function selected. As a result, we can conclude that without any mechanism to
correct or guide the generation of individuals the percentage of correct ones will decay quite
fast. This decay can be appreciated in both discrete EDAs and GAs, but for the case of
EDAs the problem appears to be much more important, as when applying PLS simulation
alone none of the three EDA contains any correct individuals at the last generation of the
search. On the other hand, the three types of GAs do also contain a high proportion of
incorrect individuals at the last generation, and therefore this does not ensure that the final
solution returned by the algorithm will be a correct one.

Another conclusion about the penalization procedure can also be obtained from these
results: the penalization of the incorrect individuals is the only correction method that does
not manipulate the learning and simulation steps (the others are LTM and ATM as explained
in Section 4.5.1), but whichever the penalization weight to the incorrect individuals there
will always be the possibility of finding incorrect individuals in the final population. In fact,
the proportion of incorrect individuals for penalization in UMDA, MIMIC, EBNA, cGA,
eGA and ssGA were of 33.66%, 33.69%, 33.69%, 66.81%, 68.32% and 100% respectively. A

Endika Bengoetxea, PhD Thesis, 2002 101



6.2 Study 1: measurement of the performance

stronger penalization is required to be applied to individuals if this method is to be selected
for graphs with as many vertices as in these three examples, but it would never ensure 100%
of correct individuals in the population.

6.2.3 Discrete domain

Experimental results by combining correction methods and algorithms

Once proved the need to control the generation of the individuals in every population, the
three methods described in Section 4.5.1 for discrete domains were combined with the three
discrete EDA algorithms. In the case of the GAs, the last two methods described in the
same section were used for cGA eGA and ssGA, as the ones based on the modification of the
probability in the simulation step do not apply in GAs which do not perform such a step.

The results obtained from the different executions of the algorithms are shown in this
section. For each algorithm and example the mean values of the fitness value of the best
individual at the last generation, the number of generations to reach the final solution, and
the computation time are shown.

The computation time presented in these experimental results is actually the CPU time
of the process from the beginning to the end, and therefore it is not dependent on the
variations on the multiprogramming level during the execution time. This computation
time is presented as a measure to illustrate the different computation complexity of all
the algorithms. It is important also to note that all the operations for the estimation of
the distribution, the simulation, and the evaluation of the new individuals are carried out
through memory operations.

The null hypothesis of the same distribution densities was tested for each of the different
algorithms and for each of the correction methods to control the generation of new individ-
uals. The non-parametric test of Kruskal-Wallis was used [Kruskal and Wallis, 1952]2. This
task was carried out with the statistical package S.P.S.S. release 9.00.

Discrete domain: best individual, number of generations required, and compu-
tation time

The results of the 10 & 30 example are shown in Figure 6.3 and Tables 6.1, 6.2, and 6.3.
Figure 6.3 is done with the mean of 20 executions for all the algorithms, showing their
different behaviors depending on the correction method employed. The reader is reminded
that the PLS only and Penalization methods do not ensure a population of only correct
individuals. Shorter lines indicate that the algorithm finishes requiring less generations.
Tables 6.1, 6.2, and 6.3 show also the mean values as well as the results of applying the
Kruskal-Wallis test to the different parameters (fitness value, number of generations required,
and execution time required).

In an analogous way, results for the 30 & 100 example are shown in Figure 6.4 and
Tables 6.4, and 6.5. Results for the 50 & 250 example are found in Figure 6.5 and Tables 6.6,
and 6.7. These tables show also the mean values showing their behavior when changing the
correction method employed as well as the results of applying the Kruskal-Wallis test to
the different parameters (metric and execution time required). The number of generations
reached for the 10 & 30 and 30 & 100 examples was of 100 for all the algorithms.

2The interested reader is referred to [Siegel, 1956] for a deep explanation on non-parametric tests.
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(a) UMDA (b) MIMIC

(c) EBNA (d) cGA

(e) eGA (f) ssGA

Figure 6.3: Graphs showing the best individual at each generation of the searching process for the
algorithms UMDA, MIMIC, EBNA, cGA, eGA, and ssGA for the case of the 10 & 30 vertex graphs.
Note the different scales between discrete EDAs and GAs.

At the light of the results obtained in the fitness values, we can conclude that from the
three GAs used, ssGA appears clearly as the one that obtains the best results. Furthermore,
the computation time to generate the final solution is also less than the one required by the
other two GAs.

There is little difference in the best individual obtained by the different discrete EDAs:
even if with some correction methods EBNA obtains the best results, in some cases such
as in LTM and penalization, UMDA returned the best results. As explained before, EBNA
was expected to return the best result due to its ability to estimate more accurately the
probability, in spite of the higher computational cost. Nevertheless, as the differences do not
appear to be significant, we could not conclude that any algorithm is superior to the rest
simply based on these experimental results. Even if in EBNA no restrictions are set to the
structure to learn, the results obtained could indicate that the most appropriate structure for
this problem could be a structure with at most pairwise dependencies. It is also important
to note that both graphs GM and GD have been created at random and that they do not
show any knowledge, which makes the matching process even more dependent on the fitness
function used.

Regarding the difference between discrete EDAs and GAs, it seems clear that EDAs
obtain better results for any of the correction methods applied to the individuals. It is
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(a) UMDA (b) MIMIC

(c) EBNA (d) cGA

(e) eGA (f) ssGA

Figure 6.4: Graphs showing the best individual at each generation of the searching process for the
algorithms UMDA, MIMIC, EBNA, cGA, eGA, and ssGA for the case of the 30 & 100 vertex graphs.
Note the different scales between discrete EDAs and GAs.

important therefore to note that ssGA obtains similar results as EDAs.

Additional results. Additionally, the Kruskal-Wallis test was also applied to the correc-
tion methods between discrete EDAs only, and the non-parametric test of Mann-Whitney
[Mann and Whitney, 1947] was carried out for GAs only. The results are shown in Table 6.8.

Another important aspect to remember is the control of the correctness of the individuals.
As the LTM and ATM imply the manual modification of the learned model by changing the
probabilities, the learning itself is somehow manipulated. The correction of individuals does
also modifies at random some of the individuals of the population. The penalization of the
incorrect individuals is the only correction method that does not manipulate the learning and
simulation steps, but whichever the penalization weight to the incorrect individuals there
will always be the possibility of containing incorrect individuals in the final population. A
stronger penalization could improve these values, but it would never ensure 100% of correct
individuals in the population.

Regarding the fitness values of the best individuals obtained at the end of the search
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(a) UMDA (b) MIMIC

(c) EBNA (d) cGA

(e) eGA (f) ssGA

Figure 6.5: Graphs showing the best individual at each generation of the searching process for the
algorithms UMDA, MIMIC, EBNA, cGA, eGA, and ssGA for the case of the 50 & 250 vertex graphs.
Note the different scales between discrete EDAs and GAs.

processes, we can conclude that from the three GAs used, ssGA appears clearly as the
one that obtains the best results. Furthermore, the computation time to generate the final
solution is also less than the one required by the other two GAs. The best individuals
obtained using the different EDAs are very similar: even if with some correction methods
EBNA obtains the best results, in some cases such as in LTM and penalization UMDA
performs better. As explained before, EBNA is expected to return better results due to its
ability to estimate more accurately the probability distribution every generation, in spite
of a higher computational cost. Nevertheless, the small differences between EDAs do not
appear to be significant for this example regarding Table 6.8. This effect can be explained
by the fact that both graphs have been created at random and that they should not reflect
any dependence between variables, and as a result EBNA cannot find more dependencies
than other simpler EDAs. On the other hand, when comparing EDAs and GAs, it appears
clearly that EDAs obtain better results using any of the correction methods applied to the
individuals. It is important to note however that only ssGA obtains nearly as good results
as EDAs.
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Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 0.9305 0.9297 0.9305 0.9303 p = 0.016
MIMIC 0.9296 0.9293 0.9296 0.9289 p = 0.242
EBNA 0.9304 0.9299 0.9301 0.9301 p = 0.320
cGA – – 0.8065 0.8285 p < 0.001
eGA – – 0.8428 0.8431 p = 0.766
ssGA – – 0.9053 0.9045 p = 0.636
Statistical
Significance p < 0.001 p = 0.283 p < 0.001 p < 0.001

Table 6.1: Best fitness values for the 10 & 30 example (mean results of 20 runs).

Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 50.85 67.00 49.90 53.65 p = 0.023
MIMIC 42.00 92.70 46.90 47.40 p < 0.001
EBNA 52.00 63.40 51.20 54.55 p = 0.088
cGA – – 100 100 p = 1.000
eGA – – 100 100 p = 1.000
ssGA – – 100 100 p = 1.000
Statistical
Significance p < 0.001 p < 0.001 p < 0.001 p < 0.001

Table 6.2: Number of required generations for the 10 & 30 example (mean results of 20 runs).

Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 00:58 01:25 01:01 01:32 p < 0.001
MIMIC 00:56 02:39 01:02 01:32 p < 0.001
EBNA 03:37 04:25 03:38 04:34 p < 0.001
cGA – – 01:00 01:00 p = 0.100
eGA – – 01:01 01:01 p = 0.100
ssGA – – 01:09 01:09 p = 0.747
Statistical
Significance p < 0.001 p < 0.001 p < 0.001 p < 0.001

Table 6.3: Time to compute for the 10 & 30 example (mean results of 20 runs, in mm:ss format).

6.2.4 Continuous domain

In an analogous way as in the discrete domain, continuous EDAs were also tested in order to
check their performance in graph matching problems. The same three examples were taken
and were executed 20 times each. The results of the experiment are shown in Figures 6.6,
6.7 and 6.8, and Table 6.9.

This table shows that the differences between the algorithms in the discrete and continu-
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Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 0.940502 0.874684 0.892806 0.825850 p < 0.001
MIMIC 0.936400 0.859538 0.898960 0.824063 p < 0.001
EBNA 0.936739 0.875429 0.905114 0.823836 p < 0.001
cGA – – 0.674490 0.687297 p = 0.004
eGA – – 0.706609 0.712994 p = 0.160
ssGA – – 0.932318 0.911038 p < 0.001
Statistical
Significance p = 0.773 p < 0.001 p < 0.001 p < 0.001

Table 6.4: Best fitness values for the 30 & 100 example (mean results of 20 runs).

Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 00:11:50 00:12:56 00:11:59 00:13:05 p < 0.001
MIMIC 00:17:19 00:18:24 00:17:29 00:18:50 p < 0.001
EBNA 03:18:06 03:19:06 03:18:13 03:19:16 p < 0.001
cGA – – 00:09:07 00:09:08 p < 0.001
eGA – – 00:09:07 00:09:07 p = 1.000
ssGA – – 00:09:03 00:09:04 p = 0.317
Statistical
Significance p < 0.001 p < 0.001 p < 0.001 p < 0.001

Table 6.5: Time to compute for the 30 & 100 example (mean results of 20 runs, in hh:mm:ss format).

Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 0.863936 0.840546 0.856377 0.805633 p < 0.001
MIMIC 0.854939 0.792449 0.855580 0.796515 p < 0.001
EBNA 0.863677 0.833811 0.858611 0.795378 p < 0.001
cGA – – 0.587868 0.588509 p = 0.725
eGA – – 0.608552 0.607220 p = 0.725
ssGA – – 0.835702 0.818191 p < 0.001
Statistical
Significance p = 0.050 p < 0.001 p < 0.001 p < 0.001

Table 6.6: Best fitness values for the 50 & 250 example (mean results of 20 runs).
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Statistical
Method 1 Method 2 Correction Penalization Significance

UMDA 01:47:34 01:51:16 01:47:54 01:49:26 p < 0.001
MIMIC 02:45:43 02:50:07 02:45:45 02:47:26 p < 0.001
EBNA 53:01:35 53:08:04 53:03:35 52:59:49 p = 0.001
cGA – – 01:40:23 01:40:15 p = 0.297
eGA – – 01:40:35 01:40:34 p = 0.925
ssGA – – 01:40:50 01:40:39 p = 0.180
Statistical
Significance p < 0.001 p < 0.001 p < 0.001 p < 0.001

Table 6.7: Time to compute for the 50 & 250 example (mean results of 20 runs, in hh:mm:ss format).

First Experiment(10 & 30)

between EDAs only between GAs only

Fitness value: p = 0.139 Fitness value: p < 0.001
Correction Generations: p < 0.001 Generations: p = 1.000

Time: p < 0.001 Time: p < 0.001

Fitness value: p < 0.001 Fitness value: p < 0.001
Penalization Generations: p < 0.001 Generations: p = 1.000

Time: p < 0.001 Time:p < 0.001

Second Experiment(30 & 100)

between EDAs only between GAs only

Fitness value: p = 0.164 Fitness value: p < 0.001
Correction Time: p < 0.001 Time: p < 0.001

Fitness value: p = 0.471 Fitness value: p < 0.001
Penalization Time: p < 0.001 Time:p < 0.001

Third Experiment(50 & 250)

between EDAs only between GAs only

Fitness value: p = 0.886 Fitness value: p < 0.001
Correction Time: p < 0.001 Time: p = 0.012

Fitness value: p = 0.787 Fitness value: p < 0.001
Penalization Time: p < 0.001 Time:p = 0.025

Table 6.8: Particular non-parametric tests for the 10 & 30, 30 & 100 and 50 & 250 examples.
The cases where the generations in GAs are p = 1.000 indicate that all GAs executed during 100
generations. These are the mean results of 20 runs for each algorithm.
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Figure 6.6: Graphs showing the best individual of the 10 & 30 case at each generation of the
searching process for the continuous EDAs UMDAc, MIMICc, EGNABGe, EGNABIC , EGNAee, and
EMNAglobal.

Figure 6.7: Graphs showing the best individual of the 30 & 100 case at each generation of the
searching process for the continuous EDAs UMDAc, MIMICc, EGNABGe, EGNAee, and EMNAglobal.

Figure 6.8: Graphs showing the best individual of the 50 & 250 case at each generation of the
searching process for UMDAc, MIMICc, EGNABGe, and EGNAee.
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10 & 30 10 & 30 30 & 100 30 & 100 50 & 250 50 & 250
best time best time best time

UMDAc 0.994964 00:10:36 0.986516 01:33:29 0.693013 10:13:14
MIMICc 0.994844 00:11:09 0.989696 01:35:29 0.692722 10:18:56
EGNAee 0.994909 00:14:29 0.990219 07:26:56 0.688189 67:08:11
EGNABGe 0.994887 00:13:23 0.990141 03:09:57 0.684401 461:59:00
EGNABIC 0.994878 02:29:41 – – – –
EMNAglobal 0.994855 00:32:09 0.988799 97:45:25 – –

Table 6.9: Figures of the 3 cases of Study 1 for the continuous EDAs, obtained as the mean values
after 20 executions of the continuous EDAs. The best column corresponds to the best fitness value
obtained through the search.

ous domains are significant for all the algorithms analyzed. The null hypothesis of the same
distribution densities was tested (non-parametric tests of Kruskal-Wallis and Mann-Whitney)
for each of them with the statistical package S.P.S.S. release 9.00. These tests confirmed the
significance of the differences in the results regarding the value of the best solution obtained.
It is important to remember that all the solutions obtained by the continuous representation
are correct, and therefore these results can be compared directly to any of the correction
methods described for the discrete case. In many continuous versions of the EDA algorithms
fitter results were obtained at the end of the search than their respective discrete versions,
and it was only on the 50 & 250 example, where the results obtained by continuous EDAs
are worse than the discrete EDAs. The main drawback of continuous EDAs is the longer
execution time they require, which is extremely larger for the case of more complex contin-
uous EDAs such as EGNABGe. In EGNABIC and EMNAglobal the execution time was so
high that after 500 hours of execution time the processes were aborted. These results show
clearly that the behavior of selecting a discrete learning algorithm or its equivalent in the
continuous domain is very different regarding all the parameters analyzed.

It is important to note that the number of evaluations was different as the ending criteria
for the discrete and continuous domains have been set to be different. In all the cases,
the continuous algorithms obtained a fitter individual, but the CPU time and number of
individuals created was also bigger.

At the light of the results obtained in the fitness values, we can conclude the following:
generally speaking, continuous algorithms perform better than discrete ones, either when
comparing all of them in general or when only with algorithms of equivalent complexity.

6.3 Study 2: evolution of probabilistic graphical structures

The aim of this study is to analyze the evolution of the probabilistic graphical model com-
plexity (the Bayesian network in the discrete case and the Gaussian network in the continuous
one) so that the reader can have an idea of the complexity of the graph matching problem
and the behavior of each of the different EDAs.

Due to the difficulty of visualizing a structure with as many nodes as shown in the
graphs of the previous study, a smaller real example has been chosen. This example is
taken from an image of human muscle cells, where the model graph GM contains a vertex
for each of the cells in the image. This image was over-segmented and the data graph GD

was obtained from it. In this particular example the graph GM contains 14 vertices and 66
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(a) 1st generation
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(b) 21st generation

Figure 6.9: Figures showing the structures learned during the MIMIC search in discrete EDAs.

edges, and the data graph GD contains 28 vertices and 124 edges. EDAs were applied to
this example using individuals with a size of 28 variables (|VD| = 28) in both discrete and
continuous domains. Therefore, all the probabilistic graphical structures generated during
the successive generation in the EDA approach using this representation of individuals is of
28 vertices. The number of edges of these structures symbolizes the number of dependencies
between the different regions of the data image that the algorithm detects.

The discrete UMDA example is not shown in any figure, as it does consider all the
variables as having no interdependencies. The assumed structure is the same as for UMDAc,
and it is shown in Figure 6.13a.

With discrete EDAs we obtain structures such as the ones illustrated in Figure 6.9 (for
the MIMIC approach) and Figure 6.11 (for EBNA). These two examples show clearly that
the algorithm is learning a structure according to the complexity we expected: MIMIC
takes into account pairwise dependencies and generates a structure in the form of a chain in
every generation, and only the order of the variables changes during the search. The EBNA
algorithm imposes no restrictions to the number of dependencies that a variable can have,
and therefore there is no limitation in the number of arcs that a node can have in every
generation.

With continuous EDAs we can appreciate the analogous behavior: the continuous MIMICc

case is illustrated in Figure 6.10, where a behavior similar to Figure 6.9 can be seen. Again,
this was expected as the discrete MIMIC does also consider pairwise dependencies. Nev-
ertheless, the estimation of the distribution is performed using different methods in both
algorithms according to the domain of the variables (MIMIC generated a Bayesian network
and MIMICc a Gaussian network).

With continuous EDAs we obtain structures such as the ones illustrated in Figure 6.10
(for the MIMICc approach) and Figure 6.12 (for EGNAee). These two examples show clearly
that the algorithm is learning a structure according to the complexity we expected: MIMICc
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(b) 150th generation

Figure 6.10: Figures showing the structures learned during the MIMICc continuous EDA.

takes into account pairwise dependencies and generates a structure in the form of a chain
in every generation, and the EGNAee algorithm imposes no restrictions to the number of
dependencies that a variable can have (there is no limitation in the number of arcs that a
node can have in every generation).

Figure 6.13 is a special case, as the structures of both the UMDAc algorithm and
EMNAglobal are always fixed during the whole search process (i.e. the estimation of the
probabilities does not imply the learning of a structure, this is fixed), and therefore the
structure is considered to exist as a fixed one.

We can appreciate in these experiments as well as in others such as the ones mentioned
in [Bengoetxea et al., 2001c,e] that EBNA and EGNA algorithms, although they are analo-
gous in complexity in their domains, they have different tendencies. Both algorithms do not
set any restriction to the number of dependencies that variables can have (i.e. the probabilis-
tic structures can have any number of arcs for each node). In EBNA, the algorithm tends to
finish with an arc-less structure, which is influenced by the fact that in the last generations
the best individual appears many times in the population, and therefore the algorithm finds
the same value in a variable too often to detect dependencies regarding the rest of the vari-
ables –see Figure 6.11. In EGNAs, values are continuous and cannot be repeated as easily
as in the discrete domain, and therefore as values are different the dependencies can also be
found and represented as arcs in the structure. This is why at the last generations of the
search EGNAs show structures with a lot of arcs. This effect can be appreciated for both
EBNA and EGNA in Figure 6.14. In addition, there are also some additional factors that
may influence this result:

• The complexity of the problem is not as high as expected, and therefore in this case
UMDA and EBNA would return similar results.
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(a) 1st generation (b) 8th generation

(c) 16th generation (d) 24th generation (e) 32nd generation

(f) 37th generation

Figure 6.11: Graphs showing the evolution of the Bayesian network in a EBNA search, illustrating
clearly that the number of arcs of the probabilistic structure decreases gradually from the first gen-
eration to the last ones. A circular layout has been chosen in order to show the same nodes in the
same position. The number of arcs decreases as follows respectively: 57, 56, 40, 12, 3, and 1. After
the 37th generation and until the last (the 43th one) the Bayesian network does not contain any arc.
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(b) 150th generation

Figure 6.12: Figures showing the structures learned during the Edge Exclusion EGNAee continuous
EDA.
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(b) EMNAglobal

Figure 6.13: Figures showing the structures learned during the UMDAc and EMNAglobal continuous
EDAs.

• The fact that using a representation with that many values per variable requires a
bigger population per generation so that more complex dependencies can be analyzed.

It is important to note that in the former case, even if the best results obtained are similar,
the execution time for EBNA would be much higher. This is caused by the first part of
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(b) EGNAee

Figure 6.14: Graphs showing the evolution in number of arcs of the respective probabilistic structures
for EBNA and EGNAee. The two different tendencies are illustrated: EBNA tends to a structure
with less arcs when the search goes on, while EGNA-type algorithms tend to a structure with more
arcs.

the learning process of EBNA that requires searching for the best structure to model the
probability distribution, as in UMDA there is no such a step.

6.4 Study 3: parallelization

This study concentrates on the parallelization issues concerning EDA algorithms. Follow-
ing the techniques and explanations given in Chapter 5, this section concentrates in the
implementation and in obtaining experimental results to show the behavior of the different
communication methods available in communication for parallel programs: the use of shared
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memory and threads, and the use of message passing and processes in different machines.
This section is subdivided in two parts regarding both paradigms.

6.4.1 Parallelizing EBNA using threads and shared memory

Taking into account all the properties of the BIC score described in Section 4.3.4 and analyzed
in Section 5.5.3, we perform a basic modification on the sequential program in order to allow
to compute in parallel all the arc modifications. For this task, the broadly known pthreads
standard library is used, which allows threads to communicate through memory and to
synchronize them using semaphores.

The score+search procedure is therefore organized in a very different way, as now threads
have to divide the work: a thread plays the role of the manager that distributes the work
among the rest, and the others are the workers that have to compute all the possible arc
modifications for a same number of nodes.

Reorganizing the execution of the program

The fact of using a multithread program allows us to use shared memory for communication
between them. This is implemented by creating a single process which contains many threads
executing within its memory space. Global variables are defined, and these are used for direct
communication between threads. However, the use of shared variables for communication
leads to the existence of race conditions within the program. Therefore, a synchronization
mechanism is required to ensure exclusive access to the critical sections in the program. The
critical sections have to be identified by the programmer, and it is also his responsibility to
integrate the synchronization primitives within the code.

In order to accomplish the parallelization task, the first thing to do is to choose a mul-
tithread standard library to program. The pthreads library is commonly available in many
operating systems, so we decided to select it.

Once having decided this, the next step is to select the working scheme that all the parallel
program will use for organizing the work of all the threads. EDA programs do have several
parts that can only be executed sequentially, and the only part that we intend to parallelize
is the computation of the BIC score each generation. Therefore the use of a master-slave
scheme is very suitable for this case: a first thread will be executing the sequential parts of
the EDA program, and when it reaches the step of estimating the probability distribution it
will divide the work and send it to the workers. The worker threads will compute the BIC
score.

An important aspect to consider is the number of worker-threads that will be created at
the same time. We could think at a first glance that creating as many threads as possible is
the best to finish the job, but it is important to take into account that creating a thread also
has a cost associated, and that each thread has to be given enough work in order to justify
its generation time. In addition, another limiting factor to decide how many simultaneous
threads can be working is the number of CPUs of our system: having too many workers will
lead to a system with workers competing between them to take ownership of CPUs instead of
having them cooperating. For this reason, a semaphore is used to limit the number of threads
created at any time. This semaphore is initialized to the maximum number of threads that
can exist. In our case we have a two processor computer, and therefore this limit was set to
4 threads3.

3In fact, since in our particular case we have only two processors in our computer, we could limit the
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10 & 30 ex. 10 & 30 ex. 50 & 250 ex. 50 & 250 ex.
EDA sequential parallel sequential parallel
Algorithm exec. time exec. time exec. time exec. time

EBNABIC 00:04:34 00:03:20 52:59:49 28:00:04
EGNABGe 00:13:23 00:16:35 461:59:00 67:48:01
EGNABIC 02:29:41 01:59:31 (*) (*)

Table 6.10: Execution time for the 10 & 30 and 50 & 250 examples using the EBNABIC , EGNABGe

and EGNABIC algorithms regarding their sequential and parallel versions of computing the BIC score
(hh:mm:ss). The values with the symbol (*) required more than a month of execution time to be
properly computed.

Experimental results of the multithread BIC procedure using shared memory

As the parallel BIC algorithm does not follow a new algorithm, the best fitness values
obtained with the new parallel version of the EBNA approach are exactly the same as the
sequential version. The only differences that can be expected are just in the execution time.
Table 6.10 shows the effect of applying the parallel algorithm on the 50 & 250 example in
both the EBNABIC and EGNABIC algorithms for their sequential and parallel versions.

The results show clearly that the use of threads reduces considerably the execution time
for the 30 & 100 and 50 & 250 examples. A special mention is for the 10 & 30 example in
the EGNABGe case, as these particular results show that the parallel version requires longer
time than the sequential program. This is the result of parallelizing the learning step: in
Table 5.2 we can see clearly that the percentage of computing time for such an small example
is of 5.6 %, while in the 50 & 250 example we obtain a computation percentage of 55 %.
This illustrates that parallel programming techniques can improve the overall execution time
of the program, but that the cost of creating new processes or threads has also to be taken
into account, as already explained in the previous sections. In the small example with the
EGNABGe algorithm the relative weight of the function is so small in the whole execution
time that each of the worker-threads do not have enough processing tasks in order to justify
their creation, while in the big example the learning step is the one requiring the most
computation time and the fact of being computed in different threads gives very satisfactory
results.

For the rest of the cases and EDAs the final result was a considerable improvement in exe-
cution time in both the small and big examples, and the application of parallel programming
techniques such as the use of the library pthreads appears to be very advisable.

In brief, the results obtained could be summarized as follows: multithread libraries ap-
plied on multiprocessors are a very powerful tool for programs such as EDAs that require a
big amount of CPU time, but it is necessary to perform previously an analysis on the relative
time consumed by each of its functions in order to be sure to be applying them correctly.

6.4.2 Parallelizing EBNA using processes and MPI

MPI is a message passing interface introduced in Section 5.3.3. As its name indicates, MPI
has been designed to use message passing as the communication mechanism for inter-process

number of threads to 2. However, any program has always some small periods of time where a thread is
blocked waiting for a operating system job, and another thread could use the CPU in the meanwhile. This is
the reason why it is convenient to create some more threads than processors.
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communication. Threads that are attached to the same process usually communicate through
global variables in shared memory. However, any two threads from two different processes
(either if the processes are on the same computer or connected through a network) cannot
use shared memory and therefore message passing is the only possible mechanism. MPI
provides an efficient mechanism for threads from different processes, and it can also been
applied even when shared memory is available.

MPI has been designed as an interface for communicating processes that could even be
executing in different computers at the same time. We have chosen the MPI implementation
called MPICH for our experiments. The reasons for choosing both MPI and this particular
implementation MPICH is their portability, good performance and availability for operating
systems such as Windows, Linux and Solaris. MPICH even contains versions for very fast
computer network configurations such as Myrinet, which allows us for further reduction in
execution times.

As in MPI the communication is based on message passing primitives, the synchronization
between sender and receiver is done implicitly. In addition, using MPI allows us to use a
cluster formed by many 2-processor simple architecture PCs under Linux connected by a very
fast local area network (LAN) to collaborate and cooperate each other by creating processes
in all the machines without having to change the program. This means that in this case we
can use the same master-slave working scheme as with the parallel version of the pthreads
library, but this time workers would be processes that could be executing in different CPUs
and even in different computers at the same time.

However, in the particular example of the EDA program, the fact that processes cannot
share any memory among them forces the manager to send all the data structures required
to compute the BIC function to each of the workers. Afterwards when all the workers have
completed their part of the job, each one will have to send a message to the master with the
amount of work done. In addition, as in MPI processes are created and not threads, it is
important to take into account that the creation of a process requires more time that creating
a thread. Moreover, if processes are to be created in other computers within a cluster this
operation will take even longer.

All the latter consideration make us modify partly the structure of the EDA program. In
addition, the fact that in MPI the master and the slaves have to execute the same program
and that processes cannot be created dynamically is also another reason for a deep restructure
of the whole sequential program.

Experimental results of the parallel BIC procedure using MPI

The implementation of the EBNABIC parallel version using MPI was tested on a different
machine than the one used in the multithread program. The reason for this is that in this
case for an efficient use of MPI a cluster of workstations is more suitable rather than a
single machine with fast processors. In our case, we tested the parallel program based on
MPI using a cluster formed by 5 computers with 2 Intel Pentium II processors at 350 MHz,
512 KBytes cache, and 128 MBytes of RAM each. The operating system used is GNU-Linux.
These computers are connected by two different local area networks: one is a Fast Ethernet
and Myrinet. The different between them is that Myrinet has a bigger bandwidth, provides
shorter latency times for communication, but it is much more expensive. The decision of
using a network or another does not imply any modification on the source code, and it does
only affect the compilation options of the MPI distribution. Execution times with both types
of local area networks (LANs) were tested and are presented in this section.
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Different experiments were performed using both the 30 & 100 and 50 & 250 examples
of Study 1. Both networks were tested using different number of processors (i.e. number of
worker-processes created). Figure 6.15 shows the evolution of the execution time for the two
examples and in the two networks. The case of the 30 & 100 example with Fast Ethernet
illustrated in Figure 6.15a is specially illustrative, as it shows the typical case in which in
two moments the fact of increasing the number of workers also increases the execution time
required. The explanation of this is as follows: the first and initial increase in execution
time is due to the added computation required to implement the communication between
workers and the manager, while the latter at the end is a result of dividing too much the
work load per worker and therefore requiring more time to create each of them rather than
having them working. In between both moments, we have a part in which the parallelization
techniques give the expected results of reducing the execution time. In this example but for
the Myrinet network this does not happen because the network is faster and therefore the
overhead created by the communication is also smaller.

The 50 & 250 example presents acceptable figures for both the Fast Ethernet and Myrinet
networks. Both graphics in Figure 6.15 show also the differences in data transfer speed be-
tween the Fast Ethernet and Myrinet networks. On the other hand, with smaller examples
the increase in execution time could also happen even when using a fast network such as
Myrinet. These results are also shown in numeric format in Table 6.11. Therefore, our
experiments show the expected effects when parallelizing complex and CPU intensive pro-
grams, and these also serve as an idea of the minimum size that the problems need to have
in order to obtain shorter execution times. This table also shows that in both the Fast
Ethernet and Myrinet networks, the optimum number of workers is 7 (1 manager process +
7 worker processes), and for the Myrinet case the higher the number of processes the shorter
the execution time (we arrived until a total of 9 worker processes), although in the Myrinet
case we would find a moment after which the execution time would also show the increase
when augmenting too much the number of workers. However, these results are only valid
for the particular configuration of the cluster where the experiments were carried out, and
will have considerable differences depending on the RAM memory available, and the number
and working frequency of the processes in each computer that forms the cluster.

Figure 6.16 is an example of the types of traces that we can obtain using the MPICH
implementation of MPI. These traces are used to identify bottlenecks in MPI programs, but
here are presented for illustrating the communication requirements that the evolution of
each generation requires. The state and MPI primitive executed by each of the processes are
shown using different colors. These figures demonstrate that while the manager is executing
the rest of the workers are simply waiting, and therefore no parallelization is occurring during
this time. Later, there is a phase in which the manager is executing sending operations and
workers are mostly executing receiving ones. The latter is the time in which the work is
being distributed to and executed by the workers while the manager is administrating and
coordinating all the job. This repeats once and again until the total number of generations
have been completed. Obviously, in order to achieve a considerable reduction in execution
time the parallel phase needs to occupy most of the time in the diagram, which has been
shown to happen in our case when having graphs of big sizes. The speed of the network is
also another factor to consider, and this fact is shown in the different times illustrated in the
figure.
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(a) 30 & 100 example

(b) 50 & 250 example

Figure 6.15: Illustration of the evolution in execution time when using MPI and depending on the
number of processes.

6.5 Conclusions of the studies on synthetic problems

Very different studies have been described in this chapter, from which different results and
conclusions for the application of these techniques on real graph matching problems. We can
summarize them as follows:

Study 1: the main conclusion that is obtained from this study is that when additional
constraints are present in real problems a mechanism is available in EDAs to ensure
that the final solution will satisfy all of them. Specially in graph matching problems
that have a complexity similar in size to the ones obtained in real images, the control of
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Number of Total Time Speed Up Total Time Speed Up
Processes Fast Eth. Fast Eth. Myrinet Myrinet

1 01:28:07 1 01:28:07 1
2 01:53:03 0.779 01:04:28 1.368
3 01:43:40 1.850 00:54:59 1.602
4 01:26:04 1.023 00:47:19 1.862
5 01:28:55 0.991 00:44:47 1.967
6 01:23:47 1.052 00:45:13 1.949
7 01:23:02 1.061 00:43:33 2.023
8 01:17:57 1.130 00:41:02 2.147
9 01:30:22 0.975 00:42:18 2.083
10 01:34:20 0.934 00:42:02 2.096

(a) 30 & 100 vertices

Number of Total Time Speed Up Total Time Speed Up
Processes Fast Eth. Fast Eth. Myrinet Myrinet

1 37:00:09 1 37.00:09 1
2 34:24:55 1,075 20:21:01 1.818
3 25:54:22 1.428 15:29:36 2.388
4 21:16:22 1.739 11:50:02 3.126
5 19:50:30 1.864 11:06:42 3.330
6 18:15:10 2.027 10:20:06 3.580
7 16:59:37 2.177 09:10:19 4.034
8 15:52:58 2.329 08:42:15 4.251
9 16:30:14 2.242 08:21:53 4.423
10 17:22:47 2.129 08:10:07 4.529

(b) 50 & 250 vertices

Table 6.11: Execution times obtained when increasing the number of processes (processors used)
for the medium-sized example with 30 & 100 vertices (above) and for the big example with 50 & 250
vertices (below). Times are presented in hh:mm:ss format.

constraints can be performed applying to EDAs the methods described in Section 4.5.1.

In addition, this study presents a comparison of the performance of the different EDAs
and other evolutionary computation algorithms which illustrate their differences de-
pending on the complexity of the graph matching problem. In addition, the same
graphics show the evolution in best solution obtained per generation, which can be
used to select an algorithm over the rest regarding the stopping criterion of the search.
In any case, EDAs show on the whole a better performance than other evolutionary
computation techniques for both the discrete and continuous domains.

It is important to note that the behavior of the algorithms is always very dependent on
the fitness function selected. Fitness functions are defined for each particular problem,
and algorithms also adapt in a different way to the type of fitness functions. From the
experiments carried out we can see that the different algorithms have different tendency
to fall on local maxima (or local minima if the fitness function has to be minimized)
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(a) Trace of execution in a Fast Ethernet network

(b) Trace of execution in a Myrinet network

Figure 6.16: Figures for the communication mechanisms and other MPI primitives on the parallel
version of EBNABIC for the particular configuration of our cluster.

or to scape from them. In this study, EDAs showed a better propensity to avoid local
maxima, although in fitness function with less local maxima GAs obtain the optimum
in a shorter time.

Study 2: this study illustrates the behavior of the different EDAs during the search pro-
cess. This behavior is specially interesting in case of EBNA and EGNA, as they take
into account all the possible dependencies. This study illustrates the evolution of the
probabilistic graphical models on EDAs and explains why they converge to solution at
the end of the search process.

Study 3: from the results presented in Study 3, we can conclude that the mechanism used in
this thesis reduces considerably the execution time required for CPU intensive programs
such as EBNABIC . The two versions of the parallel program, the multithread and the
MPI ones, can be applied to multiprocessors and clusters respectively according to the
hardware availability. In addition, results of two types of LANs are presented showing
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the relevance of the network speed on the execution time.

In both cases, the paradigm applied is a master-slave scheme as described in Sec-
tion 5.6. This mechanism has been designed for its easy adaptation to other EDAs or
evolutionary computation algorithms. The source code of the multithread and MPI
version including detailed explanations about the communication and synchronization
implementations is presented in Appendix D.

However, another important conclusion that is obtained from these results is that the
number of workers is an important parameter that is very dependent on the character-
istics of the computers that has to be chosen with care in order to obtain a satisfactory
reduction in execution time without increasing the overhead of the communication
between the workers and the master.
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Chapter 7

Experiments with real examples

“ The most exciting phrase to hear in science, the one that heralds new
discoveries, is not ‘Eureka! ’ but ‘That’s funny ...’ ”

Isaac Asimov

7.1 Introduction

After the experiments carried out with synthetic data in the previous sections, this chapter
presents experimental examples carried out with real data. These real problems present
different characteristics and restrictions that have to be taken into account by the graph
matching algorithm.

The first application is the recognition of healthy human brain MR images in three di-
mensions. Secondly, the inexact graph matching example of the recognition of facial features
on human faces is tackled.

7.2 Recognition of brain images

7.2.1 Motivation

The recognition of internal structures of the human brain in magnetic Resonance images
(MRi) using anatomical atlas presents nowadays an increasing interest, and many publica-
tions can be found in the literature on applications derived from this field in areas such as
morphometry, localization of pathologies regarding abnormal structures in the brain, study
of the evolution of pathologies, and support for functional studies of the brain. In all these
applications the individual anatomy and the recognition of the internal structures is a prelim-
inary step. Moreover, the step of automatically recognizing brain images by computers is a
goal that could improve considerably the diagnosis and work of neurologists and radiologists.

The main difficulties of such a recognition are the differences in the orientation of the
images and in gray level distributions between machines, but mainly the differences are due
to the structural particularities of healthy individuals (the many variations from a person
to another in composition, size and orientation on these different regions), and the presence
of possible pathologies. Most of the commercial programs that nowadays perform a similar
recognition procedure are based on the analysis of the grey levels of the image. Others, more
sophisticated, are able of identifying regions under variation of grey level distributions on
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images, although this always require the help of the physician to ensure that the detection
is satisfactory enough.

More recently digital anatomical atlases have been proposed as a valid generic support
for representing the different brain regions and their variability.

The use of graphs tries to encapsulate all the anatomical knowledge of a healthy brain
independently of these factors. In the considered application, the atlas (or model) is rep-
resented as an attributed graph, and the images to be recognized undergo an automatic
segmentation procedure after which its characteristics are also represented in the form of
a data graph. The whole recognition process is therefore proposed as a graph matching
problem.

Regarding the input image from which the data graph is generated, it is a common
practise to apply over-segmentation to the data image previously [Perchant et al., 1999,
Perchant and Bloch, 1999] to ensure that all the boundaries between regions in the model
appear also in the data image. This makes graph matching easier as it ensures that a vertex
in GD is matched only against a single vertex in GM . Unfortunately, as a consequence of this
procedure even more segments are created by further subdividing the input image, which at
the same time results in an increase on the number of vertices in the data graph and hence
in the complexity of the problem itself. Due to this reason, the isomorphism condition is
too restrictive and therefore this problem is actually regarded as an inexact graph matching
one.

7.2.2 Construction of the atlas and data graphs

The atlas graph1 that we use as a general reference has been constructed with the aid of
medical doctors, and it contains a vertex for each of the brain regions such as cerebellum,
ventricles, and corpus callosum with all the attributes of each of them such as approximate
size, approximate position in the brain, and grey level distribution in MR images. Our
particular model contains 43 regions, and therefore the model graph GM has 43 vertices.
In our model the graph is not complete and only edges between neighboring regions are
considered. The model graph that we used as an example contains 336 edges.

The size of the data graph GD used in our experiments contains 245 vertices and 1451
edges. Figure 7.1 illustrates how both the atlas and data graphs are generated.

The vertex and edge attributes that we use in our particular example have been obtained
from the problem described in [Perchant, 2000, Perchant and Bloch, 2000b]. The particular
attributes that are considered for both the atlas and data graphs are the grey level distribu-
tion for the vertices, and the relative position and distance for the edges. These attributes
are founded on fuzzy set theory, and all the information that is required for comparing each
of them is stored in the form of the necessity and possibility values. The authors also define
a method to combine these fuzzy attributes to create similarity measures between vertex and
edge attributes of the atlas and data graphs, and these vertex and edge similarities are the
basis for creating fitness functions on their example. This method provides a means to obtain
the vertex similarity value cN (aD, aM ) between any two vertices aD ∈ VD and aM ∈ VM , as
well as the edge similarity value cE(eD, eM ) between any two edges eD = (ai

D, aj
D) ∈ ED and

eM = (ak
M , al

M ) ∈ EM . Both cN (aD, aM ) and cE(eD, eM ) are normalized in [0, 1].

1The model graph is usually known as the atlas graph in the literature on this particular problem.
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Figure 7.1: Illustration of the generation of the atlas (above) and the data graph (below). The atlas
is created from a real 3D MR image of a healthy human brain manually segmented as we can see
above. The data graph GD is created segmenting the input image to be recognized. All the images
are always in 3D, although here we show only a coronal view of them. Both graphs on the right show
the complexity of the problem. The graph matching procedure has to assign a model vertex for each
of the vertices in the data graph.

7.2.3 Description of the problem and the graph matching approach

Figure 7.2 shows the matching procedure of this problem and the meaning of the results.
This figure illustrates how the successful recognition of the caudate nucleus (one of the brain
regions) is performed using graph matching. As the image is acquired in 3D, two columns
corresponding to an axial and a sagittal view are presented. The over-segmentation is also
evident and can be appreciated in the data graph compared to the atlas graph. In the
input image, the caudate nucleus is represented by two different segments in this particular
example, although depending on the segmentation process this also could have been divided
in even more segments (or may be in just a single one).

In the atlas (above) one vertex represents the caudate nucleus, and edges from this vertex
to the neighboring vertices represent spatial relationships between them. The images below
show the corresponding parts identified as the caudate nucleus once the atlas and data graph
have been matched satisfactorily.

Any successful graph matching method is expected to obtain as a final result the matching
illustrated in the row below for the case of the caudate nucleus. Similar examples could be
given for the rest of the brain segments. However, it is important to point out that the
search process relies on the fitness function and the individual representation, and therefore
the proper choice of these two aspects will be responsible to a large extent for obtaining a
satisfactory result at the end. The fitness function that we have selected for our experiments
with this example has been obtained from the literature in [Perchant et al., 1999] and it
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Figure 7.2: Example of the graph matching process applied to the recognition of structures in MR
human brain images. In each row we have an axial and a sagittal view of the model graph, data graph,
and a result respectively. All these images concentrate on the recognition of a particular segment of
the brain among all the ones to be identified: the caudate nucleus.
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follows the idea of the one introduced in Equation 3.2 in Section 3.4.3. On the other hand, the
individual representations used here for applying discrete and continuous EDAs are the ones
described in Sections 3.3.1 and 3.3.2 respectively. The procedure to evaluate individuals in
the continuous domain with the same fitness function is the one explained also in Section 3.3.2
and in Appendix A. In both the discrete and continuous domains, α = 0.4 was considered
following the conclusions of [Perchant et al., 1999].

This real problem has also specific constraints that have to be satisfied for any solution
in order to accept it as valid. The conditions of this problem are exactly the same as in the
synthetic case analyzed in Section 6.2: no dummy vertices are allowed, only a matching is
possible for each vertex in the data graph, and there is an additional constraint so that there
must exist at least a region in the input image assigned to every vertex in the model. The
latter condition is justified since we are dealing only with healthy brains and therefore all
the brain regions have to be identified. All these aspects have already been discussed and
formalized in Section 3.3.3.

7.2.4 Experimental results

Description of the experiment

In this section we compare the performances of EDA algorithms to each other and to a
broadly known GA, the GENITOR [Whitley and Kauth, 1988] –a steady state (ssGA) type
algorithm. Both EDAs and GENITOR are implemented in ANSI C++ language, and the
experiment was executed on a two processor Ultra 80 Sun computer under Solaris version 7
with 1 GByte of RAM.

The initial population for all the algorithms was created using the same random gen-
eration procedure based on a uniform distribution. In the discrete case, all the algorithms
were set to finish the search when a maximum of 100 generations or when uniformity in the
population was reached. GENITOR, because of being a ssGA algorithm, only generates an
individual at each iteration, but it was programmed in order to generate the same number of
individuals as in discrete EDAs by allowing more iterations (201900 individuals). In the con-
tinuous case, the ending criterion was to reach 301850 evaluations (i.e. number of different
individuals generated).

In EDAs, the following parameters were used: a population of 2000 individuals (R =
2000), from which a subset of the best 1000 are selected (N = 1000) to estimate the prob-
ability, and the elitist approach was chosen (that is, always the best individual is included
for the next population and 1999 individuals are simulated). In GENITOR a population of
2000 individuals was also set, with a mutation rate of pm = 1

|VD| and a crossover probability

of pc = 1. The crossover and mutation operators used in GENITOR are CX [Oliver et al.,
1987] and EM [Banzhaf, 1990] respectively.

Results

Results such as the best individual obtained, the CPU time, and the number of evaluations
to reach the final solution were recorded for each of the experiments. The CPU time is given
as a measure to illustrate the different computation complexity of all the algorithms.

Each algorithm was executed 10 times. The non-parametric tests of Kruskal-Wallis
[Kruskal and Wallis, 1952] and Mann-Whitney [Mann and Whitney, 1947] were used to
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Best fitness value Execution time Number of evaluations

UMDA 0.7186 00:53:29 85958
MIMIC 0.7027 00:57:30 83179
EBNABIC 0.7167 01:50:39 85958
UMDAc 0.7450 03:01:05 301850
MIMICc 0.7480 03:01:07 301850
EGNABGe 0.7469 04:13:39 301850
ssGA 0.6936 07:31:26 201900

p < 0.001 p < 0.001 p < 0.001

Table 7.1: Mean values of experimental results after 10 executions for each algorithm for the inexact
graph matching problem of the human brain structure recognition.

test the null hypothesis of the same distribution densities for all –or some– of them2. This
task was done with the statistical package S.P.S.S. release 9.00. The results for the tests
applied to all the algorithms are shown in Table 7.1. The study of particular algorithms
gives the following results:

• Between algorithms of similar complexity only:

– UMDA vs. UMDAc. Fitness value: p < 0.001; CPU time: p < 0.001; Evalua-
tions: p < 0.001.

– MIMIC vs. MIMICc. Fitness value: p < 0.001; CPU time: p < 0.001; Evalua-
tions: p < 0.001.

– EBNA vs. EGNA. Fitness value: p < 0.001; CPU time: p < 0.001; Evalua-
tions: p < 0.001.

These results show that the differences between EDAs in the discrete and continuous
domains are significant in all the cases analyzed, meaning that the behavior of selecting
a discrete learning algorithm or its equivalent in the continuous domain leads to very
different results. It is important to note that the number of evaluations was expected
to be different, as the ending criteria for the discrete and continuous domains are also
different. In all the cases, continuous EDAs obtained a fitter individual, but the CPU
time and number of individuals created was also bigger.

• Between discrete algorithms only:

– Fitness value: p < 0.001. CPU time: p < 0.001. Evaluations: p < 0.001.

In this case statistically significant different results are also obtained in fitness value,
CPU time, and number of evaluations. The discrete algorithm that obtained the best
result was UMDA, closely followed by EBNA. The differences in the CPU time are
also according to the complexity of the learning algorithm they apply. Finally, the
results show that MIMIC required significantly less individuals to converge (to reach
the uniformity in the population), whereas the other two EDA algorithms require
nearly the same number of evaluations to converge. The genetic algorithm GENITOR
is far behind the performance of EDAs. The computation time is also a factor to

2The interested reader is referred to [Siegel, 1956] for further explanations on non-parametric tests.
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consider: the fact that GENITOR requires about 7 hours for each execution shows the
complexity of the graph matching problem.

• Between continuous algorithms only:

– Fitness value: p = 0.342. CPU time: p < 0.001. Evaluations: p = 1.000.

Differences in fitness values between all the continuous EDAs appear to be not sig-
nificant. As expected, the CPU time required for each of them is according to the
complexity of the learning algorithm. On the other hand, the fact of having the same
number of evaluations is due to the same ending criterion. Speaking about the dif-
ferences in computation time between discrete and continuous EDA algorithms, it is
important to note that the latter ones require all the 300000 individuals to be generated
before they finish the search. The computation time for the continuous algorithms is
also longer than their discrete equivalents as a result of several factors: firstly, due to
the higher number of evaluations they perform each execution, secondly because of the
longer individual-to-solution translation procedure that has to be done for each of the
individuals generated3, and lastly, as a result of the longer time required to learn the
model in continuous spaces.

We can conclude from these results that generally speaking continuous algorithms per-
form better than discrete ones, either when comparing all of them in general or only with
algorithms of equivalent complexity.

7.2.5 Computational complexity and parallelization of the problem

The complexity of the human brain recognition problem is high due to the inherent com-
plexity of the brain structures and the fact of having 3D images [Bengoetxea et al., 2002b].
Unfortunately, such a high complexity results in very long computation time if a satisfactory
matching is to be found. This section focuses on this aspect to demonstrate the need and
usefulness of applying parallelization techniques.

Analysis of the execution times for the most important parts of the sequential
EDA program

Section 5.5.2 underlines the need of analyzing the potential for parallelization of a program by
profiling it. That section showed how to perform this step for the specific case of EBNABIC

using the GNU gprof tool. Table 7.2 summarizes the most salient results for this particular
problem.

The BIC function computes the BIC score –i.e. the goodness of the probabilistic struc-
ture to represent the data. This function is executed many times each generation, until the
best Bayesian network is found. This score constitutes essentially the whole learning of the
Bayesian network. Table 7.2 shows clearly that in EBNABIC the most time consuming func-
tion is BIC, the one that is used to evaluate the different Bayesian networks for representing
the interdependencies between the variables.

We exploit the use of the two parallel versions of the EBNABIC algorithm for this prob-
lem, the first based on threads and shared memory, and the second on processes and message
passing.

3See Section 3.3.2 for a further explanation of this individual-to-solution procedure.
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EDA type Internal function Relative CPU time

BIC (Learn probabilistic model) 85.7 %
EBNABIC Evaluation of individuals (Fitness function) 12.3 %

Simulation 1.4 %

Table 7.2: Time of computing for the human brain recognition graph matching problem solved with
EBNABIC . All the figures in the last column are given in relative times, i.e. 100 % = full execution
time.

parallel parallel parallel parallel
sequential 2 workers 4 workers 6 workers 8 workers

Machine 1 26:49:48 17:40 16:55 17:08 16:11
Machine 2 10:54:15 7:14 6:56 6:50 6:57

Table 7.3: Execution times for the human brain recognition problem using the EBNABIC algorithm
regarding its sequential and shared memory based parallel pthread version for computing the BIC
score (hh:mm). Results show important improvements in execution times.

Experimental results using threads and shared memory

The parallel version of the BIC function using threads does not compute any different algo-
rithm regarding the sequential BIC function. For this reason, the best fitness values obtained
with the parallel version of the EBNABIC approach are exactly the same obtained with the
sequential program. The only difference is just the execution time required. Two small SMP
machines with different hardware configurations have been used to evaluate the performance
of a parallel pthreads-based version of the EBNABIC program, which characteristics are as
follows: the first computer, Machine 1, contains 2 Intel Pentium II processors at 350 MHz,
512 KB cache, and 128 MB of RAM; the second computer, Machine 2, has 2 Intel Pentium III
processors at 1 GHz, 256 KB cache, and 512 MB of RAM. Both machines use the operating
system GNU-Linux and its programming environment. Table 7.3 compares execution times
for sequential and parallel versions of EBNABIC . Note that parallelism does not come for
free: the parallel master-worker paradigm can be applied to a single worker –thus, achieving
no parallelism at all. Using Machine 2 with a single-worker parallel program, the execution
time is 12:08:49, i.e., more than 1 hour slower than the original, sequential version. This
cost comes from spawning the worker thread and synchronizing it with the master.

Of course, real improvement can only be apparent when two or more worker threads
run in parallel. Table 7.3 shows that, with two workers runs are much shorter. We tried
using more than two worker threads: additional gains are achieved, but not very significant.
Generally speaking, the results obtained could be summarized as follows: parallel program-
ming techniques based on shared memory appear to be an effective acceleration tool for
very CPU-consuming programs such as EDAs. Programmers need to familiarize themselves
with libraries such as pthreads (or equivalent ones) to take full advantage of the potential of
parallel machines.

Experimental results using message passing

A similar experiment was performed using the parallel version of the EBNABIC algorithm
based on MPI. The program was executed in the cluster which characteristics were explained
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parallel parallel parallel parallel parallel
2 workers 4 workers 6 workers 8 workers 10 workers

Fast Ethernet 27:04 19:21 17:23 15:59 17:25
Myrinet 17:36 13:04 11:41 10:53 10:42

Table 7.4: Execution times for the human brain recognition problem using the EBNABIC algorithm
regarding its sequential and message passing based parallel MPI version for computing the BIC score
(hh:mm). The execution time of the sequential version on one of the machines is 26 hours and 49
minutes. Results show the validity of the parallel system.

in Section 6.4.2. As well as in that section, the Fast Ethernet and Myrinet computer networks
were tested. The results are shown in Table 7.4. The results obtained also show considerable
reductions in the computation time, specially for the Myrinet case. Similar results as in the
previous section are obtained, although the performance of MPI is still better than such of
the pthreads one.

7.3 Recognition of human facial features

7.3.1 Motivation

Face analysis and recognition have received intense and growing attention from the computer
vision community, partially because of the many applications such as human-computer in-
teraction, model-based coding, teleconferencing, security and surveillance. A particularly
important task that arises in different problems of face recognition is the location and seg-
mentation of facial feature regions, such as eyebrows, iris, lips, and nostrils [Pantic and
Rothkrantz, 2000]. Some of the most popular methods such as techniques based on template
matching, integral projections, and so on are also discussed in [Pantic and Rothkrantz, 2000].

We propose the use of graph matching to solve this problem. In this approach, we have
again one graph representing a model of a face and an image for which recognition has to be
performed. Both the model and data graphs are built from regions and relationships between
regions, and there are vertex and edge attributes in both of them too. The idea is to model
basic knowledge about the features in a face as a graph. Based on an over-segmentation,
image information is also represented as a graph. More specifically, an attributed relational
graph is used to represent each image. Therefore, the recognition procedure expects to find
a suitable matching between both graphs. The introduced technique can be applied to both
static images and to video sequences.

7.3.2 Construction of the model and data graphs

The model graph

The easiest way of obtaining the model graph GM = (VM , EM ) is by manually segmenting
a face image selected specifically for this purpose. The attributes of the model graph are
later computed regarding data extracted from that image. Figure 7.3 illustrates the way of
generating the model graph from a selected image. Firstly, the facial landmarks are located
by a tracking method [Feris and Cesar, 2001] and used to define a limited region. The model is
manually obtained from a reference image. Figure 7.3c shows the face image that has been
manually segmented to define the face model, and that has been used in the preliminary
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experiments reported in this section. A more robust approach is to segment a set of face
images and to calculate the graph attributes from different images. This approach allows
the inclusion of vertices corresponding to specific facial features that may not be present in
the selected model image, such as teeth or beard. The associated vertex and edge attributes
are calculated only from the images where they are effectively present. Complete graphs are
used, and even edges from and to the same vertex are considered. As a result, if |VM | = n
then ∀ai

M ∈ VM there are n edges in EM so that (ai
M , aj

M ) ∈ EM with j = 1, 2, . . . , n.

The model graph is generated so that it contains vertices associated to each facial feature
of interest, e.g. for each eyebrow, iris, nostril, mouth and the skin. The proposed approach
allows additionally inclusion of other facial features non always included such as glasses,
teeth and beard.

It is important to note that in the model of Figure 7.3c, some single facial features have
been subdivided deliberately. An example of this are the eyebrows, which are subdivided in
three parts each. This has been done because the adopted vertex and edge attributes are
calculated based on average measures over the segmented image regions. Therefore, model
attributes extracted from large regions tend to be less representative because such regions
often present larger variability with respect to the attributes. That is why some facial
features have been subdivided in order to circumvent such a potential problem. In addition,
the fact that the skin is not a well-localized facial feature (in contrary to pupils and nostrils)
presents an additional difficulty for introducing structural relations between skin and the
other features. As an example, while it is possible to define structural relations such as the
pupil is above the nostrils, it would be more difficult to define a similar relation with respect
to the skin. As a solution to this problem, alternative types of structural relations such as
surrounded by are avoided. Instead, we have adopted the approach of further dividing the
skin into sub-segments as shown in Figure 7.3c, which allows us to use the same relational
attributes between all facial features. An additional reason for over-segmenting the input
image is that –as well as in the previous example of the human brain– this procedure will
ensure that each of the segments will correspond to only one model region.

It is worth emphasizing that subdividing the model regions implies increasing the number
of graph vertices and edges and thus it increases the complexity of the whole problem.
Therefore, there is a trade-off between quality of model attributes and computation time
that should be carefully considered when designing the graph model.

Generation of the data graph

The initial step to segment the facial feature regions is to locate the face in the image, which
can be done both in photograph images and in video sequences. The latter requires detection
of the face in a frame and to track it in the subsequent frames. In approaches such as [Cesar
and Bloch, 2001, Cesar et al., 2002a], these location and tracking steps are performed using
the Gabor Wavelet Network (GWN) [Kruger and Sommer, 1999]. The GWN acts as a rigid
model that provides approximative landmarks which are located near the facial features to be
segmented [Feris and Cesar, 2001] (e.g. eyes, nose and mouth). These landmarks are used in
two different ways in order to make our approach more efficient: firstly, only certain regions
around the landmarks are considered, and secondly, the landmark information is used by the
optimization algorithm to constrain the solution search space. The reader is referred to [Feris
and Cesar, 2001] for further details on the GWN approach. We will call super-regions to the
4 landmarks that we consider on our particular example, which are centered each on the left
pupil, right pupil, the nose, and the mouth.
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(a) (b)

(c) (d)

Figure 7.3: Illustration of the process to generate the model graph: (a) an original image is selected
to extract the model from; (b) a masked version which contains only the regions of interest around
the landmarks is obtained; (c) the face model is obtained by manual segmentation; (d) image where
the model is superimposed to the face image (just for explanatory purposes).
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Figure 7.4: Example of an over-segmented image after applying the watershed algorithm.

The input image is over-segmented using a watershed algorithm based on the approxima-
tive landmarks of the facial feature regions (the four super-regions in our case), which results
in an over-segmented image such as the one shown in Figure 7.4. The over-segmentation is
performed since it is important that the edges that define the facial regions to be segmented
are also present after the segmentation process –similarly as in the brain recognition problem.
The resulting over-segmented image is the one that is used next to generate the attributed
data graph GD, which is later matched against a model graph through a graph matching
algorithm. As with the model graph, each vertex of GD is adjacent to all other GD vertices,
and it is also adjacent to itself. Under these conditions no bijective correspondence can be
expected because of the over-segmented nature of the image regarding the model, and as a
result this problem calls for inexact graph matching.

Vertex and edge attributes and similarities

The knowledge about face features is represented in the attributed graphs by the unary (ver-
tex) and binary (edge) attributes of both the model and data graphs. Unary attributes are
calculated from the segmented region of the corresponding vertex, while relational attributes
are based on the spatial disposition of the regions. We have based our decision on which
type of attributes to use regarding the work described on this field such as [Cesar and Bloch,
2001, Cesar et al., 2002a,b], where a detailed description of vertex and edge attributes for this
particular graph matching problem can be found. Following these references, the attributes
and their similarities where selected as follows:

Unary attributes: Let G = (V,E) be the graph (either the model or data graph), then
η(a) = (g(a), w(a), gmin(a), l(a)) with a ∈ V is the unary attribute of the region cor-
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responding to vertex a in the segmented image, where g(a) denotes the average grey
level, w(a) is computed as a texture index from wavelet coefficients, gmin(a) denotes
the average grey-level of the 15% darkest pixels of the image region associated to ver-
tex a, and l(a) is a super-region number assigned by the tracking procedure regarding
approximative landmarks as described in the previous section. Both g(a) and gmin(a)
are normalized between 0 and 1 with respect to the minimum and maximum possible
grey-levels, and the value of 15% used to calculate gmin(a) is a parameter that may be
changed depending on the nature of the input image.

Regarding the definition of the vertex similarity, the vertex attributes gmin(a) and l(a)
are included for supporting the recognition process, but only the vertex attributes g(a)
and w(a) are considered in the computation of the similarity between vertices: gmin(a)
is included in order to facilitate the recognition of textured regions composed of light
and dark pixels (e.g. the eyebrows and in some cases the mouth), and the super-region
label l(a) provided by the tracking procedure is only taken into account to restrict
the search space. As a result, the similarity between any two vertices aD ∈ VD and
aM ∈ VM , denoted by cN (aD, aM ), is defined as:

cN (aD, aM ) = 1− ( β |g(aD)− g(aM )| + (1− β)|w(aD)− w(aM )| )

where 0 ≤ β ≤ 1 is a parameter for tuning the relative importance between the vertex
attributes, and cN (aD, aM ) is normalized to [0, 1] with a higher value representing a
higher similarity between the two vertices.

Binary attributes: Let ai, aj ∈ V be any two vertices of G. The relational attribute

ν(ai, aj) of the edge (ai, aj) ∈ E is defined as the vector −→v ai,aj =
−−−−→p

aipaj

2dmax
, where dmax

is the largest distance between any two points of the masked face regions, and pai and
paj are the centers of gravity of the respective image regions. Following this particular
definition of binary attributes, we have clearly that, ν(ai, aj) = −ν(aj, ai), and as
a result edges are directed. Note also that we allow ai = aj , and therefore the edge
(ai, ai) ∈ E is also considered, as well as its attribute ν(ai, ai). The latter are considered
as a reference for comparing edges of regions a1D, a2D ∈ VD when the homomorphism
h satisfies that h(a1D) = h(a2D) = a1M (in that case we would compare the edges
(a1D, a2D) and (a1M , a1M ) ). Note that this comparison is not considered in all the
fitness functions proposed in Section 3.4.1.

Analogously as for vertex similarity, the similarity between any two edges eD =
(ai

D, aj
D) ∈ ED and eM = (ak

M , al
M ) ∈ EM is defined as:

cE(eD, eM ) = 1−
∣∣∣−→v (ai

D, aj
D)−−→v (ak

M , al
M )
∣∣∣

where −→v (a, a′) is the vector that goes from the center of gravity of region a to such of
region a′. Again, we will only consider for a global similarity value those cE(eD, eM )
that satisfy the condition ak

M = h(ai
D), al

M = h(aj
D) ∈ VM . This similarity is also

normalized to [0, 1].

7.3.3 Description of two face feature recognition problems and the graph

matching approach

This section illustrates the facial feature recognition problem using a first reduced example
(only taking into account the segments of an eye) and a second one representing a whole
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Figure 7.5: Illustration of the first (reduced) example of the facial feature recognition problem.
These images show the small parts selected from the images to create the model graph GM (left) and
the data graph (right).

human face. In these examples, both the model and data graphs are attributed, and the
recognition will rely on similarity functions between attributes. We use in both examples
the model and data graph generation techniques described in the previous section.

The best homomorphism is found by optimizing a fitness function based on object and
relational attributes defined on the graphs. Discrete EDAs and GAs are applied in both
examples.

Problem 1: a reduced example for only an eye

This problem is proposed as a combinatorial optimization one. The fitness function that we
have selected for our experiments is the f1(h) one described in Section 3.4.2, with α = 0.4
and β = 0.7. On the other hand, only discrete EDAs will be applied and the individual
representations used here is the one described in Section 3.3.1. This problem does not
contain any specific constraints such as the ones required in the human brain recognition
problem, although in the final solution no dummy vertices are allowed and only a matching
is possible for each vertex in the data graph. Figure 7.5 illustrates the whole problem by
showing the model and data images. In this example, the model contains 13 regions and the
data image 75 (|VM | = 13 and |VD| = 75).

Problem 2: the whole face example

This second example analyzes other aspects in whole face examples. The model used for
this case is again the one shown in Figure 7.3, which has been already applied in the liter-
ature [Cesar et al., 2002a,b] and was obtained using a standard digital camera. Input face
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Algorithm minh(f1(h)) # of errors

UMDA 0.9455 5 (6.6%)
MIMIC 0.9455 5 (6.6%)
EBNABIC 0.9455 5 (6.6%)
EBNAK2 0.9455 5 (6.6%)
eGA 0.9094 54 (71.0%)
ssGA 0.9454 7 (9.3%)

Table 7.5: Summary of the results for the small facial feature recognition problem.

images to which recognition is to be performed have been obtained using the same cam-
era, but some images have also been downloaded from standard public databases available
on-line4. The input or target images have been selected in order to show the robustness of
the method regarding images acquired in different conditions (i.e. geometry, illumination,
distance from the camera, etc.).

Four different face images were analyzed, and Table 7.6 shows for each of them the
number of segments and edges after the automatic over-segmentation procedure. The model
used is shown in Figure 7.3 and it contains 62 vertices and 3844 edges.

7.3.4 Experimental results

Problem 1

The results obtained with the reduced example of the eye regions for all the algorithms are
summarized in Table 7.5. The number of incorrectly labelled regions is computed based
on an optimum solution drawn by labelling a manually segmented data image. All EDAs
provide the same solution. Although their computation time is higher, they lead to a better
optimization compared to GAs. The 5 errors that are present in the returned solution are
also included in the solutions provided by the other algorithms. The ssGA and specially the
eGA approaches performed somewhat worse.

Figure 7.6 illustrates the same result obtained for all the EDAs. The most important
features to be identified in the surrounding region of only one eye are the pupil, and the
eyebrow. This figure shows these relevant parts following the final graph matching solution
obtained with EDAs. The segments encircled in white are the ones matched satisfactorily
as pupil or eyebrow. The ones encircled in red correspond to the 5 matching errors. Among
these 5 errors, 3 correspond to very tiny regions, for which even the manual result given
as the optimal cannot be considered reliable. Another error corresponds to a region in the
hair, and exhibits one of the limits of the proposed approach, in cases where the data image
contains objects that are not represented in the model. An extension of this approach could
be to allow for no recognition in such cases (i.e allowing the use of dummy vertices). Finally,
the last error corresponds to a region at one extremity of the eyebrow, which is labelled as
skin. The reason is that the contour between the eyebrow and the skin was not detected by
the watershed algorithm and therefore this region contains also some skin.

The skin is divided in the model deliberately in several regions in order to avoid geo-

4Examples of face images can be found for instance on the web site at the University of Bern, available at
http://iamwww.unibe.ch/~fkiwww/staff/achermann.html and from the University of Stirling, available at
http://pics.psych.stir.ac.uk/.
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Figure 7.6: Illustration of the solution obtained with the different EDAs for the first (reduced)
example of the facial feature recognition problem. The regions encircled in white correspond to the
segments matched as pupil and eyebrow satisfactorily, while the ones in red represent the errors in
the solution.

deise f014 f041 m036
vertices 112 176 183 228
edges 12544 30976 33489 51984

Table 7.6: Figures of the 4 cases that are analyzed in the second example, illustrating the number
of vertices and edges that are considered. These values are illustrated for showing the difference in
complexity for each of the examples.

metrical properties such as surrounded by. These skin section appear in the final solution to
be correctly recognized. This satisfactory result illustrates the influence of edge attributes
when vertex attributes are too similar for differentiation of regions.

Problem 2

We present firstly some results obtained applying only the f1(h) fitness function described in
Section 3.4.2. These results are shown in Figures 7.7 to 7.10. Each of these figures shows the
obtained segmentation and recognition of the eyebrows, nostrils and lips using the following
search algorithms: (a) UMDA, (b) MIMIC, (c) EBNABIC , and (d) ssGA.

The results illustrated in Figures 7.7 to 7.10 are discussed in detail next. We executed
5 times each of the algorithms for each of the examples. Table 7.7 shows the results in the
form of the mean fitness value of the best individual at the last generation, the number of
different individuals created during the search, and the CPU time. The latter computation
time is presented as a measure to note the difference in computation complexity of all the
algorithms. The machine in which all the executions were performed is a two processor Ultra
80 Sun computer under Solaris version 7 with 1 Gb of RAM.

The null hypothesis of the same distribution densities was tested (non-parametric tests of
Kruskal-Wallis and Mann-Whitney) for each of the examples and algorithm executions with
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(a) (b)

(c) (d) (e)

Figure 7.7: Segmentation and recognition of facial features for the deise example using (a) eGA, (b)
ssGA, (c) UMDA, (d) MIMIC and (e) EBNABIC . As the model has been extracted from this image,
the target and the model image are the same for this case.

the statistical package S.P.S.S. release 10.1. The results of these tests are shown in Table 7.8,
and they confirm the significance of the differences of all the algorithms regarding the value
of the best solution obtained of EDAs and GAs. They also show that differences between
the different EDAs in the best individual obtained are not statistically significant, but these
are significant among eGA and ssGA. In all the examples the EDAs obtained better results
than the GAs, and these differences appear to be statistically significant regarding Table 7.8.
Also, the differences in execution time appear to be significant in all the algorithms, and
EDAs required in all cases more time. As a result, regarding Tables 7.7 and 7.8, we can
conclude that the results are much better in EDAs at the expense of a higher computation
time, but EDAs arrive to a more satisfactory final individual by having to evaluate less
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(a) (b)

(c) (d) (e)

Figure 7.8: Segmentation and recognition of facial features for the example f014 using (a) eGA, (b)
ssGA, (c) UMDA, (d) MIMIC and (e) EBNABIC .

individuals than GAs. This fact is important to take into account if the computation of the
fitness function is more complex (i.e. if it requires more CPU time) than the one selected
for our experiments.

Table 7.9 shows the errors obtained for some images in the form of a ground-truth-based
assessment (total number of misclassified regions and percentage with respect to the total
number of regions in the segmented image) for the different optimization algorithms. As it
can also be seen, the ssGA and eGA algorithms lead to much poorer results with respect to
the recognized facial features and the best solution obtained. These results could be partially
understood by the fact that these two GAs are both general purpose algorithms. The use of
GAs specially thought for our problem could lead to better results5. However, it must also
be said that the EDAs applied are also general purpose ones.

In the light of the results obtained for the fitness values, we can sum them all up as follows:
generally speaking, EDAs obtained in all the executions a fitter individual than GAs, but

5After the many years that genetic algorithms are part of the literature, very different versions and
adaptations have been proposed. Therefore, other versions of GAs or even a different choice of crossover and
mutation operators could lead to a better behavior.

142 Endika Bengoetxea, PhD Thesis, 2002



Experiments with real examples

(a) (b)

(c) (d) (e)

Figure 7.9: Segmentation and recognition of facial features for example f041 using (a) eGA, (b)
ssGA, (b) UMDA, (c) MIMIC and (d) EBNABIC .

although the number of individuals created is lower, the CPU time required was bigger.
Besides the important problem of assessing the optimization algorithms with respect to the
criterion function and execution time, it is also important to analyze the obtained results with
respect to the problem context, i.e. recognition of the facial features of interest. In order to
perform this task, we have generated a ground-truth for some faces by manually labelling the
over-segmented images, i.e. by obtaining a human solution for the problem. Of course, such
ground-truth is prone to some subjectivity, since a human operator decides the label of each
region of the over-segmented image with respect to the model (nearby regions around the
facial features are generally difficult to be classified, being often labelled differently depending
on the operator). Then, the ground-truth is compared to each automatically labelled image
to obtain the number of errors, i.e. number of misclassified regions (with respect to the
ground-truth). Some of the error regions are shown in Figure 7.11. This figure shows 3 types
of errors found in our experiments:

• Very small regions nearby the facial features (indicated by A in Figure 7.11), which
have generally been missed by the operator while producing the ground-truth.
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(a) (b)

(c) (d)

Figure 7.10: Segmentation and recognition of facial features for the example m036 using (a) ssGA,
(b) UMDA, (c) MIMIC and (d) EBNABIC .

• Regions in the outer portion of the eyebrows (indicated by B in Figure 7.11), which
have been left out during the classification procedure because of the above explained
reasons.

• True errors such as matching to a wrong region (indicated by C in Figure 7.11).

As it can be seen, the proposed method is able to correctly recognize the facial features
of interest, being robust to substantial differences between the model (Figure 7.3d) and the
target image. A problem that has been identified in our experiments is that the outer portions
of the eyebrows in the model contain several skin pixels, leading to misclassifications near
it. Therefore, only the two inner portions that compose each eyebrow in the model have
been identified as eyebrows by the graph matching algorithms. Because of the structural
constraints in the fitness function f1(h), the outer portions of the eyebrows in the obtained
results have not been included, which is a drawback that we intend to circumvent in future
work.

It is interesting to note that the facial features that have been recognized could be used for
matching the model over the input face, being suitable for updating the model parameters
with respect to the target image. The latter would be useful for instance to apply this
technique for face and facial feature tracking in video sequences, thus avoiding the need for
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deise f014
best Time eval. best time eval.

UMDA 0.6896 00:13:54 143909 0.6827 00:58:26 184894
MIMIC 0.6894 00:16:53 129008 0.6827 01:07:46 167117
EBNABIC 0.6898 01:19:20 153924 0.6830 04:40:16 185908
eGA 0.5656 00:33:00 202000 0.5357 01:30:35 202000
ssGA 0.6429 00:25:54 202000 0.6120 01:07:50 202000

f041 m036
best time eval. best time eval.

UMDA 0.6813 00:58:09 196702 0.6794 01:41:22 201900
MIMIC 0.6813 01:09:51 181910 0.6790 02:08:22 201900
EBNABIC 0.6813 05:15:19 1951 0.6794 09:11:07 201900
eGA 0.5374 01:35:02 202000 – – –
ssGA 0.6107 01:08:58 202000 0.598 01:53:35 202000

Table 7.7: Figures of the 4 cases that we analyzed, illustrating the mean values after 5 executions of
each of the algorithms. The best column corresponds to the mean best fitness value obtained through
the search, and the differences between the algorithms are evident as EDAs obtain the best results
for all the examples. The time column shows the CPU time required for the search, and the eval.
one shows the number of individuals that had to be evaluated in order to end the search.

GAs-EDAs among GAs among EDAs

best p < 0.001 p = 0.008 p = 0.078
deise eval. p < 0.001 p = 1.000 p = 0.068

time p = 0.121 p = 0.008 p < 0.001

best p < 0.001 p = 0.008 p = 0.105
f014 eval. p < 0.001 p = 1.000 p = 0.064

time p = 0.495 p = 0.008 p = 0.002

best p < 0.001 p = 0.008 p = 0.811
f041 eval. p < 0.001 p = 1.000 p = 0.012

time p = 0.643 p = 0.008 p < 0.002

best p < 0.001 – p = 0.085
m036 eval. p < 0.001 – p = 1.000

time p = 0.306 – p = 0.002

Table 7.8: Statistical significance for all the 4 examples and algorithms after 5 executions of each
of the algorithms, by means of the results of the non-parametric tests of Kruskal-Wallis and Mann-
Whitney. The first column shows the result of the test comparing all EDAs with all GAs, the second
is the test for comparing eGA and ssGA, and the third shows the comparison between the three
EDAs.

the GWN detection and tracking every sequence [Cesar et al., 2002b, Costa and Cesar, 2001].

7.4 Conclusions of the experiments on real problems

Different approaches for brain image recognition and for facial feature segmentation based
on graph homomorphisms have been proposed. In this context, we have defined graph-based
model representations of a human brain and a face model respectively, as well as the proce-
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deise f014 f041 m036
Errors % Errors % Errors % Errors %

UMDA 1 0.89 12 6.82 7 3.83 12 5.26
MIMIC 1 0.89 12 6.82 8 4.37 15 6.58
EBNABIC 1 0.89 11 6.25 5 2.73 15 6.58
eGA 21 18.75 36 20.45 46 25.14 50 21.93
ssGA 35 31.25 63 35.80 57 31.15 - -

Table 7.9: Table showing the number of misclassified regions in each test image for each algorithm.
The Errors column indicates the number of misclassified regions, while the column % shows the
percentage with respect to the total number of regions in the image.

A

B

C

Figure 7.11: Example of some typical error regions. A: two very small regions nearby facial features,
which are too small to be properly identified. B: regions in the outer portion of the eyebrows that
could be ambiguous to classify as eyebrow or skin, in this case recognized as skin. C: true matching
error, in this case eyebrow region recognized as part of the pupil.

dures for automatic segmentation of input images for these real problems. Fitness functions
and individual representations for these problems have been tested with GAs and EDAs.
The image processing techniques for the facial feature recognition problem are more sophis-
ticated, since the facial features are segmented taking advantage of tracking information
provided by a GWN technique. Our ongoing work aims at improving the method robustness
and at generalizing it in a number of different ways, e.g. using fuzzy morphisms [Perchant
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and Bloch, 2002], developing other object and relational attributes, and taking advantage of
the homomorphism found in the previous frame in a video sequence when searching for the
one in the current frame. These image processing techniques (except the temporal aspect)
remain also to be tested for the human brain recognition problem.

Furthermore, the above definition of graph homomorphism implies that all vertices in
GD are mapped to GM and if the input face presents features not known by the model, they
will be classified. In the case of the facial feature recognition problem, if the input face has
glasses and the model graph does not include them, the glass regions will be classified as skin
or some other facial feature. Two possible solutions to this problem can be designed. The
first one is to leave some of the GD vertices unmapped, thus relaxing the homomorphism
approach. The second approach is to define a dummy vertex in the model graph, to which the
unclassified input regions should be mapped. Both approaches present specific difficulties and
are currently being considered in our research. Also, other fitness functions are currently
under investigation. Finally, we aim at applying our graph-based face model to face and
facial expression recognition problems. In particular, we would like to analyze if temporal
changes in the relational attributes could be used for facial expression recognition, because
such trajectories are important for perceiving changes in facial expressions.
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Chapter 8

Conclusions and future work

‘Our imagination is the only limit to what we can hope to have in the future.’

Charles F. Kettering

8.1 Conclusions

In this thesis, we addressed the problem of recognition of structures in images using graph
representations and inexact graph matching. One of the main contributions of our work is to
express this task as a combinatorial optimization problem with constraints, and to propose
methods to solve it based on EDAs and their parallelization.

A discussion on different representations of individuals has been provided. In particular,
we proposed representations in both the discrete and continuous domains. Some of the
constraints imposed to the matching could be introduced directly in the representations.

Different types of fitness functions have been presented. Our contribution here is twofold.
First an experimental comparison of their behavior has been performed, and second new
fitness functions based on probability theory have been designed.

The main focus of our thesis was on the optimization itself. A new approach based
on estimation of distribution algorithms was introduced for solving the graph matching
problem. Its foundations rely on an evolutionary computation paradigm that applies learning
and simulation of probabilistic graphical models (i.e. Bayesian networks in the discrete
domain and Gaussian networks in the continuous one) as an important part of the search
process. Our contribution in this part was to adapt these algorithms to the inexact graph
matching problem with constraints, which to our knowledge have never been addressed
before. In particular we proposed original solutions to take the constraints into account.
This contribution can certainly be exploited in other combinatorial optimization problems
with constraints, thereby enlarging the potential application field of EDAs.

Finally another contribution relies in the parallelization of EDAs. Up-to-date paralleliza-
tion techniques have been applied to these algorithms, resulting in two different programs
suitable for execution on multiprocessors with shared memory and cluster of workstations
under windows or GNU-Linux systems. The use of shared memory libraries with threads
–using pthreads– as well as high-level parallelization libraries based on message passing –such
as MPI– have been analyzed in detail. The particular case of EBNABIC has been detailed,
and each of its steps has been analyzed in terms of parallelization and computation costs. A
parallel version of this algorithm is proposed for the BIC metric. This contribution allows
now to use EDAs to solve problems with higher complexity.
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From an experimental point of view, our contribution lies in the comparison of the per-
formance of EDAs in both discrete and continuous domains with other evolutionary compu-
tation techniques such as genetic algorithms and evolutionary strategies. These experiments
were performed for the different types of individual representations, different types of fitness
functions, and applied to synthetic and real graph matching problems. Results show that
our approach obtains better results and that converge to a solution by having to evaluate
less individuals than other more usual evolutionary computation methods such as genetic
algorithms. These differences in the results have been proved to be statistically significant
after applying non-parametric tests.

8.2 Future work

Many different adaptations, tests, and experiments have been left for the future due to lack
of time (i.e. the experiments with real data are usually very time consuming, requiring even
days to finish a single run). Future work concerns deeper analysis of particular mechanisms,
new proposals to try different methods, or simply curiosity.

There are some ideas that I would have liked to try during the description and the
development of the fitness functions in Chapter 3. This thesis has been mainly focused on
the use of EDAs for graph matching, and most of the fitness functions used to find the best
result where obtained from the literature of adapted from these, leaving the study of fitness
functions outside the scope of the thesis. The following ideas could be tested:

1. It could be interesting to consider the regions in the model and data images with
different importance, depending on their size or their specific meaning with respect to
the recognition process. This mechanism would for instance aid to distinguish in very
complex problems which are the regions that are essential to be found, the ones that
sometimes appear, and the ones that rarely do.

2. The way the model is constructed could be also changed: instead of using one typical
image (prototype), it could be based on different images, in order to provide some
information on the variability among the different images, and introduce it in the
attributes. Unfortunately, in the type of images that we have taken as real examples
the construction of a model from each image is a tedious task and no further study in
this direction could be performed.

Obviously, the use of other types of individual representations and fitness functions could be
investigated since they have an important influence on the results obtained at the end. New
approaches in this direction can be induced from techniques described in the literature such
as [Bloch, 1999a,b, Rangarajan et al., 1999a, Sanfeliu and King-Sun, 1983].

The performances of all the fitness functions described in Section 3.4.3 have not been
compared on a same problem. The main reason was that some fitness functions are very
complex to compute and require a considerable execution time to evaluate each individual.
Parallelization techniques have been applied to the learning step in EDAs, but not for the
evaluation of individuals, and such a mechanism could help at reducing execution times.
Nevertheless, we are already designing and running experiments to compare the performance
of our newly proposed probability theory-based fitness function f4(h) and f5(h) to such of
the fitness functions defined previously in this section. The preliminary results of these
experiments do not seem to be satisfactory, and further study is still required in order to
understand the behavior of these two fitness functions and improve it.
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Concerning the results for both applications (brain and facial features), we can also
expect to improve them by having richer graphs, with more attributes.

In the definition of the EDAs in Chapter 4, there are also many ideas that could be
exploited to try to obtain a most effective convergence towards the best solution. An example
of this is the use of a mechanism that could be understood as a learning depending on the
fitness value of the individual: in the learning proposed for EDAs all the selected individuals
are used for the learning equally regardless of their fitness value. This means that the fitness
value is just considered for selecting the best individuals, but differences between the values
among these individuals are not considered in the learning process. A similar idea to this
is proposed in the Bit-Based Simulated Crossover algorithm (BSC) [Syswerda, 1993], but
this idea could be extended to any EDA. One of the disadvantages that this new type of
learning can have is that by accelerating the convergence the search is too focused to the
main individuals, and therefore EDAs could lead to local maxima. However, this idea is still
a possibility that could be analyzed in the future to check whether local maxima are avoided
or not and how to improve it for specific problems such as inexact graph matching.

The initial population in all EDAs has been built using a uniform distribution. Other
methods could be also tested, as sometimes a pre-processing step could be added so that
the search can also start with some specific individuals. Also, other types of statistical
initializations such as greedy probabilistic methods could help at directing the search from
the beginning, leading to less evaluations.

Regarding the application of parallelism to EDAs, an extension for the near future is the
use of more powerful multicomputers in order to improve the parallelization: the computers
we used had at most only 2 processors, and therefore no more than 4 workers were created
per computer so that all the workers do not compete for CPU use with the corresponding
thrashing problem. An additional task to perform is the parallelization of other algorithms
such as EGNAee and EMNA, which are also susceptible of being parallelized due to the high
number of tasks that can be performed in parallel on different processors.

Endika Bengoetxea, PhD Thesis, 2002 151



8.2 Future work

152 Endika Bengoetxea, PhD Thesis, 2002



Appendix A

Example on how to use a

permutation-based approach in

EDAs

Section 3.3.1 explains the use of permutation-based individual representations for EDAs,
and Figure 3.1 shows a procedure to translate a permutation-based representation to the
matching solution it symbolizes. This appendix illustrates this procedure as well as some
problems to be taken into account with an example.

A.1 Example of translating from a permutation to the solution

it symbolizes

In order to demonstrate the representation of individuals containing permutations and the
procedure for translating them to a point in the search space, we make use of the example
shown in Figure A.1. In this example we are considering an inexact graph matching problem
with a data graph GD of 10 vertices (|VD| = 10) and a model graph GM of 6 vertices
(|VM | = 6). We also use a similarity measure for the example (the $(i, j) function), the
results of which are shown in the same figure. This similarity function does not always have
to be symmetrical, and just as an example of this we have chosen a non-symmetrical one
(see Section 3.3.1 for a discussion on this topic). The translation has to produce individuals
of the same size (10 variables, that is, 10 nodes in the Bayesian network), but each of their
variables may contain a value between 1 and 6, that is, the number of the vertices of VM

with which any vertex of GD can be matched in the solution.

Figure 3.1 shows the procedure for both phases 1 and 2. Following the procedure for
phase 1, the first 6 vertices will be matched, and we will obtain the first matches for the
three individuals in Figure A.1.

In the second phase, generation of the solution will be completed by processing one by
one all the remaining variables of the individual. For that, we will consider the next variable
that is still not treated, the 7th in our example. Here, the first individual in the example
has the value 7 in its 7th variable (i.e. position), which means that vertex 7 of GD will be
matched next. Similarly, the vertices of GD to be assigned to the 7th position for the other
two example individuals are vertices 10 and 4 respectively.

Next, in order to decide which vertex of GM we have to assign to our vertex 7 of GD
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A.1 Example of translating from a permutation to the solution it symbolizes

Individuals:

1 2 3 4 5 6 7 8 9 10

5 8 7 1 6 9 10 3 4 2

10 9 8 7 6 5 4 3 2 1

Similarity Function:

$(i, j) 1 2 3 4 5 6 7 8 9 10

1 1.00 0.87 0.67 0.80 0.77 0.48 0.88 0.80 0.75 0.89

2 0.03 1.00 0.96 0.13 0.73 0.90 0.15 0.66 0.74 0.92

3 0.20 0.42 1.00 0.63 0.05 0.22 0.20 0.51 0.31 0.50

4 0.52 0.50 0.88 1.00 0.49 0.88 0.08 0.91 0.38 0.47

5 0.19 0.90 0.85 0.71 1.00 0.15 0.24 0.51 0.97 0.80

6 0.47 0.87 0.67 0.80 0.77 1.00 0.88 0.80 0.75 0.87

7 0.03 0.96 0.35 0.13 0.73 0.90 1.00 0.66 0.74 0.92

8 0.20 0.42 0.93 0.63 0.05 0.22 0.20 1.00 0.31 0.50

9 0.52 0.50 0.89 0.53 0.49 0.88 0.08 0.91 1.00 0.47

10 0.19 0.90 0.85 0.71 0.18 0.15 0.24 0.51 0.97 1.00

Figure A.1: Example of three permutation-based individuals and a similarity measure $(i, j) be-
tween vertices of the data graph (∀i, j ∈ VD) for a data graph with |VD| = 10.

1 2 3 4 5 6 – – – –

1 2 3 4 5 6 7 8 9 10

4 – – – 1 5 3 2 6 –

1 2 3 4 5 6 7 8 9 10

– – – – 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9 10

Figure A.2: Result of the generation of the individual after the completion of phase 1 for the example
in Figure A.1 with GD containing 6 vertices (|VM | = 6).

according to the first individual, we analyze the similarity of vertex 7 of VD and each of
the previously matched vertices of GD (vertex 1 to 6). This similarity measure is given by
the function $ shown in Figure A.1. If we look at the 7th line in this table we see that in
columns 1 to 6, the highest value is 0.96, in column 2. Therefore, following the algorithm in
phase 2, we match to vertex 7 of GD the same vertex of GM assigned to vertex 2 of GD. As
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we can see in Figure A.2, for the first individual, vertex 2 in GD was matched to the vertex
2 of GM , and therefore we will also assign vertex 2 of GM to the 7th vertex of GD.

Similarly, for the second individual, the 7th variable of the individual is also processed.
This has the value 10, so vertex 10 of GD is therefore the next to be matched. We will
compare this vertex with the vertices matched previously, i.e. vertices 5, 8, 7, 1, 6 and 9.
The highest similarity value for these is $ = 0.97, in column 9. Therefore the most similar
vertex is 9, and vertex 10 of GD will be matched to the same vertex of GM as vertex 9 of
GD was. Looking at Figure A.2, this is 6th vertex of GM . Following the same process for the
third individual, we obtain that vertex 4 of GD is matched with vertex 3 of GM . Figure A.3
shows the result of this first step of phase 2.

Continuing this procedure of phase 2 until the last variable, we obtain the solutions shown
in Figure A.4.

1 2 3 4 5 6 2 – – –

1 2 3 4 5 6 7 8 9 10

4 – – – 1 5 3 2 6 6

1 2 3 4 5 6 7 8 9 10

– – – 3 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9 10

Figure A.3: Generation of the solutions for the example individuals in Figure A.1 after the first step
of phase 2 (|VM | = 6).

1 2 3 4 5 6 2 3 3 3

1 2 3 4 5 6 7 8 9 10

4 2 2 2 1 5 3 2 6 6

1 2 3 4 5 6 7 8 9 10

1 3 3 3 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9 10

Figure A.4: Result of the generation of the solutions after the completion of phase 2.

Note that each of the vertices of GD is assigned to a variable between 1 and |VM | = 6.
Note also that every vertex of GM is matched to at least one vertex of GD, and that a value
is given to every vertex of GD, giving a matching value to each of the segments in the data
image (all the segments in the data image are therefore recognized with a structure of the
model).
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A.2 The redundancy problem on permutation-based represen-

tations

An important aspect of this individual representation based on permutations is that the
cardinality of the search space is n! This cardinality is higher than that of the traditional
individual representation, but it is tested for its use with EDAs in graph matching for the
first time here. In addition, it is important to note that a permutation-based approach
can create redundancy in the solutions, as two different permutations may correspond to
the same solution. An example of this is shown in Figure A.5, where two individuals with
different permutations are shown and the solution they represent is exactly the same.

Individual 1:
1 2 3 4 5 6 7 8 9 10

Individual 2:
1 2 3 4 5 6 7 9 8 10

Solution they represent:

1 2 3 4 5 6 2 3 3 3

1 2 3 4 5 6 7 8 9 10

Figure A.5: Example of redundancy in the permutation-based approach. The two individuals rep-
resent the same solution shown at the bottom of the figure.
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Appendix B

Example of correcting individuals

This appendix gives an example of how an individual is generated using either the LTM and
ATM methods as explained in Section 4.5.1. Just as an example, we will assume that we
have a case where the model and data graphs contain respectively 8 and 10 vertices (|VM | = 8
and |VD| = 10). Therefore, the length of an individual will be of 10 variables.

Both LTM and ATM are methods that act directly on the simulation step of EDAs.
Therefore, we need to perform first the learning step following the EDA that we have chosen.
The learning step will return a Bayesian network (in this case with a size of 10 nodes) as well
as the estimation of the distribution pl(x) obtained from the N selected individuals, being
the latter in the form of the different conditional probabilities θijk as defined in Equation 4.3.

We will assume that the learned Bayesian network structure is the one shown in Fig-
ure B.1. As explained before, the Bayesian network shows interdependencies between the
variables (e.g. in this case this structure is showing that the value taken by variable 1 is
dependent on the value of variables 2 and 9, that is, the matching assigned to vertex 1 of
the data graph GD is dependent on the matching assigned to vertices 2 and 9 of the same
graph GD, while the latter vertices can be matched to any vertex of GM independently of
the rest of matches). Following this Bayesian network, it is important to have a look at the
different combination of values of the parent-variables: in the case of nodes 2, 5 and 9, they
do not have parents, so they are considered as independent. Nodes 3, 4, 6, 7 and 10 have
a single parent, and therefore the possible combination of values for the parents is |VM |=8
(i.e. the number of values that the only parent can take). Finally, nodes 1 and 8 have two
parents each, and therefore the number of possible combinations of values of the two parents
is |VM |2 = 64. Having all this into account, the probabilities that we will have to compute
are just the following: θ2−k, θ9−k, θ31k . . . θ38k, θ11k . . . θ1(64)k, θ41k . . . θ48k, θ61k . . . θ68k, θ71k

. . . θ78k, θ(10)1k . . . θ(10)8k, θ5−k, and θ81k . . . θ8(64)k , where k = 1 . . . |VM | in all the cases.

Just as an example for our purposes, we will assume that the value of these probabilities
is uniform (this is not normally the case, we just do it for simplicity).

At this stage, we will start the simulation step in order to create the new R individuals of
the next generation. Each individual x= (x1, . . . , x|VD |) has to be generated by instantiating
each of the variables one after another. For this we will use the PLS method in which
an ancestral ordering π of the nodes in the Bayesian network is followed as explained in
Section 4.2.2. An ancestral ordering is any ordering in which any variable is placed after all
its parent variables on the Bayesian network. A possible ancestral ordering for the Bayesian
network in Figure B.1 is (2, 9, 3, 1, 6, 4, 7, 10, 5, 8), but others such as (2, 9, 5, 3, 4, 6, 1, 7, 10, 8)
or (9, 1, 7, 10, 5, 8, 2, 3, 4, 6) could also be considered. Any of these could be used, but we will

157



B.1 Simulation with LTM

Figure B.1: Example of a Bayesian network structure.

select the first one: π = (2, 9, 3, 1, 6, 4, 7, 10, 5, 8).
Once the ancestral ordering has been found, we will start generating individuals. We

will instantiate the variables or each individual following the ancestral ordering, π. We will
proceed similarly at the beginning either for LTM and ATM, where initially V NO(VM )1 =
{1, 2, 3, 4, 5, 6, 7, 8} and vns1 = |VD| = 10.

B.1 Simulation with LTM

Following π, we will start with variable X2 (π(1) = 2). Variable X2 is independent from the
rest, and the probability to take any of its possible values is the same (∀k = 1 . . . |VM |, θ2−k =

1
|VM |). As the condition |V NO(VM )1| = vns1 is not satisfied no modifications are to be done
on the probabilities, so we will select a value at random and we will assign it to variable X2.
Let us imagine that this value is 1. Variable X2 in the individual is set with this value, which
in other words means that in the solution represented by this individual we are matching
vertex 2 of GD with vertex 1 of GM .

The next variable to instantiate is X9 (π(2) = 9) which is also independent from the
rest, and its situation is the same (∀k = 1 . . . |VM |, θ9−k = 1

|VM |). This time we have that

V NO(VM )2 = {2, 3, 4, 5, 6, 7, 8} and vns2 = 9, and therefore |V NO(VM )2| = vns2 is not
satisfied. Therefore we will select a value at random. Let us again imagine that this value is
1, then we will assign the value 1 to variable X9.

So far, after finishing this second step we have the following individual:

1 1

The following variable to work with is X3 (π(3) = 3). Following the Bayesian network,
this variable is dependent of variable X2, which has already been instantiated. We said before
that its probabilities are equal, and therefore we have that ∀j, k = 1 . . . |VM |, θ3jk = 1

|VM | . As

V NO(VM )3 = {1, 3, 4, 5, 6, 7, 8, 10} and vns3 = 8, we have again that |V NO(VM )3| 6= vns3,
following its distribution we select a value at random. Let us now imagine that this value is
4, thus so we assign the value 4 to variable X3.
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In a similar way, we will now consider next variable X1 (π(4) = 1), which is dependent
on variables X2 and X9. As it depends in two parent-variables instead on in one as before,
in this case ∀k = 1 . . . |VM | j = 1 . . . |VM |2, θ12k = 1

|VM | and θ1jk = 1
|VM | . We also have that

V NO(VM )4 = {1, 2, 3, 5, 6, 7, 8} and vns4 = 7, |V NO(VM )4| 6= vns4. Therefore following
the distribution of this value, we select a value at random, and let us imagine that we obtain
one more time the value 1. So far we have the following individual:

1 1 4 1

Next, the variable X4 is treated (π(3) = 4). Variable X4 is dependent only on vari-
able X3, which has already been instantiated. In this case we have a single parent, and
therefore ∀j, k = 1 . . . |VM |, θ6jk = 1

|VM | . If we were in an ordinary PLS simulation ap-
proach, a value would have been chosen at random. However, this time we have that
V NO(VM )5 = {2, 3, 5, 6, 7, 8} and vns5 = 6, that is, the condition |V NO(VM )5| = vns5

is satisfied. As a result, following the LTM approach, we have to modify the θ6jk probabil-
ities before instantiation so that values already appeared in previous steps do not appear
again. We do this because the number of variables to instantiate equals the number of values
still not appeared in the individual. Following Equation 4.42 we modify the probabilities as
follows:

θ6j1 = 0, θ6j4 = 0, θ6jk =
1

|VM | − 2
∀j = 1 . . . |VM |, k = 2, 3, 5, 6, 7, 8, 9, 10 (B.1)

In other words, we set the probabilities for the values already appeared to 0, avoiding them
to appear for this variable, and we normalize the rest of probabilities. Doing it so, we make
sure that the next value that will be instantiated will not be neither 1 nor 4.

As with this last case, in the successive variables to simulate, the condition |V NO(VM )m| =
vnsm m = 6, 7, 8, 9, 10 will be satisfied, and therefore for each of these variable to instantiate
a value not yet appeared will be assigned. Therefore LTM will ensure that all the vertices
in GM will have at least a vertex from GD to which are matched.

Note that the procedure followed with LTM is basically the same as PLS until the con-
dition |V NO(VM )m| = vnsm is satisfied. If random values would be different, the latter
condition was never satisfied, and the LTM procedure will behave as an ordinary PLS ap-
proach.

B.2 Simulation with ATM

ATM is somehow more complex than LTM in the sense that all the θijk probabilities are
manipulated even before the condition |V NO(VM )m| = vnsm is satisfied.

In ATM the probabilities change in relation to a value K =
⌈

N−vnsm

vnsm−|V NO(VM )m|

⌉
. This

will be used for adapting the probabilities when the condition |V NO(VM )m| = vnsm is
satisfied. The finality is to give more probability to values not appeared yet and to lower
the rest.

Following our example, we will assume that the value for N is 1000 and that the ancestral
ordering of choice is the same as in the LTM example. Following it, variable X2 will be treated
first (π(1) = 2). As the condition |V NO(VM )1| = vns1 is not satisfied, following the ATM
approach we compute the values K and PIndiv:

K =

⌈
N − vns1

vns1 − |V NO(VM )1|

⌉
=

⌈
1000 − 10

10− 8

⌉
= 495
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P 1
Indiv =

∑

k | uk
M

∈VM\V NO(VM )1

θ2−k = 0.

As we have at the beginning that all vertices of GM are in V NO(VM )1, then all the
probabilities will be changed following Equation 4.43 by multiplying then by the following
factor:

K − Pm
Indiv

K ·
(
1− Pm

Indiv

) =
495− 0

495 · 1 .

This means that all the probabilities will not be changed. As before a value will be
obtained for variable X2 at random following its distribution (∀k = 1 . . . |VM |, θ2−k = 1

|VM |).
Let us imagine that this value is 1 as in the LTM example .

The second variable to treat is X9 (π(2) = 9). We know that |V NO(VM )2| = vns2 is not
satisfied, so following the ATM approach we have that:

K =

⌈
N − vns2

vns2 − |V NO(VM )2|

⌉
=

⌈
1000 − 9

9− 7

⌉
= 496

P 1
Indiv =

∑

k | uk
M

∈VM\V NO(VM )1

θ2−k =
1

|VM |
=

1

8
= 0.125.

Following Equation 4.43 we will now have a slight change on the probabilities:

θ∗9−k =

{
θ9−k · 496−0.125

496·(1−0.125=θ9−k ·1.14) if k = 2, 3, 4, 5, 6, 7, 8
θ9−k

496 if k = 1 .

This example shows that as |V NO(VM )m| and vnsm are more similar the effect on the
probabilities will be stronger. This change in the probabilities is applied to all the variables
to instantiate until the condition |V NO(VM )m| = vnsm is satisfied, and then ATM behaves
like LTM. The effect on this method is that learned probabilities are manipulated even more
than with LTM, and therefore values not yet appeared are more possible to appear.
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Appendix C

On processes and threads:

synchronization and communication

in parallel programs

C.1 Sequential and parallel programs: main differences

In all our programs, there are some execution phases in which our processes are taking some
time in an I/O operation or in a synchronization operation waiting for the system or another
process to finish a task. During these phases, our programs are not progressing on their
work, it is rather the operating system or some other process running on the computer the
ones which are taking all the valuable CPU time. This is the reason why programs that
abuse too much in using file read/write operations are so slow.

Processes that need to wait for an operating system service do usually leave the CPU
free for other processes. This waiting is referred to as a process to be in the state of blocked.
In the case of a sequential problem such as the EDA program, the whole algorithm is being
executed as a single task, and the fact that our process is waiting one of these blocking
operations makes the algorithm to be completely stuck during these periods of time. During
the time spent waiting in the blocked state, another process takes ownership of the CPU and
the execution of our algorithms does not progress at all.

Parallel programs provide a means for another process involved in the same calculation
to make use of the CPU and continue with another part of the common job while our process
is blocked (i.e. due to be waiting for an I/O or a synchronization operation). This happens
both in single-processor and multiprocessor machines.

It is also important to note that when we write a sequential program (i.e. a non-parallel
algorithm), our program will not be able under any circumstance of making use of more
than a single CPU, even if we have more than one available. Only compilers that will
convert automatically a sequential source program into a parallel one could help, but as
explained before in the introduction these can reach these objective only in special cases.
Therefore, if we want to use more than a CPU at the same time, we need to apply some kind
of parallelization technique manually (writing specific instruction in the source code) when
writing our program.

Parallel programs are based on dividing the job in smaller pieces so that more than
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a single process work together1 and collaborate between them to obtain the same result
hopefully in less time. Doing it so, during the time that the I/O device takes to perform its
task, the parallel program is able to make progress with another part of the job concurrently.
Moreover, the fact of having a parallel program also allows us to make use of up to all the
available CPUs at the same time.

Unfortunately, dividing the job in different processes that could be executed indepen-
dently requires to rewrite some parts of the sequential program, or even to design a parallel
version of it from scratch. This is not always an easy task, as several aspects need to be
taken into account: the selection of the inter-process communication mechanism that will be
used (which also consumes some extra execution time), the selection of the inter-process syn-
chronization mechanism, and the identification of the parts of the sequential program that
are candidate to be parallelized. The latter is important, as in most sequential programs
there are always some parts that require to be done sequentially and cannot be executed in
parallel. A simple example of the later is the moment when all the results of each of the
working processes are to be gathered and a final result given. In many cases the preparation
of the final result has to be done by a single process, and the rest of them cannot do anything
during this period apart from waiting for more working instructions.

C.2 Processes and threads

In traditional operating systems, the concept of process is described as the instance of an
executing program. In these, a process can only contain a running program where there is
a single execution flow, that is, the program will be executing a single instruction at any
time. This means in other words that in this traditional systems a process is represented as
a single execution unit and that it only can be executed in a single CPU at any particular
time.

In addition, the memory space assigned to a process in these traditional operating systems
is defined to be private: no other process is allowed to access another process’ memory space.
In these systems no shared memory is available between processes, and therefore the only
inter-process communication mechanism available for programmers is the use of message
passing primitives –another possible mechanism is also the use of disk files, but this is very
inefficient in terms of time performance. Only the operating system could make use of shared
variables for communication between its internal parts.

In the recent years, some operating systems such as UNIX have included particular system
calls2 in order to allocate and to free shared memory from the user’s address space in order to
make possible for processes to share memory between them and to use shared variables (e.g.
a shared buffer) as a inter-process communication mechanism. However, this mechanism is
nowadays misused in UNIX in favor of more efficient and user-friendly mechanisms.

A next step forward in the operating systems history is the arrival of multithreading

1Term process is not the most appropriated in some cases, and execution unit should be used instead.
However, the term process will be used in this thesis due to the fact that it is the one of choice in many
parallelism books.

2System calls are standard programmable functions that any operating system provides as an interface for
programmers to use system’s resources and services. In the Windows family the term Application Program

Interface or simply API is used instead. Any program running in any operating system can only access
hardware by using these system calls, and all of them form the formal interface between the operating system
and the executing programs. There are many types of system calls. Modern operating systems do also provide
specific ones for inter-process synchronization.
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operating systems. These systems included a new concept known as thread3 that allowed a
program to have more than an internal function running at the same time within the same
memory space of a single process. As a result, a process could have more than a execution
flow, and therefore more than a single line of the same program could be executing in parallel
in two different CPUs simultaneously. Multithreading operating systems provide dedicated
system calls for creating and managing execution threads as well as for creating and managing
processes. In this systems, the memory address space of every process is still private for the
rest of the processes, and as execution threads are attached to a unique process, they can use
its whole memory space. In a multithread operating system two threads attached to a same
process can use global shared variables within the process’s memory space for communication.
However, two threads attached to different process could not share any memory space and
message passing is the only communication mechanism for them4.

Nowadays, all commercial and general purpose operating systems are multithreading
ones. When we write a sequential (i.e. non-parallel) program, the compiler will create an
executable file that will execute in a traditional way, with a single thread or execution unit
per process. However, we can use the specialized system calls that our operating systems
provide, at a lower level than the programming language, and compile a program that will
create more than a thread per process. Unfortunately, there is no a standard for system
call interfaces applied to thread management that can be used in all the operating systems.
Even within the UNIX family there are many different and incompatible interfaces available.
In the recent years the POSIX standard’s pthread interface library appears to be the most
broadly used, and even an implementation of this library for the windows operating system
family can be found on the Internet.

Whichever the selected parallel programming approach, either by making use of threads
or processes, in both cases the communication and synchronization elements available are
the same. The only restriction is that in the case of the processes there cannot be any
communication mechanism based on shared memory, due to the privacy of the memory
address spaces of them5. However, some books try to avoid distinction between processes
and threads when speaking about parallelism, and the term task is used. In our case, we
will use the term process to refer to both processes and threads, as this is done commonly
in the literature.

C.3 Communication and synchronization between processes or

threads

In any operating system, processes compete for accessing shared resources or they co-operate
within a single application to communicate information to each other. Both situations are
managed by the operating system by using synchronization mechanisms that allow exclusive

3Threads are also known as light weight processes or subprocesses. These are in fact execution flows or
execution units within the same memory address space of a process. Operating systems that allow more than
a thread to be running at the same time within a process (i.e. more than an instruction within the same
process is executing at the same time) are called multithreading operating systems. Threads share all the
global variables and functions within their process, and therefore they can use shared memory and variables
for communication. However, synchronization mechanisms are required to avoid race conditions.

4Hard disk files could also be used for inter-process communication or inter-thread communication, but
this mechanism is very inefficient. In parallel systems this communication solution is avoided, specially for
the case of threads.

5Unless you use specific mechanisms that are only available in some operating systems, such as in UNIX.

Endika Bengoetxea, PhD Thesis, 2002 163



C.3 Communication and synchronization between processes or threads

access to shared resources and communication elements in a coordinated way.

In multithreading operating systems, the address space within any single process is shared
between its threads, and therefore communication is performed by means of data structures
within this shared memory space. This mechanism is quite efficient in terms of execution
time, but on the other hand explicit communication mechanisms are required to ensure
exclusive access to these shared structures. If shared buffers or queues are defined, and if ex-
clusive access to them is provided, elaborated communication schemes such as the producer-
consumer can be used. The client-server scheme can be regarded as a particular case of the
producer-consumer where clients produce requests and servers consume them. When tasks
(either processes or threads) communicate using a client-server approach, they do not share
the address space. In this case, message passing primitives that provide implicit synchro-
nization are required, and as a result they simplify the programming of the communication
between processes.

In general terms, in parallel programming the term communication refers to the infor-
mation exchange between processes. The communication between processes requires some
kind of synchronization, either implicit or explicit, in the form of a norm or a protocol, that
makes possible the information exchange between the communicating processes.

This section focuses on the different communication and synchronization mechanisms
available for processes at a user level, as well as in the problems that programmers have to
face when programming parallel applications.

C.3.1 The model of race conditions and critical sections

Let us consider two processes Pi and Pj that form part of a parallel program where these
produce results for other processes not shown in this example. Pi and Pj store their results
in a shared buffer buf . In order to find out which is the next free position in buf to store a
result, there is also a shared pointer inp. If a process wants to store a result in buf , it has
to call the following function:

void StoreResult(char item) {

int p;

...

p = inp;

buf[p]= item;

inp++;

...

}

This function seems to be correct, and no apparent problems can be noticed at a first glance.
However, let us imagine the case in which the parallel execution progresses as follows:

Pi Pj

(1) p = inp;

(2) p = inp;

(3) buf[p]= item;

(4) buf[p]= item;

(5) inp++;

(6) inp++;
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As we can see, this particular execution order will lead to storing the second value item at
the same position of the buffer as the first one. Pj will overwrite its value over Pi’s one. This
problem is known as the race condition. Any program accessing shared resources can have
this problem, however it may not be present in all the runs, as it depends on the order in
which different processes execute their instructions. Any part of a program that can create
race conditions is called a critical section.

Critical sections are present in general terms whenever a resource (i.e. a buffer or,
simply, a variable) is shared among many concurrent processes. Programmers can use the
operating system primitives to avoid race conditions. For this, it is important firstly that
critical sections are identified in our programs. The programmer could afterwards use the
appropriated system calls for communication or synchronization that will provide exclusive
access to the critical section. Doing it so, the programmer can be sure that at most one
single process can be executing a critical section at any time. In addition, the programmer
can also use one of the many specialized libraries available for parallel programming: these
libraries are installed just above the operating system, they hide the system calls interface,
and usually they provide a simpler and more powerful way of avoiding race conditions.

C.3.2 Exclusive access to critical sections

Let assume that we have n processes, {P1, P2, ..., Pn} where for each process Pi, i = 1, . . . , n
there is a program section (critical section, CS) which accesses or manipulates shared in-
formation. In order to provide exclusive access to the CS, we have to ensure that when a
process Pi executes the CS no other process can enter into it until Pi exits from it.

The way of solving this problem is to use a protocol to access critical sections, and for
that purpose we will introduce two generic primitives, enter_CS() and exit_CS(), as shown
next:

...

enter_CS() /* if nobody in CS, continue, otherwise wait */

[the Critical Section ]

exit_CS() /* now another process can enter the CS */

...

When the CS is free and some processes are waiting to enter it, the protocol has to specify
which of them enters, forcing the rest to keep waiting. Usually, a First Come First Serve
(FCFS) ordering is desirable, but the selection of the next process could also be based on
the priorities of processes or in another aspect.

Critical sections are also very common in concurrent applications. Just as an example, we
will use the producer-consumer example (Figure C.1) to illustrate the critical section problem
and its possible solutions. This example was originally thought only for 1 producer-process
and 1 consumer-process. A process is producing elements which are stored in a shared buffer
calling a function store_element(). The full buffer condition is controlled using a shared
variable counter. Analogously, a consumer process obtains elements from this buffer by
using a function obtain_element() that also requires a critical section, therefore decreasing
the counter in an unit. Apart from the access to the buffer, the producer-consumer example
has another critical section on the access to the counter variable, which is also a shared
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int counter= 0;

producer() {

int element;

while (true) {

produce_element(&element);

while (counter == N) NOP;

store_element(element);

counter=counter+1;

}

}

consumer() {

int element;

while (true) {

while (counter == 0) NOP;

obtain_element(&element);

counter=counter-1;

consume_element(element);

}

}

Figure C.1: Producer-consumer example with race conditions.

resource. The code in Figure C.1 has race conditions in the access to the buffer when it is
either full or empty.

The solution to the problem of the exclusive access to critical sections is fundamental for
the field of inter-process communication, as any other concurrent or parallel problem can be
expressed by its means.

C.3.3 Conditions for critical sections

There are many possible implementations to the primitives enter_CS() and exit_CS(),
but whichever implementation we choose it has to satisfy the following conditions as stated
in [Dijkstra, 1965]:

Mutual exclusion. There cannot be more than a process executing the CS simultaneously.

No deadlock. No process blocked outside the CS can avoid any other to enter the CS.

Bounded waiting. A process cannot be waiting indefinitely for entering the CS.

Hardware independence. No supposition can be done about the number of processors or
the relative processing speed of the processes.

Any protocol that implements the two primitives enter_CS() and exit_CS() has to
fulfill these four conditions if it is to be regarded as a valid communication mechanism. In
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order to compare the performance of two different implementations of this protocol, we will
always have to do an initial assumption: the primitives enter_CS() and exit_CS() need to
be atomic and are executed before entering and after exiting the critical section respectively.

C.3.4 Communication primitives

Inter-process communication solutions are normally classified following the synchronization
method that they use, explicit or implicit. Doing it so, we have two main solution groups:

1. Using shared variables (it requires explicit synchronization)

Active waiting :

• Software: lock variables, Dekker’s and Petterson’s algorithms, Lamport’s al-
gorithm...

• Hardware: interrupt inhibition, specific machine language instructions...

Blocked waiting :

• Basic primitives: sleep and wake up, semaphores...

• High-level constructions: critical regions, monitors...

2. Using message passing (implicit synchronization)

Shared variables can be often mapped in memory. When this is the case, these are an
adequate communication mechanism for synchronizing for instance execution-threads within
a process. Disk files could also be used for communicating independent processes, but this
solution is much less efficient. The message passing mechanism (explained in Section C.3.5)
makes also use of shared objects for communication purposes, and its primitives guarantee
exclusive access to these. Generally speaking, two processes communicate using a message
passing mechanism, which is regarded as a very efficient and high level mechanism.

A.- Active waiting

Lock variables

If there is no specific synchronization mechanism to access a common resource, a possi-
bility is to access critical sections by means of an active waiting algorithm that uses shared
variables. These variables will be used to control the access to critical sections. But it is
important to check the validity of the implementation, as the intuitive use of lock variables
does not ensure exclusive access to the critical section, as shown here:

int lock=0;

Enter_CS: while (lock) NOP; /* active waiting */

lock= 1;

Exit_CS: lock= 0;

It is easy to check that this implementation of the enter_CS() and exit_CS() protocol
does not satisfy the mutual exclusion property. The fact of requiring two separated instruc-
tions for both read the value of lock and activate it generates a new critical section in these
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two instructions: another race condition is created between the first and the second line of
enter_CS().

The only existing software solutions are complex and computationally very time consum-
ing –the algorithms of Peterson and Lamport are possible solutions, and they can be found
for instance in [Silberschatz et al., 2000].

Inhibition and activation of interrupts

Some operating systems also provide the inhibition and activation of interrupt levels as
a mechanism to solve the critical section problem. This solution is only valid for single-
processor computers as it is highly restrictive. This method is based on the idea of stopping
interrupt signals to reach the processor, and therefore on inhibiting the system from pre-
emption6 the process that is executing. It is implemented as follows:

Enter_CS: s = inhibit() /* Inhibits all the interrupt levels */

Exit_CS: activate(s) /* Activates interrupts */

This mechanism of manipulating the interrupt levels is very restrictive and could create
many additional drawbacks. Firstly, it does not satisfy the hardware independence condition,
as it is dependent on hardware availability for this type of mechanism. On the other hand, if
we use such a mechanism for a critical section that requires a long execution time, absolutely
all the interrupts will be inhibited for a long time, leading to additional problems depending
on the type of interrupts that should have been activated on that time. The inhibition of
interrupts does not distinguish between types of interrupts, and as a result even very critical
interrupt levels that would not threaten the integrity of the critical section will be inhibited.

B.- Blocked waiting

Every active waiting mechanism has some important drawbacks due to the fact that the
protocol keeps on waiting by consultation to the lock variable. The main problems that this
type of mechanisms carry are:

• During the waiting time, the CPU is in use preventing other processes to have access
to it.

• A bad scheduler can lead all the processes to block to each other7: let us consider as an
example that an operating system using two priorities for its processes, high (H) and
low (L) levels, and two processes, PH of high priority and PL with low priority. Then if
PL is in the critical section and PH wants to enter it, the scheduler will always decide to
choose PH giving PL no chance to keep with its execution and therefore keeping PH in
active waiting indefinitely. This situation constitutes what it is called a deadlock. Also,
this particular example shows that the active waiting mechanisms behave differently
depending on their implementation in the operating system.

6Preemption is an operating system concept related to process planning. It is the result of a process being
stopped in its execution on the CPU and another being executed in its place. This happens for instance when
a higher priority process than the one in the CPU is ready to continue its execution: as a result the higher
priority process replaces the lower one in the CPU. If lower priority processes are executing a critical section
and if interrupts and inhibited no other process will change its status and thrown it away from the CPU. The
interested reader can find more information in [Silberschatz et al., 2000].

7A scheduler is the internal routine of the operating system that selects will pass next to occupy a freed
CPU.
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The alternative for the active waiting is to block a process when it wants to enter the
critical sections that it is busy. This section reviews some of the basic techniques for blocked
waiting.

Sleep & wake-up

This two primitives allow to block a process Pi when executing sleep(). Another process
Pj will wake up the sleeping process by calling the primitive wake-up( Pi ).

Enter_CS (for a process Pi): /* if CS busy */ sleep();

Exit_CS (for a process Pj): wake-up(Pi)

These two primitives are not able to provide exclusive access to critical sections by them-
selves, but they are to be used by any mechanisms that implement primitives for the protocol
to access critical sections.

As with the rest of mechanisms reviewed so far, the sleep and wake-up primitives do
also have some problems. If the process Pi is not sleeping, the primitive wake-up(Pi) will
not have any effect, and therefore its call will be ignored and forgotten. Unfortunately, this
situation can create race conditions in schemes such as the producer-consumer as it is written
in Figure C.2 applying sleep & wake-up primitives, where the condition of full (or empty)
buffer and the action of sleeping do again constitute a new critical section. This problem can
be seen in the following example: if the producer has detected the full buffer function and
just before executing the sleep() primitive if it is preempted from the CPU, the consumer
could consume an element and execute the wake-up(producer) primitive before the system
returns the control to the producer, and therefore the posterior call will be ignored. When
the producer reaches again the CPU, it will not check again whether the buffer is full or not,
and as a result it will go to sleep with no possibility of the consumer to execute again the
waking up primitive. This situation constitutes again a deadlock state.

Semaphores

A more general abstraction is the semaphore [Dijkstra, 1965], which is built over the sleep
& wake-up primitives. Semaphores keep record of all the sleeping and waking up primitives,
waking up a single blocked process later when it is required.

Every semaphore contains a queue of processes that are blocked waiting to a waking-up
event to arrive, as well as a counter for waking up signals already received. These features
allow us to use semaphores both for inter-process synchronization as well as for managing
resources. Semaphores are used for these purposes inside the operating system and at user
level. Once defined a semaphore s, two basic atomic operations are allowed:

wait(s) --also: p(s), down(s), sem_wait(s) ...

signal(s) --also: v(s), up(s), sem_post(s) ...

When a process executes the primitive wait(s) over a semaphore s, if the counter associated
to s is strictly bigger than zero the process will continue and the counter will be decreased
in a unit; otherwise, the process will be blocked (i.e. sent to sleeping by executing sleep()).
When a process executes the primitive signal(s) the counter is incremented by one unit;
however, if there are blocked processes, one of them will also be awakened.
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int counter= 0;

producer() {

int element;

while (1) {

produce_element(&element);

if (counter == N) sleep();

store_element(element);

counter=counter+1;

if (counter == 1) wake-up(consumer);

}

}

consumer() {

int element;

while (1) {

if (counter == 0) sleep();

obtain_element(&element);

counter=counter-1;

if (counter == N-1) wake-up(producer);

consume_element(element);

}

}

Figure C.2: Example of the producer-consumer example solved with sleep & wake-up primitives.
The solution proposed here is only valid for one producer and one consumer.

Initially a value is assigned to the semaphore’s counter by means of an initialization
primitive: ini_semaphore(s,value) which assigns the value to the counter associated to
s and also inititializes the associated queue as an empty one.

Semaphores are a very common synchronization mechanism, and they are available
in most of the modern operating systems. These systems provide the wait, signal and
ini semaphore operations in the form of system call primitives that can directly be used in
our programs. The next section provides a revision of the many uses of the semaphores in
order to show a general idea of their usefulness.

Use of semaphores. Semaphores can be used for instance for long term mutual ex-
clusion management, as they only affect the processes willing to access the critical section
at a particular period of time, without having influence on the rest of processes running on
the system. The critical section problem can be solved with semaphores by initializing the
semaphore to one8, and then used in the following way:

Enter_CS: wait(mutex); /* if (CS busy) the process is blocked*/

8These semaphores initialized to one that are used for addressing the mutual exclusion property are often
called mutex or binary semaphores.
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struct semaphore_t mutex, holes, items;

ini_semaphore(mutex, 1); ini_semaphore(holes, N);

ini_semaphore(items, 0);

producer() {

int element;

while (1) {

produce_element(&element);

wait(holes);

wait(mutex);

store_element(element);

signal(mutex);

signal(items);

}

}

consumer() {

int element;

while (1) {

wait(items);

wait(mutex);

obtain_element(&element);

signal(mutex);

signal(holes);

consume_element(element);

}

}

Figure C.3: Example of solving the producer-consumer problem using semaphores.

Exit_CS: signal(mutex);

Semaphores are often used as a more general synchronization tool, and they can also be
applied for assigning shared resources between variables. Given n units of a shared resource
that any process can use, the semaphore R for the resource is initialized,

ini_semaphore(R, n);

and a process will use the resource following the next protocol:

wait(R);

/* use the shared resource */

signal(R);
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Please, note that n = 1 is the particular case of the mutual exclusion. The producer-consumer
problem, in which a process produces items and store them in a shared buffer while the
consumer process reads them from the buffer and consumes them, is taken as an example
of the use of semaphores for mutual exclusion and resource management (Figure C.3). A
semaphore is used for the mutual exclusion, the one called mutex, in order to solve the
exclusive access on the operations for storing and obtaining elements on the shared buffer
resource9. Two other semaphores are also defined, one for blocking the producer when the
buffer is full (holes) and another for blocking the consumer when the buffer is empty (items).
Note that the initialization of all the semaphores is done in the example of Figure C.3. It is
also worth saying that this solution of the producer-consumer problem is also valid for the
more general case of having n producers and m consumers, n,m > 1.

Semaphores can also be used for communication purposes. For instance, in a client-server
scheme the client will use a semaphore to synchronize with the end of server work, while the
server will use a semaphore as a event for waiting clients’ requests.

Finally, there are other more complex and typical synchronization problems such as the
problem of the readers-writers that can be solved using semaphores –more information about
this problem can be found in [Stallings, 2000] and [Andrews, 1991].

Implementation of semaphores. A semaphore is a predefined structure that allows
only one of the three basic operations wait, signal, and ini_semaphore shown before. Once
again, the implementation of these primitives has to be atomic, although in the following
example the specification of critical sections has been omitted. The semaphores as well as
their basic operations can be implemented in C language as follows:

struct semaphore_t {

int counter;

struct queue q;

}

void ini_semaphore(struct semaphore_t *sem, int val) {

sem->counter= val;

ini_queue(sem.q);

}

void wait(struct semaphore_t *sem) {

if (sem->counter == 0) {

put_process_in_queue(sem->q, my_process);

sleep(my_process); /* sleep the process to make it wait */

}

else --sem->counter;

}

void signal(struct semaphore_t *sem) {

if (empty_queue(sem->q)) ++sem->counter;

else wake-up(first(sem->q)); /* wake up the first in the queue */

}

9A more efficient implementation would use another short-term mutual exclusion mechanism such as lock
variables instead of mutex semaphores for this simple case.
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Barriers

Barriers are synchronization elements used in parallel programming to synchronize a finite
set of n processes between them. A barrier will stop the first processes arriving to the
synchronization primitive until all the n processes have executed the call. The generic
synchronization primitive is executed as follows:

struct barrier_t bar; int n; ... barrier (bar, n) ...

where bar is the name of the barrier that we are applying and n is the number of processes
that want to synchronize with it. The necessary condition continue the execution of a process
executing the primitive barrier is that n processes have called this function.

Barriers are available in many parallel programming libraries and standards, and due to
its simplicity, this mechanism is used very usually for synchronization purposes. When an
operating system or a selected parallel programming library does not provide barriers, these
can be easily implemented using either semaphores or lock variables.

C.3.5 Message passing

In all the solutions described so far we have assumed the existence of shared elements between
execution threads (shared memory or shared files) where the shared variables for communica-
tion would be mapped in memory. In case of using threads within a single process, the use of
global variables in memory is direct and intuitive, but they require explicit synchronization
mechanisms using one of the many mechanisms already described.

Another alternative for inter-process communication, which is also suitable when these
processes are executing on different computers communicating through a network, is to
use message passing primitives. These message passing primitives make use directly or
indirectly of specific communication elements10 that behave as First In First Out (FIFO)
queues. Message passing primitives ensure exclusive access to the communication channel,
and therefore their use does no require explicit synchronization to be programmed when
reading or writing a message.

The two generic communication primitives available in any message passing system are
defined as follows:

send --also called: write_message,

receive --also called: read_message,

Message passing communication types

There are many communication types available when message passing:

• direct communication

send(process_id, message)

receive(process_id, message)

10These communication elements receive many names in the literature: communication links, channels, or
communication ports. In this dissertation we call them communication channels or just channels.
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In this communication type, processes that want to communicate to each other need
to know their id numbers, although sometimes an extension of this is used so that
a process can send messages to any receiver or to receive messages from any sender
(broadcasting):

send(ALL, message)

receive(ANY, message)

• Communication using mailboxes

send (mailbox, message)

receive (mailbox, message)

A mailbox is a named FIFO-type communication channel. The processes need to know
the mailbox’s name if they want to communicate to each other, but they do not need
to know the other’s id number. In general terms, there will be many processes sending
messages to the mailbox and also many other reading from it.

In this section we will consider a message to be a character string. This is typically the
case also in networking protocols. The length of the message can be either fixed or variable
depending on the message passing implementation.

Synchronization with message passing primitives

In message passing, it is important to understand how the implicit synchronization behaves
when two processes are communicating. The primitive receive will block the process if the
communication channel is empty of messages, and otherwise the first message will be returned
and the process will continue its execution. The behavior of the send operation can be
different from an implementation to another, and this is dependent on many characteristics
of the communication channel: alternatives such as being buffered or not buffered, or to
be synchronous or asynchronous, will determine the behavior of the two primitives at a
great extent. Another of these main characteristics is the capacity. The capacity of the
communication channel determines the way of synchronizing the processes when accessing
the mailbox for writing. Depending on this characteristic the communication channels can
have:

Unlimited capacity: this is the ideal communication channel. The sending process will
never, under any condition, be blocked.

Limited capacity: the sender-process will be blocked only when the communication chan-
nel is full.

Null capacity: this possibility makes sense only in direct communication. As no message
can be stored, the two processes have to synchronize to each other every time they want
to communicate: the first of them that is ready for sending or receiving is blocked until
the other is ready for the opposite operation. This mechanism is also known as rendez-
vous. This procedure is similar to the use of barriers by two processes, but in this case
the communication of information is also included.
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producer() {

int element;

char message[50];

while (1) {

produce_element(&element);

compose_message (&message, element);

send(MBX, message);

}

}

consumer() {

int element;

char message[50];

while (1) {

receive(MBX, &message);

decompose_message (message, &element);

consume_element(element);

}

}

Figure C.4: Example of the producer-consumer scheme using message passing.

Except from the case of null capacity, the message passing mechanism leads to an asyn-
chronous model for processes to work. This means that the sender can usually continue its
execution even if the receiver has not still received the message. As an example of using
message passing primitives, Figure C.4 shows how to solve the producer-consumer problem
using a mailbox called MBX.

C.3.6 Communication and synchronization paradigms

The exclusive access to critical sections is a fundamental problem in inter-process commu-
nication and synchronization. The previous sections have reviewed the basic mechanisms
that can be used to solve this problem in our programs. The paradigms described on this
section are typical communication and synchronization situations (the producer-consumer
one is just an example of them) that can be solved by means of these basic mechanisms,
once they usefulness on the critical section problem has been proved. These paradigms are
different from the ones introduced in Section 5.2.1 in the sense that the ones introduced here
are typical basic applications that are used for measuring the performance of the different
communication and synchronization mechanisms for different types of problems. Some other
more complex paradigms are also briefly described in this section.

The typical communication and synchronization paradigms are the following:

Readers & writers : The access of shared information in disk files, databases, and other
types of shared resources is usually asymmetric, that is, most of the accesses are for
reading and much less for writing. In these cases, the definition of critical sections
for exclusive access is too restrictive and inefficient, as in most of the cases n reader
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processes could be allowed to be accessing the critical section at the same time without
restrictions. Only when the information needs to be updated is required that the critical
section is free before the writer enters it. This problem can be solved in different ways
using for instance semaphores. This solution is shown in [Stallings, 2000].

Assigning multiple resources : The basic problem of assigning n resources has been
introduced in Section C.3.4, as semaphores can be applied in an easy and simple way.
When the resources are of different types assignments can be done to different processes
at the same time, the problem acquires a very complex nature, and usually falls on
unbounded waiting and deadlock problems. There are many solutions for this problem
to avoid the deadlock state that can be found in [Dijkstra, 1965].

Client-server : This paradigm is a particular case of the producer-consumer problem, and
it is applied in many situations (i.e. general applications, inside the operating system,
in networking...) to control the use of resources. A process plays the role of the server,
and it centralizes the requests to access a resource (or many resources) requested by
the client-processes. In the producer-consumer case, clients and server communicate
with each other by a shared buffer (a communication channel or a mailbox if we use
a message passing interface) to store clients’ requests. The server will treat them
sequentially, avoiding any conflict in accessing resources between clients. The client-
server scheme is used extensively in concurrent applications, and it is well suited for
implementing services between processes, specially for processes in different computers
communicating through a network.
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Appendix D

Analysis and parallelization of the

source code of EBNABIC

D.1 Short review of the source code of the sequential EDA

program

Next, the parts of the code in the sequential EDA program that are more promising for
parallelizing are described. This section is shown as an example of how parallelization has
to be done and which are the main implications of it.

We will concentrate on the discrete case, more precisely in the EBNA algorithm and
its way to compute the BIC score. As every node in the candidate Bayesian network does
contribute to the overall BIC score of the structure, the score is computed first for each of
the nodes. However, for our purpose we are not interested in the overall BIC score, but in
finding Bayesian network that optimizes it. That is why we use a matrix A, where for every
two nodes i and j of the Bayesian network, A[i,j] will record the change in the BIC score
for the arc from i to j when it is added (if there is not an arc from i to j) or deleted (when
there is that arc) in the Bayesian network. Other global variables in the sequential program
that take part in the computation of the BIC score are the following:

IND SIZE: the number of variables of the individuals. Therefore, this is also the number of
nodes in the probabilistic graphical structure.

SEL SIZE: the number of selected individuals from which the probabilistic graphical structure
is to be learned.

cases: this matrix stores the selected individuals from which the learning is to be done. Its
size is SEL SIZE × IND SIZE.

parents: this boolean matrix has a size of IND SIZE × IND SIZE and it is used to represent
the Bayesian network: if i and j are two nodes, then when parent[i,j] is true it
means j is the parent of i in the Bayesian network.

STATES: this integer vector of size IND SIZE tell us the number of values that each variable
can take.

The parts of the sequential program that perform the learning in EBNA are the following:
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void CalculateA(int **&cases) {

for(int i=0;i<IND_SIZE;i++)

CalculateANode(i,cases);

}

void CalculateANode(int node, int **&cases) {

double old_metric, new_metric;

old_metric = BIC(node,cases);

for(int i=0;i<IND_SIZE;i++)

if (i!=node)

{

//change the j->i arc in the Bayesian network

parents[node][i] = !parents[node][i];

new_metric = BIC(node,cases);

//restore the j->i arc in the Bayesian network

parents[node][i] = !parents[node][i];

//Compute difference

A[node][i] = new_metric - old_metric;

}

else A[node][i] = INT_MIN;

}

And the actual BIC function is computed with the following function:

double BIC(int node, int **&cases) {

int j,k;

// Calculate the number of combinations of parent values.

int no_j = 1;

for(j=0;j<IND_SIZE;j++)

if(parents[node][j]) no_j *= STATES[j];

// Allocate memory for all nijk-s and initialize them.

int ** nijk = new int*[no_j];

for(j=0;j<no_j;j++)

{

nijk[j] = new int[STATES[node]];

for(k=0;k<STATES[node];k++) nijk[j][k] = 0;

}

// Calculate all nijk-s.

for(j=0;j<SEL_SIZE;j++)

{

// Find the parent configuration for the j-th case.

int parent_configuration = 0;

for(int parent=0;parent<IND_SIZE;parent++)
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if(m_parents[node][parent])

{

parent_configuration *= STATES[parent];

parent_configuration += cases[j][parent];

}

// Update the corresponding nijk.

nijk[parent_configuration][cases[j][node]]++;

}

// Calculate the BIC value.

double bic = 0;

for(j=0;j<no_j;j++)

{

int nij = 0;

for(k=0;k<STATES[node];k++)

nij += nijk[j][k];

}

bic -= log(SEL_SIZE)*no_j/2;

// Free the memory allocated for the nijk-s.

for(j=0;j<no_j;j++)

delete [] nijk[j];

delete [] nijk;

return bic;

}

D.2 Parallelization using threads

The score+search procedure will be parallelized by making threads to divide the work: a
thread plays the role of the manager that distributes the work among the rest, and the
others are the workers that have to compute all the possible arc modifications for a same
number of nodes (i.e each worker will execute the procedure CalculateANode for a total of
IND_SIZE/number_of_workers nodes).

D.2.1 New adaptation on the source code for threads

The parallel program will use shared memory in the form of defined global variables for
communication between the different cooperating threads. However, the use of shared vari-
ables for communication leads to the existence of race conditions within the program, and
therefore a synchronization mechanism is required to ensure exclusive access to the critical
sections in the program. The multithreading standard library selected is pthreads.

As already explained in Section 6.4.1, we apply a manager-slave working scheme. In our
case, we decided to apply a manager-slave working scheme, where a thread plays the role of
the manager and the rest of workers wait for a node number whose particular BIC score has
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to be computed. The worker threads will compute the BIC score by making use of common
resources that are present in shared memory such as the global variables cases, parents,
and STATES, and they will finally write their results in the shared matrix A.

In order to control the maximum number of threads that can be working at the same
time a semaphore called SemMaxChildren is defined. This semaphore is initialized to the
maximum number of threads that can exist. In our case we have a two processor computer,
and therefore this limit was set to 4 threads.

In addition a table is created in order to store the thread identification for each worker-
thread in the program. This one-dimensional table is called WorkerId, and it is used by the
primitives to create and wait for threads.

Primitives to create and organize threads.

Having all this aspects in mind, some functions were defined in order to create an easier to use
abstraction layer of the underlying low level pthreads interface. The calls to native pthreads
primitives are easy to identify in the source code, as they all have the prefix pthread_ on their
names. These functions are intended to respect the maximum limit of threads established:

* Creation of a thread. This function allows a program to create a new thread within
the process that executes it. If a call to the function CreateThread is done and there
are already too many threads created, the function will block the call until one of the
workers finishes, although this control is supposed to be done by the manager before
trying to create a new thread. The last parameters of this function is the worker
number of the thread, and the id of the newly created thread is stored in the table
WorkerId. The function returns the number of the thread that is created, or -1 in case
of error:

unsigned long CreateThread(void * (*my_func)(void *),

void *arglist, int NumWorker)

{

pthread_t NumChildThread;

pthread_attr_t thread_attr;

int ThreadNr;

void *(*functname)(void *) = (void *(*)( void * )) my_func;

//making sure that there are not too many

//threads already created

sem_wait( &SemMaxChildren );

num_threads++;

status = pthread_attr_init (&thread_attr);

if (status != 0)

cerr << "Error " << status << ": Create attr" << endl;

//Create a detached thread: this is required in order to

//use more than a single CPU by a process

status = pthread_attr_setdetachstate (&thread_attr,

PTHREAD_CREATE_DETACHED);
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if (status != 0)

printf("Error %d: Set detach", status);

status = pthread_create (&NumChildThread, &thread_attr,

functname, arglist);

if (status!=0) {

printf("Error: the new thread could not be created!");

return (-1);

}

//Set the worker number in the table

WorkerId[NumWorker] = NumChildThread;

return ((unsigned long) NumChildThread);

}

* End of a thread. When a thread finishes its work it is destroyed by calling the function
EndThread. However, if a thread is blocked waiting the end of another to be created,
this function will unblock the call to CreateThread.

As the pthreads library does not have any primitive to manage the end of the threads
in a way that we need, we created a queue to store the end of threads within our
application. Each time a thread finishes, the returned value is stored in the queue
until a thread that is waiting for the end of another thread receives the information.
This queue is a shared resource in memory, and therefore all the lines of code ac-
cessing it constitute a critical section. This critical section is managed with a mutex
called MutexQueue. As this queue is a very typical example of a structure is memory
that stores elements, the access to it has been represented in these two primitives:
insert_in_queue and read_from_queue.

void EndThread(void *value_ptr)

{

sem_post( &SemMaxChildren );

//Record the end of the thread event to synchronize it with

//the WaitingThread primitive

wait( &MutexQueue);

insert_in_queue(value_ptr, &EndedThreads);

num_threads--;

signal( &MutexQueue);

sem_post( &SemWaitingAnyThread);

pthread_exit(value_ptr);

return;

}

* Kill another thread. This function can be used to kill another thread. The id of the
thread to kill must be provided. This function also stores a value in the queue to
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control the end of processes, but in this case an error code of -1 is sent:

void KillThread(unsigned long ThreadNumber)

{

pthread_kill( (pthread_t) ThreadNumber, SIGKILL);

//Record the end of thread event

wait( &MutexQueue);

insert_in_queue(-1, &EndedThreads);//-1: code for errors

num_threads--;

signal( &MutexQueue);

sem_post( &SemWaitingAnyThread);

}

return;

}

* Waiting for a single thread. This function is used to make threads wait for another’s
end. The only parameter required is the id of the thread that we are waiting for. If this
parameters has the value 0, the function will wait for any of the existing threads. If no
other thread is created within the process’ environment, a error value of -1 is returned.
It is also important to see that the tread will not be destroyed until another is ready to
receive the end signal. This is controlled by synchronizing the ending thread with the
someone waiting for a thread end by means of the semaphore SemWaitingAnyThread

that is also used in the EndThread primitive described previously.

int WaitThread(unsigned long ThreadNumber)

{

int ReturnValue;

//If there are no threads left return an error

if (num_threads==0) return(-1);

sem_wait( &SemWaitingAnyThread);

wait( &MutexQueue);

if (ThreadNumber==0) {

//The waiting thread is synchronized with the end

//of someone else, and the returned value is given

read_first_from_queue(&ReturnValue, &EndedThreads);

return (int) ReturnValue;

}

else {

signal( &MutexQueue );

return thr_join(ThreadNumber, NULL, NULL);
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}

}

* Waiting for all threads. This function is used to implement more easily the manager-
slave scheme. It is used by the manager in order to keep waiting for the ending of all of
the worker threads. This function has only a parameter which is the number of worker
threads that were created, and it makes use of the table Workerid to obtain the id
number of the next thread to wait for.

void WaitForAllThreads(int number_worker_threads)

{

int i;

//wait for all threads. If there is no left, return.

if (m_num_threads==0) return;

for ( i = 0; i < number_worker_threads; i++){

pthread_join(m_Workerid[i], NULL);

sem_wait (&SemWaitingAnyThread);

}

//This function does not use the queue, so empty it now

wait( &MutexQueue);

initialize_queue_to empty();

signal( &MutexQueue);

return;

}

The code of the manager and the workers.

Having defined all these primitives, we have now to change the sequential program and
adapt it for the manager-slave working scheme. For this, two new functions are defined:
ParallelBIC will be the one executing the master-thread, and ParallelBICWorker will
be the one executing all the worker-threads. The function ParallelBIC will have two argu-
ments: which are the number of nodes that the Bayesian network has (this is also the number
of tasks to do in parallel) and the number of the node that we are computing each time. In
fact, the function in the sequential program where the job is divided is CalculateANode in
which all the relationships with the rest of the nodes are computed using the BIC score, and
the function ParallelBIC will divide the whole task in pieces giving each worker the corre-
sponding amount of work. We will use some global variables for communication between the
manager and the slaves ( CurrentTask, MaxNumTasks, Node, OldMetric and JobSize). In
addition, a mutex called MutexComm is used for ensuring the mutual exclusion when accessing
critical variables used for communication.

void ParallelBIC(int NumTasks, int node)

//NumTasks is the total amount of nodes

//Node is the node number that we are processing in parallel.

Endika Bengoetxea, PhD Thesis, 2002 183



D.2 Parallelization using threads

{

//Initialize global variables

CurrentTask =0; //we start from the node 0

Node = node; //number of the node that we are treating

JobSize = ((NumTasks-1) / MAX_THREADS)+1;

MaxNumTasks = NumTasks;

//The actual value of the metric is computed

//so that the workers compare it with their

//work. This is a sequential task that

//cannot be parallelized.

OldMetric = BIC(Node, cases);

// Creation of the parallel crew by using threads

for(int i=0;i<NumTasks;i++)

{

WorkerNum=num_threads;

CreateThread((void * (*)(void *)) ParallelWorkerBIC, NULL);

}

//Wait until all the last threads have finished their work.

WaitForAllThreads(MAX_THREADS);

return;

}

void ParallelWorkerBIC(void) {

int FirstJob, LastJob;

double new_metric;

//Calculate the part of the work to do - critical section

wait( &MutexQueue);

FirstJob = (CurrentTask) * (JobSize);

LastJob = ((CurrentTask + 1) * (JobSize)) -1;

CurrentTask++;

signal( &MutexQueue);

//Check that the end of the work is not reached

if (LastJob > MaxNumTasks) LastJob = MaxNumTasks;

for(int i=FirstJob;i<LastJob;i++) {

if (i!=Node) {

//a new function is used to compute the difference of

//changing the arc i-> node. Here we cannot change

//the variable parents as this is shared with the rest

// of the threads
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new_metric = deltaBIC(Node,i, cases);

A[Node][i] = new_metric - OldMetric;

}

else A[Node][i] = INT_MIN;

}

EndThread(NULL);

return;

}

The new function deltaBIC that is used by the workers to compute the difference in the
BIC score if we modify the arc that in the nodes nparent-¿node by adding it (if it does not
exist in the Bayesian network) or removing it (if it does exist in the Bayesian network).
Thereof the name of the function, which is very similar to the BIC function, essentially it
does only change the consideration of the nparent value on the computation. However, here
we compute the difference in the partial BIC score of the node node without changing the
value of the global variable parents. This last aspect is very important as the variable
parents is shared among all the working-threads and any change on it will also corrupt the
computation for the rest of the working-threads:

double deltaBIC(int node, int nparent, int **&cases) {int j,k;

// Calculate the number of parent configurations.

int no_j = 1;

for(j=0;j<IND_SIZE;j++) {

//If we are analyzing nparent, consider it as changed

if (j!=nparent) {

if(parents[node][j]) no_j *= STATES[j];

}

else {

if(!(m_parents[node][nparent])) no_j *= STATES[nparent];

}

}

// Allocate memory for all nijk-s.

int ** nijk = new int*[no_j];

for(j=0;j<no_j;j++)

{

nijk[j] = new int[STATES[node]];

for(k=0;k<STATES[node];k++) nijk[j][k] = 0;

}

// Calculate all nijk-s.

for(j=0;j<SEL_SIZE;j++)

{

// Find the parent configuration for the j-th case.

int parent_configuration = 0;

for(int parent=0;parent<IND_SIZE;parent++) {
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//If we are analyzing nparent, consider it as changed

if (parent!=nparent) {

if(m_parents[node][parent])

{

parent_configuration *= STATES[parent];

parent_configuration += cases[j][parent];

}

}

else {

if(!(m_parents[node][nparent]))

{

parent_configuration *= STATES[nparent];

parent_configuration += cases[j][nparent];

}

}

}

// Update the corresponding nijk.

nijk[parent_configuration][cases[j][node]]++;

}

// Calculate the BIC value.

double deltabic = 0;

for(j=0;j<no_j;j++)

{

int nij = 0;

for(k=0;k<STATES[node];k++) nij += nijk[j][k];

}

deltabic -= log(SEL_SIZE)*no_j/2;

// Free the memory allocated for the nijk-s.

for(j=0;j<no_j;j++)

delete [] nijk[j];

delete [] nijk;

return deltabic;

}

We also have to initilialize all the structures and shared variables at the beginning of the
program in the following way:

#include <limits.h> #include <semaphore.h> #include <pthread.h>

#define MAX_THREADS 4 /* Max Number of Worker-threads

since we have 2 processors */

... pthread_t thread; int num_threads=0; //this variable is

updated automatically
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//in CreateThread and EndThread

int JobSize, CurrentTask, MaxNumTasks, Node; double OldMetric;

//Variables for communication between master and workers

pthread_mutex_t MutexQueue; pthread_mutex_t MutexComm; sem_t

SemMaxChildren, SemWaitingAnyThread; int WorkerId[MAX_THREADS];

... main() {

...

//Initialise semaphores and mutex

sem_init(&SemMaxChildren, 0, MAX_THREADS);

pthread_mutex_init(&MutexQueue, NULL) ;

pthread_mutex_init(&MutexComm, NULL) ;

sem_init(&SemWaitingAnyThread, 0, 0);

...

}

And finally, we have to change the CalculateANode function of the sequential version of
the program so that it executes the parallel version instead of the sequential one. This time
it requires only one parameter, as the cases matrix has been converted as a global variable
in order to be accessed by all the threads at the same time:

void CalculateANode(int node) {

ParallelBIC(IND_SIZE, node);

}

This example shows how to adapt a sequential program to convert it as parallel. We
have used the BIC score as an example, but any other scores for the discreet case could also
use the same idea and they would easily be adapted following these steps. Furthermore, the
continuous version of the EDA program can also be adapted in a similar way. The continuous
EDAs EGNABIC and EGNABGe where also parallelized following a similar approach.

D.3 Parallelization using MPI

MPI has been designed to use message passing as the communication mechanism for inter-
process communication. MPI provides an efficient mechanism for threads from different
processes, and it can also been applied even when shared memory is available.

As we have seen in the previous section, the parallel version of EBNA using threads
makes use of shared variables not only for communication, but also for reading the data
required for the ParallelWorker function. The fact of using shared memory also required
the use of external synchronization mechanisms such as semaphores.

On the other hand, in the particular example of the EDA program, the fact that processes
cannot share any memory among them requires the manager to send all the data structures
required to compute the deltaBIC function to each of the workers. The data structures that
have to be sent by the manager to the workers every time we create a worker-process are
the matrices cases and parents, the vector STATES, and the global variables IND_SIZE and
SEL_SIZE. These variables have a length according to the size of the problem, and when
applying EDAs for a big example they can increase in size rapidly as well as the amount of
information to communicate to the workers.
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D.3.1 New adaptation on the source code for MPI

The main function of the source code is organized as follows: MPI creates all the processes
at the beginning of the execution, so it is important to make the workers wait and to make
the master start the initialization phase and to make it execute all the sequential parts of
the program. We have designed a communication protocol for communicating the master
and the workers that contains two steps: firstly, the manager will send an integer to all
the workers in order to inform them about the next operation they have to perform, where
0 means to compute the BIC score in parallel and 1 means to finish their execution and
terminate. If we wanted the workers to parallelize another second part of the EDA program
we could also have created a new operation and added another work-code to the protocol.
If the program is to be finished, workers will end after receiving the 0 value and then the
manager will prepare the final results. If the BIC score is to be computed in parallel, the
master will have to send to all the workers all the data matrix, vectors and variables they
require for performing their job, and then the manager will receive all the results from all the
workers in order to gather all the parts of the A matrix computed in parallel by the workers.

The amount of work that each worker has to do will depend on the number of workers and
the size of the matrix A, and therefore the division on the amount of work for each process
will be computed automatically taking these aspects into account. The main function of the
source code that carries out this approach is the following:

main(int argc, char* argv[]) {

int i;

//Initialize the MPI system

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &g_size); //g_size <- number of processes

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); //my_rank <- process MPI id

NumWorkers = g_size; //1 manager-worker, n-1 workers

if (my_rank == 0) {

//Code for the Master

//The initilization CommInitializeBICParallel_MPI() is done once

//the parameters are read on the program

EDA(argc, argv); // The manager reads the arguments and executes

// the part of the program reserved for the

// master.

//At the end of the program the master send the code 0 to

//indicate the workers that they have finished their work.

op = 0;

MPI_Bcast(&op, 1, MPI_INT, 0, MPI_COMM_WORLD);

}

else {

//Code for the Workers

188 Endika Bengoetxea, PhD Thesis, 2002



Analysis and parallelization of the source code of EBNABIC

//Initializes the variables required for the rest of the work.

CommInitializeBICParallel_MPI() ;

while (1){ //Execute once and again...

//wait until receiving a code of operation to perform

MPI_Bcast(&op, 1, MPI_INT, 0, MPI_COMM_WORLD);

switch(op) { //depending on the operation-code

case 1: //Compute the BIC score

CommStartBICParallel_MPI(); //read all the data

//structures required

//Calculate which is the corresponding part of A

//for this worker to compute

for (i=0; i<WorkSize; i++)

ParallelWorkerBIC(my_rank*WorkSize+i, i);

//Send the results

CommEndBICParallel_MPI();

break;

case 0: //exit the program

default: break;

}

if (op==0) break; //end the while.

}

}

if (my_rank == 0) {

//Write final results

WriteFinalResults();

}

MPI_Finalize();

}

The initialization function at the beginning of the program is executed by all the pro-
cesses, either the manager and the workers, and it is written as follows:

void CommInitializeBICParallel_MPI() { int i,j;

//The manager computes the size of work for each worker

if (my_rank ==0) {

WorkSize = IND_SIZE/NumWorkers;

}

Endika Bengoetxea, PhD Thesis, 2002 189



D.3 Parallelization using MPI

//Receive IND_SIZE

MPI_Bcast(&IND_SIZE, 1, MPI_INT, 0, MPI_COMM_WORLD);

//Receive SEL_SIZE

MPI_Bcast(&SEL_SIZE, 1, MPI_INT, 0, MPI_COMM_WORLD);

//Receive Worksize

MPI_Bcast(&WorkSize, 1, MPI_INT, 0, MPI_COMM_WORLD);

//Reserve memory for global variables

parents_MPI = (bool**) malloc (IND_SIZE*sizeof(bool *));

A_MPI = (double **) malloc (IND_SIZE*sizeof(double *));

for (i=0; i<IND_SIZE; i++) {

parents_MPI[i] = (bool *) malloc (IND_SIZE*sizeof(bool));

A_MPI[i] = (double *) malloc (IND_SIZE*sizeof(double));

}

cases_MPI = (int **) malloc (SEL_SIZE*sizeof(int *));

for (i=0; i<SEL_SIZE; i++) {

cases_MPI[i] = (int *) malloc (IND_SIZE*sizeof(int));

}

STATES_MPI = (int *) malloc (IND_SIZE*sizeof(int));

//Receive STATES

if (my_rank ==0) { // The manager prepares the matrix STATES to be sent

for (i=0; i<IND_SIZE; i++)

STATES_MPI[i] = STATES[i];

}

MPI_Bcast(STATES_MPI, IND_SIZE, MPI_INT, 0, MPI_COMM_WORLD);

return;

}

The function that will be executed at the beginning of the parallel BIC operation will
send all the required input data that changes from a generation to the next to all the workers.
The function executed at the end of the parallel BIC operation will send all the results to
the manager. These two functions are implemented as follows:

void CommStartBICParallel_MPI() { int i,j;

//Receive parents

MPI_Bcast(parents_MPI, IND_SIZE*IND_SIZE, MPI_INT, 0, MPI_COMM_WORLD);

//Receive cases

MPI_Bcast(cases_MPI, SEL_SIZE*IND_SIZE, MPI_INT, 0, MPI_COMM_WORLD);

}

void CommEndBICParallel_MPI() { int i,j;

//Gather the Results
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MPI_Gather(A_MPI, WorkSize*IND_SIZE, MPI_DOUBLE, A_MPI,

WorkSize*IND_SIZE, MPI_DOUBLE, 0, MPI_COMM_WORLD);

}

Note that these functions are short in source code, but in fact require a high overload of
exchanged information, as some of the matrixes that are sent such as the cases can have
a very big size. Therefore, the time to send them to the workers can be of considerable
importance. It is also important to realize that these functions where not required when
using threads, as these were shared in memory among all the workers.

All the functions seen up to now where just to exchange data between the master and the
slaves. All of them were not required in the parallel version of the BIC program with threads.
The following functions are the ones executed by the master and the workers respectively in
order to perform the parallel BIC task. The main difference on this new version with MPI
is that the master will also play the role of a worker at the same time, and this is done in
such a way because the creation of a new process and sending all the input variables to it is
very time consuming:

void MPI_ParallelBIC(int NumTasks)

//The Manager

{

int i,j;

//The manager organizes the work:

//Send the signal for job to all the workers

op = 1;

MPI_Bcast(&op, 1, MPI_INT, 0, MPI_COMM_WORLD);

CommStartBICParallel_MPI();

//The master also takes part on the computation

//of a part of the parallel BIC similarly as

//the rest of the workers

for (i=0; i<WorkSize; i++)

ParallelWorkerBIC(my_rank*WorkSize+i, i);

//Gather Results from the rest of workers

CommEndBICParallel_MPI();

//Now all the results are stored in the matrix A

}

void ParallelWorkerBIC(int node, int TaskNumber) {

double old_metric, new_metric;

old_metric = BIC(node);

for(int i=0;i<IND_SIZE;i++)
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if(i!=node) {

new_metric = deltaBIC(node,i);

A_MPI[TaskNumber][i] = new_metric - old_metric;

}

else A_MPI[TaskNumber][i] = INT_MIN;

return;

}

where the BIC and deltaBIC functions are defined exactly as in the parallel case with threads.
Finally, just a short mention of the inclusion of the following lines on the program

#include <limits.h>

#include "mpi.h"
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P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, and Y. Yurramendi. Searching for the best
ordering in the structure learning of Bayesian networks. IEEE Transactions on Systems,
Man and Cybernetics, 41(4):487–493, 1996a.
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Rudlof and Köppen [1996], 59

Sanfeliu and King-Sun [1983], 150

Sanfeliu et al. [2000], 16
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‘To finish a work? To finish a picture? What nonsense! To finish it means
to be through with it, to kill it, to rid it of its soul, to give it its final blow the
coup de grace for the painter as well as for the picture. ’

Pablo Picasso

Endika Bengoetxea, PhD Thesis, 2002 217


