
Introduction to Operating Systems - 1 - Lab1-Unix-Shell

Unix. File system and Command-Interpreter (shell)

Concepts

Absolute and relative filenames, path, file permissions, owner, links, device independence,
redirection, pipes, filters.

Description

The Unix file system is organized as a tree, with the possibility of establishing additional links
(so that it is actually a graph). The objective of this laboratory is to become familiar with the
Unix file system and start working interactively using a shell: names, directories, files, paths,
and links. By using filters (through pipes) and the redirection mechanism of the shell we will
observe the device independence of Unix. Finally, we will analyze several features offered by
the shell.

Steps

Solve the proposed exercises, practicing with the bash command interpreter.

Documentation

• Unix class notes.

• Unix online help (man).

Introduction to Operating Systems - 2 - Lab1-Unix-Shell

Linux basics
Unix features

+ Multiprogrammed OS, multiuser and multi-terminal (interactive)

+ Standard for minicomputers and workstations

+ Powerful shell

 . redirections (< > >>)
 . pipes for inter-process communication (|)
 . background tasks (&)

+ Many utilities/tools

 . linguistic applications
 . communication
 . compilers/linkers/debuggers
 . text-processing

- Commands are rather cryptic

Command syntax

Special symbols:
< standard input redirection (example: prog < input_file)
> standard output redirection (example: prog > output_file)
>> output redirection in append mode (example: prog >> output_file)
<< input data comes after (used in shell scripts)
& background task, concurrent with the next commands (example: prog &)
| concurrent tasks: left’s output is right’s input (example: prog1 | prog2)

(Only the input/output of programs using the standard input/output can be redirected.

Similarly, the program placed at the left/right of a pipe in a command must use its standard

input/output)

Replacing characters (meta-characters):
* replaces any sequence of characters (string), including the empty one
? replaces any single character

When any of these characters is found in a command, the shell (bash in our
case) takes it as a pattern, replacing it by the list of entries in the specified
directory corresponding to that pattern (alphabetically ordered).

Introduction to Operating Systems - 3 - Lab1-Unix-Shell

Example of a Unix file system

• Tree structure, with a single root (/).

• Devices need to be mounted/un-mounted (usually automatically)

• Filenames = [path/]name
- absolute path (from the root) /dir1/dir2/dir3/file
- relative path (from current directory) file

dir3/file
../../dir2/dir3/fitx
./ current directory
../ parent directory

Basic commands

• Exiting the shell (finishing the working session): exit, logout

exit

logout

• Changing our password: passwd

passwd

Introduction to Operating Systems - 4 - Lab1-Unix-Shell

• Getting the online help about a command: man

man command

Shows in the standard output the information related to that command.

Example:

man ls

• Listing the content of a directory: ls

ls [options] [dir]

Shows in the standard output the entries of the specified directory.

Some options:

-a all entries, including those whose name begins by point (.)

-l full information: permissions, links, owner, group, size, dates, name

-R subdirectories are also shown (in a recursive way)

Examples:

ls

ls -a

ls -al

ls –l dir1

• Changing the current directory: cd

cd [dir]

Changes the current directory to the specified one. The name of the new directory
can be indicated in an absolute (form the root) or relative way (from the current
directory). If no directory is indicated, it changes to the user’s home directory.

• Knowing which the current directory is: pwd

pwd

Shows in the standard output the absolute path of the current directory.

Introduction to Operating Systems - 5 - Lab1-Unix-Shell

• Creating a directory: mkdir

mkdir [path/]directory

Of no path is indicated, the new directory is created in the current directory.

• Removing a directory: rmdir

rmdir [path/]directory

If the directory is not empty, the command fails and gives an error message.

• Showing messages in the standard output related to arguments: echo

echo arg1 arg2 … argN

• Copying files: cp

cp file_source file_destination

cp file_source1 … file_sourceN dir_destination

cp –R dir_source dir_destination

Allows copying a file. Allows also copying a directory. Allows also copying files
to another directory.

• Changing the name of a file: mv

mv source destination

mv source1 … sourceN dir_destination

Allows changing the name of a file/directory. If the last argument is the name of
an existing directory, then it moves all the previous files to that directory, keeping
their names unchanged.

• Removing files: rm

rm file1 … fileN

rm –R dir

rm –i file

Removes all the files passed as arguments. Directories that are not empty are not
removed (when the –R option is used, the directory and all its content are
recursively removed). If the –i option is used, it asks a confirmation.

Introduction to Operating Systems - 6 - Lab1-Unix-Shell

• Showing the calendar in the standard output: cal

cal [month [year]]

Shows the current month. If a month or/and year is indicated, then it is shown.

• Showing the full content of a file (also for concatenating files): cat

cat file_list

Shows in the standard output the content of the files passed as arguments,
concatenating them. If no argument is passed, “echoes” the standard input.

Examples:

cat file1.txt

cat file1.txt file2.txt

• Showing the content of a file screen by screen: more

more file

• Showing the first lines of a text file: head

head [-n] file

If no number is indicated, the first 10 lines are shown.

Examples:

head file1.txt

head -18 file1.txt

• Showing the last lines of a text file: tail

tail [-n] file

If no number is indicated, the last 10 lines are shown.

Examples:

tail file1.txt

tail -8 file1.txt

Introduction to Operating Systems - 7 - Lab1-Unix-Shell

• Filters: grep

grep [-v] pattern file_list

Analyzes the content of the files passed as arguments, showing in the standard
output the lines that contain the pattern passed as argument. If no file is passed, it
takes the standard input as input. If the –v option is used, it shows the lines not
containing the pattern.

• Links: ln

ln [-s] existing_name new_name

Hardware link: without the -s option. It creates a new entry in the specified
directory, which points to the inode (attributes + data) of the file whose name is
passed as argument (link by inode).

 ln existing_name new_name

Software link: with -s option. It creates a new entry in the specified directory,
which points to the name (path) of the file whose name is passed as argument
(link by name).

 ln -s existing_name new_name

• Editing a text file: nano, emacs, vi…

nano text_file

emacs text_file

vi text_file

• Changing file/directory permissions: chmod

chmod mode file_list

It changes the read (r), write (w) or execution (x) permission of the files passed as
arguments. The change can be applied to the owner of the file (u), to the group
(g), to the rest of users (o) or to all of them (a). Permissions are coded as a
sequence of 9 bits.

-rwxrwxrwx
Jabea Taldea Besteak

Introduction to Operating Systems - 8 - Lab1-Unix-Shell

The mode argument indicates the new permissions, in two possible ways: as three
octal numbers (4: read, 2: write, 1: execution), or as a sequence of characters
(u|g|o|a for indicating the user, +|- for adding/removing permissions, and r|w|x for
indicating which permissions are going to be modified).

Examples:

chmod 740 *.txt (rwx r-- ---)

chmod u+x file (put ‘x’ to owner)

Some additional commands

• Showing the list of connected users: who, w

• Showing the active processes: ps

• Terminating a process: kill

kill [-9] process_id

• Preparing a file for printing: pr

• Printing a file (spooling): lpr

lpr –m file1 (message at the end)

lpr -Plaser file1 (printer name: laser)

• Showing the printer queue: lpq

lpq –Plaser (printer name: laser)

• Showing/changing permission mask: umask

• Changing file owner and group: chown and chgrp

• Finding files in the file system: find

find / -name file -print

• Duplicating the standard output (showing it and storing it in a file): tee

• Counting lines, words and characters: wc

• Sorting lines alphabetically: sort

• Showing the Unix information: uname

Introduction to Operating Systems - 9 - Lab1-Unix-Shell

• Showing for how long is the system running: uptime

• Showing the use status of the file system: df

Examples
rm *.txt remove all files whose name finishes by .txt

cat maiz?.txt concatenate all files whose name begins by "maiz",

 ends with .txt and have one character in the middle

lpr maiz[1-3].txt print files maiz1, maiz2 eta maiz3.txt

cat file1 >file2 equivalent to cp fitx1 fitx2

head file1 >>buru Append the first 10 lines of file file1

 to the end of file buru

man cp >lis1 & copies the man page of the cp command to file lis1,

 allowing executing new commands (concurrently)

head -50 file1 | lpr prints the first 50 lines of the file file1

Introduction to Operating Systems - 10 - Lab1-Unix-Shell

Proposed exercises

1. Exit the system and log in again.

2. Change your password.

3. Execute the following commands:

man man

man echo

man 1 echo

4. Execute the following commands and analyze the results:

echo Kaixo zemuz zaude?

echo “Kaixo “ zemuz zaude?

echo “Kaixo zemuz zaude?“

echo *

echo ‘*’

5. Get the absolute name of the current directory.

6. Show the content of the current directory.

7. Show the complete content of the current directory.

8. Show the content of the /users/alumnos directory.

9. Place in your home directory and test If these two command are functionally

equivalent or not:

cd ../../../../usr

cd /usr

10. Create a directory Lab1 in your home directory.

11. Go to the created directory (Lab1) and create the following directory structure:

---|-- Programs ----|---- bin

 | |---- data ------|---- January

 | | |---- February

 | | |---- March

 | |---- lib

 |-- Leisure

 |-- Rubbish

Introduction to Operating Systems - 11 - Lab1-Unix-Shell

12. Go to the data directory. Analyze which is the resulting directory when executing each

one of the following commands (commands are independent of each):

cd ../..

cd ../../Leisure

cd ../Leisure

cd January/../../../Leisure

cd January/../../Leisure

cd /users/alumnos/acaf/acafxxxx/Lab1/Leisure

cd $HOME/Lab1/Leisure

cd

13. Go to your home directory and create a software link SOFT to the following directory:

/users/alumnos/soft/acaf/

14. Go to the created SOFT directory.

15. Go to your Lab1 directory and create a file example.txt (using the nano

editor) of at least 40 lines of text.

16. Copy the file example.txt into a file example1.txt .

17. Copy the file example1.txt into the Leisure directory.

18. Copy the file example.txt into the Leisure directory with the name

example2.txt .

19. Rename the file example2.txt of the Leisure directory to the name

example4.txt .

20. Got to the Lab1 directory and create a subdirectory Leisure2 .

21. Copy all the content of the Leisure directory to the Leisure2 directory.

22. Go to the Lab1 directory and execute the following command, analyzing the result:

cp –R Leisure Leisure3

23. Execute the following commands and compare their results:

cat example1.txt

more example1.txt

24. Get the list of users that are currently connected to the machine.

25. Go to the Leisure directory and get the first 10 lines of the example1 .txt file.

26. Get the last 10 lines of the example1 .txt file.

27. Get the last 4 lines of the example1 .txt file.

28. Get the lines from 21 to 30 (both included) of the example1 .txt file.

Introduction to Operating Systems - 12 - Lab1-Unix-Shell

29. Get the number of lines of the example1 .txt file.

30. Get the number of words of the example1 .txt file.

31. Get the number of characters of the example1 .txt file.

32. Get the lines of the example1.txt file containing the text "hello ".

33. Get the number of lines of the example1.txt file containing the text "hello ".

34. Get the lines of the example1.txt file NOT containing the text "hello ".

35. Copy the file example1 .txt to a file example3 .txt .

36. Copy the file example1 .txt to a file example33 .txt .

37. Copy the file example1 .txt to a file example333 .txt .

38. Execute the following commands and analyze the results:

ls example*

echo ls example*

ls example?.txt

echo ls example?.txt

echo example?.txt

echo example*

39. Remove the file example333 .txt .

40. Execute the following command and analyze the result:

echo rm *

41. Get the calendar of the current month. Also that of September of 1752. What's wrong?

42. Execute the following commands and analyze the results:

cat example1.txt

cat example1.txt > result.txt

ls

cat result.txt

ls > result.txt

cat result.txt

43. Create the file a1.txt with three lines of text inside.

44. Execute the following commands and analyze the results:

cat a1.txt

cat a1.txt > result.txt

cat result.txt

cat a1.txt >> result.txt

cat result.txt

ls >> result.txt

cat result.txt

