An introduction to oper ating systems

1 Introduction

There is no single definition of operating syste@perating systems exist because they are a
reasonable way to solve the problems created loyrgpuater system. The hardware itself is not easy
to use; therefore it is necessary to help bothuber and the programmer by abstracting the
hardware complexity. The way to do this is by pigca layer of software above the hardware in
order to present the user of the system and thé&cappns avirtual machine interface that
facilitates the understanding and use of the sysfEms software layer is called the operating
system. The operating system includes a set otimgto control the hardware that are common
to most applications, e.g., functions controllihg tlevices and interrupt service routines, hiding t
the programmer the hardware details and offerinmimface comfortable to use the system.

From another point of view, the operating syste

must ensure a proper and efficient syste o o
In any system it is important to distinguish between

functlonmg. A computer system now consists of interface and implementation. The user of a system
large number of components that need to I must know its interface, but how it is implemented is

; a matter of the designer or the maintenance staff.
managed' ThrothOUt the hIStory of compute The user of a car only needs to know the interface so

there has been a significant development affectil tnat the vehicle is helpful. So, he must learn to
the various components of the system. Th| manage the steering wheel, turn signals, lights,

. . . accelerator and brake. To make things easier,
evolution) has been achieved both in th manufacturers tend to standardize the interface: the
technological aspect (from valves and relays | accelerator is a pedal that is always located in the

VLSI circuits) and at the architectural leve| Same place; the direction "right” is always .
represented in the controls as a turn in the clockwise

(different techniques to increase processor Spel direction... Since the system is not perfect, the user

memory hierarchies...) and in the field o] must perform some "management" tasks: if the car
: : : is not automatic, he must choose the right gear,
programmlng Ia}nguages. (I'bra“es’ Ian.guage when the tank is empty, he must fill it with a given
interfaces...). This evolution was constrained B type of fuel... However, these tasks tend to be
requirements of efﬁciency and ease of use increasingly limited. A century ago, the user of the

. car used to have a driver-mechanic, since the cars
computers. However, it should be noted that th were very unreliable, and should be started

increased efficiency of each system compone manually by operating the starter motor from the

; ; outside. Today, one can be a good driver without
does not ensure an increase in the overall syst having knowledge of mechanics, and many drivers

efficiency. Indeed, théuned management of all ignore, for example, that the car has an electric

r esour ces W|” be |arge|y respons|b|e for the motor for starting. The mechanics are in charge of
maintenance, knowing perfectly the internal

success or failure. From this perspective, th strycture of the car, but they do not have to be good
operating system is responsible for providing g drivers: they might not even know how to drive.

Metaphor of the driver and the mechanic

ordered and controlled allocation of different
resources (processor, memory, Input/Output devirés.each of the programs competing for them.

We can say that the concept of operating systentinked to two different ideas. For a
user/programmer, an operating system is the denafions that allows him to use the resources of
the machine obviating the characteristics of thedware. This is thdunctional vision of the
operating system, which allows one to view theesysas airtual machine. This is the vision that
this course will deepen. For a system designer.elrew an operating system is the software that,
installed on the bare machine, allows controllitsgréesources efficiently. This view corresponds to
the operating systemplementation.

Both views largely refer to the same concepts agming, but their approach —and their
objectives— are different. In this introductory ce@ to operating systems we will study the

KAT/ATC UPV/EHU

An introduction to operating systems

2

functionalities offered by operating systems ingyah as well as the basics of how the operating
system supports them. The techniques and fundahraentiels of the design of operating systems,
as well as the concepts and tasks of system anadlorletadministration, including security
management, are studied in courses of the Compuggneering specialization.

2 Functional vision of operating systems

Of the two approaches presented out above, thiseidess clearly defined and developed in the
literature. Perhaps this is due to the fact thstohnically it has been the interface programmer who
designed the interface functionality, and he dadeel particularly inclined to discuss the spiecif
services that the interface must provide. Hendenddervices are later added or modified according
to the needs in revisions. In the operating sysianaddition, this interface is not unique, in the
sense that, besides the setsgftem calls (primitives of the operating system) provided to
applications, it can be considered —historicalljhits been— thehell as part of the operating
system, and even, by evolution, the graphical uderface (GUI).

In what follows, we will consider thsystem call interface as the basic interface of the operating
system, which defines the system asirdual machine. The set of system calls of an operating
system describes the interface between applications

and the system and determines the compatibil
between machines at the source code level.

The end user sees the computer system in termg
applications. Applications can be built with &
programming language and are developed

application programmers. If we had to develo
applications taking care at all times of the contfo

the hardware they use, application programmir
would be a daunting task and probably we could n|
enjoy sophisticated applications as the ones we ha
nowadays. In addition, applications also tak
advantage of a set ofools and services that
facilitate even more the work of the programmer, ¢

editors, compilers, debuggers... Here we als

Interfaces and interfaces

Perhaps the most frequent professional vice of
computer engineers is to not properly differentiate
the various system interfaces. One can just take a
look at any application or operating system to
realize it. For example, one can find in
"Accessories", together with a calculator or a player
and a sound recorder, tools like "disk
defragmenter". Surprisingly, in "Control Panel" one
can find an application to read text aloud. It's like if
a car manufacturer had placed a wrench on the
dashboard, next to the hole for sunglasses, and the
radio under the hood, near the engine. Not
surprisingly, many home users hate computers.
"Computing is very complicated”, they say. Well, so
is mechanics. However, no driver feels unsafe while
driving by not knowing how to use a wrench. In
this sense, one could say that current operating
systems are like cars of a century ago.

include libraries of functions that are available to

applications (mathematical functions, graphical.Typically, these services are not part of the
operating system. Figure 1 presents a summaryégproach.

End use

Application
programs

Tools
Os<

Application

/ programmer

Hardware

Figure 1. Layered structure of a computer system.

KAT/ATC

UPV/EHU

An introduction to operating systems 3

3 Functions of an operating system

In general, and regardless of the type of interfageerating systems typically provide a set of
functions that can be summarized as follows:

* Program execution. Running a program requires a number of taskstuicisons and data
must be loaded into main memory, files and 1/O devimust be initialized... The operating
system performs all these tasks.

* Control of 1/0 devices. Each device requires its own set of instructiand control signals
to operate. The operating system takes care ahedle details so that the programmer can
see the access to the devices as simple readsraesl. w

» Access to files. Historically we have used the concept of a fie the permanent
representation of a set of information with a globame in the system. Files reside in
nonvolatile memory such as disks and flash driBssides the nature of the device, the
operating system has to manage the file formatlamavay of storing.

» System access control. For multi-user systems, the operating systemrhashanisms to
control the access to system resources based oighite defined for each user.

» Detecting and responding to errors. When a computer system is in operation it maly fai
These errors can be hardware (memory or devicesscegor), or software (arithmetic
overflow, attempt to access a forbidden memorytmosi.). In many of these cases the
system has hardware components to detect thegs anmd to communicate to the operating
system, which should give a response that elimsn#ite error condition with the least
possible impact on the applications that are rupnline answer may go from the ending of
the program that caused the error, to retryingoieration or simply reporting the error to
the application.

* Accounting. It is common for an operating system to provioleg for tracking operations
and accesses, and for collecting data regardingures usage. This information may be
useful to anticipate the need for future improveteesnd to adjust the system so as to
improve its performance. It can also be used fingipurposes. Finally, upon a security
issue, this information can be used to discoveattacker.

4 Operating system interfaces

In a system structured in layers, a layeprovides annterface to the upper laydty. 1, represented

by a set of functions which determine how lalyers accessed from laykk.;. The implementation

of layerLy is independent of the interface and is said ttr&esparent to the layeiLy. 1, in the sense
that when designing the laykeg.; there is no need to worry about how lalyers implemented. An
interface must specify precisely the functions @&teand how they are used (arguments, return
values...).

Generally, an operating system offers three differaterfaces:

User interface. When there were no graphics terminals like thesome have nowadays, the user
had to communicate with the system by typing condsathat allowed running programs,
consulting directories... To do so, the operatingeysoffered a specific utility, the command
interpreter ghell in Unix terminology), whose interface was presdrds a set of commands whose

KAT/ATC UPV/EHU

An introduction to operating systems 4

usage form was (or should be) well specified inanual (for example the Unixan, Section 1).
Nowadays graphical user interfaces greatly fatditeser interaction by means of intuitive concepts
and objects (icons, pointers, mouse clicks, dratydnop...). If in the case of shells each system
offered its own shell (the user had to learn toitisesually attending a course), the graphical use
interfaces are common and intuitive enough sottiet use is available to everyone.

Administration interface. The administrator of a computer system is thesgerin charge of
installing the system, maintain it and manage #s. Un a system composed of several computers,
this work includes managing user accounts and r&tvesources, with special attention to the care
of user privacy and information security. The systdministrator is a professional who knows the
specific tools and functions that the system offersit and that can only be used by him, as they
require special privileges. Overall, he reliesifan an extension of the shell (for example, inXJn
specified in Section 8 afnan), although the use of these tools does not excihdeuse of the
graphical user interface. Instead, a personal systeould not require, ideally, management effort
by the user, since he is not supposed to be arrtefgpet, like the driver of a car is not requiréal
have mechanical expertise. The reality is thag &kcar driver should know how to change a wheel,
a computer user has to solve nowadays some managenoblems arising from the immaturity
and imperfection of operating systems.

Programming interface. To develop applications on an operating systém,programmer uses,
regardless of the programming language used, efséinctions to access operating system
services, the system call interface. These funstam not differ in appearance from other library
functions provided by the language. However, ctilshe operating system are specific to that
system and therefore probably incompatible witlséhof another operating system, since they refer

to objects and concepts specific to that systep=
Actually, it is common that the programmer doe
Nowadays programmers use to talk about API

r_]Ot directly l_Jse operating system calls, but specit (Application Programming Interface) to refer to the
library functions of the language for that purpos{ set of functions available in a platform for

For example, if the C programming language | @pplication development. An API can be the set of
P prog 9 guag system calls extended with other library functions,

used, the programmer uses gmentf function 10 | though system calis themselves are usually hidden
output data, regardless of the operating system| by library functions that facilitate programming.

: : ; ; ; There may also be specific APIs tailored to specific
!S using. H_Owever’ p”ntf IS a funCtlon_ applications. Ultimately, an API depends on the
implemented in terms of calls to the operatinl programming language and operating system for

system (in the case of Unix, theite system call), | which this API is implemented.
so that the code generated is specific to th In the Java world, since it is an interpreted

P i ; language, the APIs are independent of the operating
system. This, in general, is not taken into accou oystem: it is the virtual machine (IVM) which

by the application programmer, but it is by th interprets the library functions for the underlying
library developer, a systems programmer, who | operating system.

APIs

the user of the operating system call interface am
will therefore rely on the corresponding specifioat(in Unix, Section 2 ofman).

5 Evolution of operating systems

From the perspective offered by the already redétidong history of operating systems, and
considering its application fields, now we can talbout different models of computation, which
determine the functionality of an operating systang sometimes its structure:

Batch systems. The earliest operating systems (1950s) werectallanitors. The users gave their
program with the input data in a stack of punchdsafa lot) to the computer operator who
sequentially ordered lots and placed in a cardaredthch batch included control cards with orders

KAT/ATC UPV/EHU

An introduction to operating systems 5

for the monitor. The last card was a return ordghe monitor that allowed it to start automatigall
loading the next program.

Multiprogrammed systems. The price of a CPU at that time was exorbitahilygh, so it was
intended to work 100% of the time, which is unaiddile with batch systems, since the processor,
when executing an I/O instruction, should waitttog device, very slow compared to the processor
speed, to complete the operation. This led to tiggneers of the time to devise strategies for a
more efficient use of the CPU. By loading multipkegrams in memory, when a program needed
to wait for an I/O the processor could execute la@otprogram. This technique, known as
multiprogramming or multitasking, was developed in the mid 1960s and is the bdsisodern
operating systems.

Time-sharing systems. At that time new applications appeared requiamgoperating mode in
which the user, sitting at a terminal, interactegally with the computer. This operating mode,
interactive, is essential, for example, in the processingarfidactions or queries. The interactive
processing requires, of course, multiprogramming, raust also provide eesponse time (time
elapsed from the ordering of a transaction unéldahswer is obtained) reasonably short. Thatés, th
user that interacts from a terminal can not beimgifor long because some prograamed at
calculation, does not leave the CPU for not executing anyfétCa while. For this reason, thme-
sharing systems, introduced in the second half of the 49@Be operating system runs the
programs in short bursts of computation tigeafitum), in an interleaved way. Thus, if there are
programs loaded in memory, each program will havené worst case (when no program required
I/O) 1/n of the processor time. Givergaantum small enough and a not too ligthe user does not
observe a significantly long response time for fiisgram and has the feeling of being using a
dedicated processor with a speed df the actual processor. This idea is knownsiaared
processor, and reflects the ideal behavior of a time-shasiyggem, minimizing the response time.

Teleprocessing systems. In the first time-sharing systems terminals weannected to the
processor by means of specific wiring that wasaitesti in the building. When large companies and
institutions (e.g., banks) began buying computéisy found the need to transmit information
between their branches and the computer at thegheaers. Fortunately, there already existed the

=l

telephone wiring, which was used to transmi
digital information using a modulator-

demodulator rfodem) at each end, connected tc It is necessary to look at the evolution of the cost
. L] factor regarding technology to understand the path

transmission using special wiring, telephon| Before the development of integrated circuit
communication is very prone to errors, so it wa technology, a computer costing millions of dollars,

o was composed of tens or hundreds of thousands of
necessary to develop more sophisticate individual electronic components (transistors and,

communication protocols. These protocols wer{ Previously, valves), weighed several tons and

initiall . b h occupied a large and heated room. However, their
initially, proprietary (owned by the computel performance in terms of processing power and

manufacturer, which was also the one wh| storage were comparable to those of the chip in a

; ; smart card of today. It can be understood then that
supplied the terminals, modems and software). in the 1960s, engineers started the development of
operating systems with multiprogramming and
Personal systems. Cheaper hardware and the virtual memory, able to take full advantage of these

: : machines (IBM/360’s basic configurations, the most
advent of the microprocessor in the late 197 popular mainframe of that era, came with 8 Kbytes

made it possible to provide a dedicated system { of memory and executed a few thousand

a single user at a reduced cost, a key feature g instructions per second, yet the CPU was very fast
| Th . t " compared to the punch card reader). Today,

personal system. | € op_era_ltlng system operating systems still include virtual memory, but

personal computers is, at firsdingle-user (N0 | most personal computers do not need to use it.

A question of price

protection mechanisms) arsihgle-tasking, that
is, not very different from the primitive monitoabed systems except for the fact that it is used

KAT/ATC UPV/EHU

An introduction to operating systems

6

interactively through a terminal. Today the avdgalhardware allows multitasking personal
systems (Mac OS, Windows, Linux) supporting soptas¢dgr aphical user interfaces.

Networked systems. With the advent of the personal computer the iteata of teleprocessing
systems are replaced by PCs that can take cedamputing tasks, downloading the central time-
sharing system. In particular, PCs can executecanymunication protocol. With the adoption of
standard protocols (e.g., TCP/IP), personal commpui@n communicate with each other: there is no
one central computer, but a set of computers thatcaremected together. If a computer in the
network provides access to a particular resoureen tit is theserver of that resource. The
remaining computerglients, access the remote resource usimjent-server protocol. Managing
access to networks has complicated the operatstgrayand has led to the emergence of services
that are deployed on it (known asddleware), resulting indistributed systems that are deployed
today in the field of Internet and have generat@acepts and schemes very sophisticated, such as
Web services, peer-to-peer andcloud computing. Although this course is restricted to the stutly o
centralized systems, we must not forget that thktyas more complex.

Mobile systems. The evolution of hardware does
not end with personal computers. These &
becoming smaller, which, together with the use of
battery and a wireless network, provides autonon
and makes them mobile systems. In principle, th
change does not significantly affect the operatirn
system. However, with the new century and Q
means of the evolution of mobile telephony ne
devices with increasing computing capabilities hay
appeared. These devices, now caba@rtphones,

are capable of supporting smaller versions

operating systems designed for personal comput
(Mac OS, Windows, Linux), although there are alg
specific operating systems (as Symbian, or Goog
Android) with great performance, including new
forms of interaction (touch screens, camera
positioning information...) and new applicationg
(such as navigation). This field is undoubtedly th
hottest area for the development of current af
future technology of operating systems and exten
to very different types of devices (e.g., camera
smartcards, or control devicegmbedded in

Groundhog Day (1993)

The long history of operating systems has followed
a cyclical path. It is surprising to learn that
sophisticated concepts and complex techniques to
implement such as multiprogramming and virtual
memory have almost half a century and were part
of the first time-sharing systems. When, fifteen
years later, personal computers appeared, the first
operating systems developed for them dispensed
with these mechanisms because their limited
hardware could not support them. In fact, apart
from the interactive operation mode, they were not
very different from the primitive monitors.
However, as the hardware of personal computers
gained in performance, their operating systems
were integrating these techniques. So, while at the
time they distinguished between mainframes,
workstations and personal computers, any
computer today is capable of supporting a complex
operating system. More recently, miniaturization
has led to the emergence of small devices (mobile
phones, smartphones, are the most notable
example) with increasing computing and storage
capacity. Again, history is repeating itself: if the
first operating systems for mobile phones were
extremely simple, there are already smaller
versions of general purpose operating systems
aimed at mobile phones, which are integrating
features like multitasking.

appliances or cars...), which are capable to nétwda.

and interact spontaneously with each other evemowithuman intervention.

6 A classification of operating systems

When classifying current operating systems onetaie into account different criteria, derived
from the concepts introduced above. One possillesification is based on the following criteria,
which can be combined: (1) if the system can ruth@atsame time one or more than one program,
(2) if it supports the connection from a singleraral or from more than one, and (3) whether it
supports a single user or can manage more thansane

KAT/ATC

UPV/EHU

An introduction to operating systems 7

(1) Monoprogrammed/multiprogrammed. They are also known @mngle-tasking/multitasking,
terms that we will consider synonymous. In the jgnra operating systems, both monitors as the
first systems for personal computers, for examp®-IMOS, the execution of a program had to
finish for the start of the next program. Thesetays are called monoprogrammed (single-
tasking). From 1965 there appeared the first magpmmed systems (OS/360, Multics). Today,
virtually all operating systems are multiprogramnfeudiltitasking). In multiprogrammed systems,
several programs rumoncurrently, i.e., interleaving their executions over time, ieth are
perceived as simultaneous. They use the conceptrafess (or task) to designate a running
program. As stated above, multiprogramming was vated by the need to optimize processor
usage, and therefore running processes in a nagtigmmed system usually represent independent
applications. Later multiprogramming has been usedexpress concurrency in the same
application, where a set of tasks cooperate in @doosated manner. For example, in a word
processor we can find a task in charge of readmymocessing keyboard input, another task in
charge of checking the spelling, a third task resgume for periodically saving changes... A
particular class of multiprogrammed operating systés themultithreaded systems, which allow
expressing the concurrency in an application méireiently. The difference between a process and
athread (also calledsubprocess) is, for our purposes, very small, and we will address it at this
time. Thus, multiprogramming means multiplexing ffrecessor among processes, as explained
above. Obviously, a multiprocessor system (a coerpuith multiple processors) enhances further
the multiprogramming by allowing the concurrent @xen of programs to be alg@rallel. This

iIs known asmultiprocessing, and operating systems that control these systarascalled
multiprocessor operating systems. Although there are significant differences in the
implementation of a multiprocessor operating systeith respect to a single-processor operating
system, with respect to the functional vision gblagations and users they hardly transcend.

(2) Single-terminal/multiterminal. An operating system ready to be connected simedtasly
from different terminals is said to be multiterminatherwise it is said to be single-terminal. Time
sharing operating systems, such as Unix, are mauttinal. An operating system designed for
personal computers —MS-DOS, Windows 95/98— is, nadliy single-terminal. It is noteworthy
the case of Linux, a Unix system for personal cot@s,) which maintains the multiterminal Unix
philosophy by means of a set of virtual termindMsic OS X, also derived from Unix, is another
multiterminal example. It is clear that a multitemad system must be somehow multiprogrammed:
as we shall see, it is common that each termiral (or virtual) has an associated process that
manages the connection.

(3) Single-user/multiuser. A multiuser system is able to provide user auibation and includes
policies for managing user accounts and accessqtian, providing privacy and integrity to users.

In the primitive monitor-based operating systerhsired by several users, this function was carried
out manually by the system operator. The first afpieg systems for personal computers, such as
MS-DOS, were single-user. The general purpose tipgraystems of today are multiuser. Note
that some personal systems, such as mobile phocigje some verification mechanism (usually a
password), but lack of policies to protect accesses/stem resources and user management; they
simply authenticatéhe user, but are in all aspects single-user.

7 Theoperating system market

From a closer perspective to the business worldnwst refer to two groups of operating systems.
First, those operating systems that have beenrtssigy a manufacturer for a specific architecture
in order to protect their products (both softwand dardware) for potential competitors, which are
calledproprietary operating systems. The manufacturer designs the operating systewifsjadly

KAT/ATC UPV/EHU

An introduction to operating systems 8

for the architecture, and provides the necessadategs. Even sometimes the specification of its
system call interface is not made public or is tam$y changing, making difficult the development

of applications by other manufacturers. This create closed world that encompasses the
architecture, the proprietary operating system #oed applications, enabling the control by the
manufacturer of the market for their products asthldishing big dependencies for customers.
Some examples of proprietary operating systemsgelardeployed, are (or have been) IBM

systems,l Digital VAX VMS, Apple Mac systems, andndbws systems of Microsoft for the PC

platform:

With the advent of Unix (circa 1970) a new philosgprises: since it is written almost entirely in a
high level programming language (C), the operasiygtem isportable to other architectures and
therefore so are the applications at the source ¢ex¢el. Furthermore, in the case of Unix, its
source code was freely distributed. This had cdittary effects: on the one hand it contributed to
the wide dissemination of the system; on the oltzard, each manufacturer introduced their own
modifications not only in the source code but atsthe system call interface, so that you have to
refer to different Unix systems, not fully compdgilvith each other (System V, BSD, AlX, Ultrix,
Solaris, Linux...). We can say that the family toé&Jnix is really complex.

The ideal consisting of a world dafpen systems, with public specifications, accepted and
standardized, allowing full portability of applitats (and usef} is a goal rarely achieved. In this
regard, there have been efforts to define standgetifications. For example, the POSIX
specification is a reference in the Unix world. Avdloper that follows in the system calls of its
program the POSIX specification knows that he campmle and run it on any Unix system that
follows the POSIX standard.

In this sense, it would be useful that operatingteans were designed with the ability to support
different system call interfaces. This was the ggophy of microkernels in the 1980s, which
implemented the system call interfaces as seragaessde the operating system itself. However, the
development of microkernel-based operating systeasshad a limited commercial impact. The
best known is the Mach 3.0 microkernel, on which Mac OS X operating system from Apple
relies. However, the most common approach today isupport applications of heterogeneous
systems througlemulation (virtualization) of other operating systems onasthoperating system.
There are numerous virtualization programs, e.iylwdre, Virtual PC, or Win4Lin.

It should be noted a phenomenon that revolutionitexl market of software in general and
operating systems in particular: the spontaneousrgence of a community of programmers who
developfree software®. Internet is the necessary way for sharing andhaxging code and ideas
rapidly in the community. As a result, and this bagn amply demonstrated, the software adapts
very dynamically to particular problems, the depat@nt of new products is very fast, and errors
are corrected and versions refined with great tggirganizations like GNUgrant a license to
copy, modify and redistribute free software witk ttondition that the new distribution includes the
source cod@ Linux is today a settled example of this philospph

! siill and all, there are important differencesviestn proprietary systems. For example, Microsoft the success in
the 1980s tmpen its software platform (the interface of MS-DOS)otther developers.

% This means that the user does not “miss” thefaxterwhen changing the system.
® Not to be confused witfieeware.
* http://www.gnu.org

® This license is calle@opyleft.

KAT/ATC UPV/EHU

An introduction to operating systems

On another level it should be noted that &
computer technology was occupying ney
application areas, niche markets for new types
operating systems have been developed.
remarkable example is the market rdal-time
operating systems, for long time common in
industry (control systems), and more recently i
other areas (e.g., video decompression in
multimedia system). In real-time systems respon
times are limited by a deadline. After the deadlin
the response is invalid and can even [
catastrophic (think about the stability controlaof
car). Often these types of systems erdedded

in more complex systems (for example, the contr,
of the stability in a vehicle). Although genera
purpose operating systems (such as Window
Linux or Mac OS) allow running certain
noncritical real-time applications (like a vided
cassette recorder, VCR), there are specific re
time operating systems (e.g., QNX, FreeRTOS a
many others). Many general-purpose operatir
systems also support real-time tasks, but are o
suitable when missing the deadline is not critic
(e.g., multimedia applications).

At present operating systems, beyond its origin
orientation, have had to be adapted to a multitu
of devices, such as mobile phones and oth

consumer devices. To this we must add th

Winners and losers

In the early days (50s and 60s of the twentieth
century), the operating system was developed in
machine language by the manufacturer of the
architecture, which distributed the system as an
indivisible package. The operating system and the
architecture were absolutely interdependent. Later,
after the experience of Unix and the C programming
language, software and hardware manufacturers
specialized, allowing, in principle, the operating
system to be easily transported to different
platforms (the core of Unix contained 1000 lines of
machine code, dependent of the architecture). As a
consequence, the architecture could support
different operating systems. However, the
introduction of personal computers made evident
the need of some form of standardization of
operating systems, from the interface for
applications to the user interface. Standardization
came by way of the facts from two factors: the
strategic alliance between IBM and Microsoft, and
the opening of the hardware (PC) and software (MS-
DOS interface) platforms to other manufacturers.
This was at the expense of Apple, the major
competitor of Microsoft, which started in the 80s
with an undoubted technological advantage, but
closed its platform to their own products. As the PC
architecture was conquering markets, Microsoft
systems conquered the OS market. The emergence
of Linux and the philosophy of free software in the
90s occurred too late to respond to the
monopolizing inertia of Windows systems. The early
history of the personal computer can be found in
the book Fire in the Valley: The Making of a
Personal Computer, by Paul Freiberger and Michael
Swaine, brought to the screen by Martyn Burke with
the title The Pirates of Silicon Valley.

embedded systems, increasingly present in our

environment (appliances, cars, industrial plardbots...). Typically embedded systems are subject
to physical constraints and have real time requar@s) sometimes critical, leading to specific
solutions, as already mentioned. With respect ® wlorld of mobile devices (smartphones or
tablets), in some cases conventional operatingshave been adapted to the constraints of the
devices (size and power), such as Microsoft WindMuabile, Apple iPhone OS or Palm OS. In
other cases specific systems have been develapddas Symbian OS or Google Android.

8 Examplesof operating systems

We will discuss here in more detail the history andin characteristics of the more relevant
operating systems, in line with the concepts inicadl in the previous sections. We will focus on
those families of operating systems that have niastery in computing and whose innovations,
directly or indirectly, remain today.

IBM mainframe oper ating systems

IBM was for many years the dominant computer comgparthe market for hardware, operating
systems and applications. His first major operatipggtem, OS/360, whose development ended in
1964, was a complex batch multiprogramming systeat stored tasks in partitions (of fixed or
variable size, depending on the version). One oBrsTSS/360 Time Shared System, 1967),

KAT/ATC UPV/EHU

An introduction to operating systems 10

offered time-sharing and multiprocessing (with t@BUs), although its enormous complexity (all
systems at that time were developed in assemldesed that it never worked too well and that its
spread was low.

MVS (Multiple Virtual Storage, 1974) provided virtual memory. It introduced tbencept of
virtual machine, which allowed running multiple oe of the operating system into independent
logical partitions, providing a high degree of $af@he MVS architecture has survived and today
Is part of the z/OS system.

VM S from Digital

By 1970 the introduction of integrated circuits hddeapened significantly the cost of computers
and expanded its area of use. It appeared the gboteminicomputer to designate a range of
affordable computers (on the order of tens of thads of Euros) with a small size (like a small
closet). At that time, Digital Equipment Corporatisiumphed with its PDP minicomputer family.
The PDP-11, of 16-bit, was the culmination of tlaga It worked with the RSX-11 operating
system, designed to support real-time applications.

The inherent limitation of the 16-bit architectuezl Digital to introduce in 1977 the VAX-11
architecture Virtual Address eXtension), of 32 bits, and the VMS operating system VM& fual
Memory System). One of the features of VMS is its adaptabililythe diverse hardware support
level of the different implementations of the VAXchitecture, especially regarding virtual
memory. Another feature is that the file system agms file versions, identified by a suffix
denoting the version which is part of the file namhéas a sophisticated process scheduling policy
based on dynamic priorities. Many of the ideasgmes VMS were adopted in the development of
Microsoft Windows NT. In 1991 VMS was renamed Op#ttV for the Alpha architecture, the
successor of VAX.

The Unix family

In 1970 at Bell Laboratories of AT&T they startexldevelop a Unix system, which would have a
great impact and subsequent development. Theirstorsewere the CTSS and Multics systems.
The latter, although not commercially successfet,tee way for future operating systems. Unix,
whose first version was developed in assembly laggwn a PDP-7, was entirely rewritten in 1972
in C (language developed at Bell Labs specificdlythe Unix project), being the first operating

system written in a high level language. In 197&F¢hwas already a public description of it.

AT&T distributed Unix freely; so many universitiesid companies used it for their computers and
developments. Since the source code was made publie has a lot of ramifications (Digital’s
Ultrix, Microsoft's Xenix, IBM’s AlX, HP’s HP-UX...), but basically there are two families:
System V from AT&T andBSD from the University of Berkeley, whose most popwersion was
marketed by Sun Microsystems. While the latter egerpowerful with regard to network support,
the two families were unified in tHgystem V Release 4 (SVR4), which in Sun’s version was called
Solaris.

Unix versions are also available for PCs, beingniost populaiSCO or Santa Cruz among the
commercial versions, andinux and FreeBSD among the freely distributed. Linux is a project
initiated by Linus Torvalds in the University of KHmki in the early 1990s, which proposed free
operating system software in the line of GNU (Gahd?rublic License) andrree Software
Foundation in the field of applications. Linux is having agaisuccess not only in small servers,
but also in large machines. Its introduction inte tmarket of personal computers is increasing,

KAT/ATC UPV/EHU

An introduction to operating systems 11

thanks to major advances in three areas: easataflation, friendly graphical environments, and a
growing number of quality office applications.

Figure 2 shows, in a simplified form, the Unix féyrtree.

Unix is multiprogrammed, multiuser and multi-termlin and supports various interfaces both
alphanumeric (shell, C-shell, K-shell...) and giaph(Openwin, Motif, KDE, Ghome...). The latest
versions support even multiprocessing.

1970 [Q&0 | 9O} 20000) Time
T T—T—T—— T —T——T— T
—b{ FreeBSD 5.4 |
. | NetBSD 202
BSD family
»lﬂpcnﬂsn 37 |
—i| BSD (Berkely Software Distribution)
Bill Jay
—b[SunOS (Stanford Univerity) IH:JJuriﬁ (SUN) 10]
Darwin .
| NextStep 3.2 it
+ MacOS X 4
Xemy 08 |
Microsefl'SCO
GNUMurd 0.2
GNU Project il
Richard Stalliman X -_| GNU / Linux 26.12.5 |
| - =
._____I—h.ﬁnix ! Linus Torvalds 32
e e egesseessegens e
Andrew Tanebaum -
Umnix Time-Shanng System (Bell Labs) 1]]
Ken Thompson
Denms Ritchie (C language) | HP-LUX Hiv2 |
-"=-'I ALX (IBM) a1 |
= UnixWare (Univel!SCO) .14 I
! IRIX (SGI) 6.5 l

System Il & V family

Figure 2. The Unix family (Source: wikipedia).

Microsoft: from MS-DOSto Windows NT

When IBM decided in 1980 to enter the world of pa computing, they proposed Microsoft the
development of a new operating system for their F&v Thus, in August 1981 IBM markets its
first PC with MS-DOS as operating system. MS-DOS 1.0 was compatiblé \@P/M, the
operating system used by most existing micropragsssintil then, but also had significant
improvements on it. It had more information aboattefile, a better allocation algorithm for disk
space, and was more efficient. However, it coully contain a single directory of files supporting
a maximum of 64 files. It occupied only 8 Kbytes.

KAT/ATC UPV/EHU

An introduction to operating systems 12

When the PC XT appeared (1983), which includedrd dave, Microsoft developed the second
version of MS-DOS, with support for hard disk andrarchical directories. It also incorporated
some Unix features, such as I/O redirection.

In 1984, with the PC/AT, the Intel 80286 proceseffered extended addressing and memory
protection mechanisms. Microsoft introduced theswgr 3.0 of MS-DOS, which did not take
advantage of the new processor. There were semnetable updates in this release. Version 3.1
included network support. From here successivaoamsf MS-DOS are appearing without major
structural changes.

There are two remarkable facts behind the succeddSHBDOS: (a) the appearance, with the
blessing of IBM, of cheap PC clones to which Miatvprovided software —Microsoft kept MS-
DOS as proprietary operating system—, and (b) ramimtg compatibility with previous versions.
The latter resulted, however, in MS-DOS being & lésveloped system than others from their
competitors.

After IBM choose its own operating system OS/2 RELs, Microsoft release@indows 3.0 in
1990, copying the idea of the graphical user iatfpreviously marketed by Apple. Windows is
just an interface for MS-DOS and does not provide multitasking. Still it was a great success
and its use spread rapidly.

Windows 95/98. In 1995 Microsoft had already released Windows BThew operating system
designed from scratch for the server market, bathttirdware of personal computers of the time
was very limited to support it. Moreover, Windowd B was ridiculously primitive compared to
other less prevalent systems like Mac OS from Applaich had long offered multitasking,
memory protection and 32-bit addressing. In lighthis, Microsoft decided to redesign Windows
3.11 to provide these features, while remaininggatible with 16-bit applications of Windows 3.x
and MS-DOS, marketing it under the name of Wind®s The Windows 98 and Windows ME
(Millennium Edition) systems are a continuatiorvdindows 95.

Windows NT/2000/XP/Vista/7. In 1988, Microsoft hired Digital engineers withperience in the
development of VMS, for a new operating systemegubgalled Windows NTNew Technol ogy).
The aim is to develop an operating system thatgrates new design concepts: client/server
architecture based on a microkernel and multipsamresupport. The microkernel structure was
diluted through successive versions. Early versiedsom NT 3.1 in 1993, to NT 5.0, traded as
Windows 2000— are aimed at workstations and ser#er2001 version 5.1 is released, marketed
as Windows XP, which includes for the first timspgecific version for home use, ending Windows
95/98 and, thus, the support line of 16-bit appioces. Windows XP includes versions for 64-bit
processors. NT 6.0 (Windows Vista), launched in 20@presents a significant revision of the
architecture, including a new graphical interfacel @mew protection mechanisms, in addition to
many services. This results in a high avidity cda@rces which obsoletes much of the personal
computer park. The successor is launched in 2000,6N (Windows 7), which refines the
implementation to improve performance and also tgsiforms of user interaction.

Mac OS

In 1979 Xerox PARC gave Apple the rights to usegrphical interface, which included elements
such as icons and mouse. Apple included this exterfn the personal computer Lisa (1980), which
pioneered the Macintosh (1984) and the Mac OS tipgraystem. Apart from its advanced
graphical interface, Mac OS offered cooperative tiprdgramming (a form of time-sharing in
which each task is responsible for giving the pssoe to another task). In its early years, the
Macintosh was a huge success, but its relativedh Iprice and closed system strategy motivated

KAT/ATC UPV/EHU

An introduction to operating systems 13

that Microsoft, mainly thanks to its partnershighwiBM, imposed its MS-DOS, despite the delay
in introducing a decent graphical interface.

Mac OS evolved to version 9 (1999). In 2000, Appédls the new Mac OS X, derived from
NeXTSTEP, an operating system based on the Machmigi@kernel. Mac OS X incorporates BSD
Unix code and provides its system call interfacel Apple adopted Intel as hardware platform, in
substitution of Motorola.
Apple has adapted Mac OS X for mobile devices, etak under the name iOS. Apple’s leading
position in this market ensures a good spread 8f iO
Bibliography

A.S. Tanenbaumviodern Operating Systems (3rd edition). Prentice-Hall, 2008.

W. Stallings:Operating Systems (5th edition). Prentice-Hall, 2004.

Wikipedia: http://en.wikipedia.org

KAT/ATC UPV/EHU

