1. Introduction to Operating Systems

1.1 Introduction

• No single definition of what an operating system (OS) is

• The OS is the software that is closest to the computer hardware. Goals:
 - Abstract/hide the hardware complexity
 ⇒ Interface or virtual machine, easier to use than the hardware
 - Guarantee the correct functioning of the computer
 ⇒ Balanced management of resources (CPU, memory, I/O devices)

• What is an operating system? Two viewpoints:
 - User/programmer: set of routines that allow using the resources of a computer, ignoring its precise characteristics
 ⇒ Functional viewpoint (use of the OS): virtual machine
 - Designer: software running on top of the hardware in order to manage the resources in an efficient manner
 ⇒ This viewpoint corresponds to the implementation of the OS
1.2 Functional viewpoint of operating systems

- Interfaces of an operating system:
 - System calls (OS primitives)
 - Command Interpreter: text oriented (command-line, shell), graphical…

- System call interface (functions of the virtual machine):
 - Interface between applications and the OS (set of routines)
 - Source-code level compatibility among different computers
1.3 Operating system functions

- **Program execution.** Load instructions and data into main memory, initialize files and I/O devices, prepare other resources…

- **Access to Input/Output devices.** Hide their complexity, allowing programs to do I/O operations in terms of simple reads and write instructions

- **Controlled access to files.** Manage file formats and storing. Control concurrent accesses to files

- **Access to the system.** Control the permission to enter the system. Control the permission to access the resources

- **Error detection and recovery.** Detect both hardware and software errors. Actions: retry, finish program, warn…

- **Accounting.** Measure the use of resources. Goals: detect new needs, improve efficiency, correct mistakes, billing…
1.4 Evolution of operating systems

- **Batch systems:**
 - First OS: monitor program, punch cards, operator. The monitor chained programs. The CPU was most of the time idle, waiting for I/O completion. In order to improve CPU usage, multiprogramming was developed.

- **Time sharing systems:**
 - Together with multiprogramming, in the 60s. Interactive systems, dumb terminals (no CPU, no memory, no disk), *quantum*. Goal: response time as short as possible.

- **Teleprocessing systems:**
 - Remote terminals (PCs nowadays), connected to the system via a proprietary protocol: reservation systems, banking transaction systems.
1.4 Evolution of operating systems (continued)

- Personal systems (PCs, workstations):
 - 80s, hardware becomes cheaper. They were initially single-user and monoprogrammed (e.g., MS-DOS). Today they are multiprogrammed, with sophisticated graphical user interfaces. User = administrator

- Networked systems:
 - computers are connected via a network protocol
 - TCP/IP (public) vs. Novell, AppleTalk (proprietary)
 - each computer has its own OS
 - servers ↔ clients
 - types of networks: local (Ethernet), wide area (Internet)

- Distributed systems:
 - resources/services of various machines are transparently integrated. Goals: resource sharing, improve efficiency, fault-tolerance…
1.5 Classification of operating systems

• Monoprogrammed / Multiprogrammed:
 Concurrent program execution ≡ processes
 Multitasking → programs of a single user
 Multiprocessing (many CPUs) → real parallel execution

• Single terminal / multiterminal
• Single user / multiuser: distinguish users
• Proprietary / open source: related to a specific brand/company

* Microcomputer OS → minicomputer OS → mainframe OS (old classification)
* User friendly / not friendly: graphical interfaces

A computer can host more than one OS (e.g., Windows and Linux in a PC). Also, there are OS emulators (e.g., Win4Lin, VMWare, VirtualPC…).
1.6 Examples and families

1.6.1. Unix: families and versions

- Unix families:
 - Ultrix – Digital
 - Xenix – Microsoft
 - AIX – IBM
 - System V ATT
 - BSD
 - Univ. Berkeley: Sun (Solaris)
 - PCs – SCO, SantaCruz
 - Linux (RedHat, Debian, SuSe, Ubuntu…): www.linux.org

- Multiprogrammed, multiuser, multiterminal. Text oriented command interpreters (shell, C-shell, K-shell...), also graphical (Openwin, Motif, KDE, Gnome...). Some versions support multiprocessing

- MS-DOS 1.0 (12 KB): Compatible with CP/M, better disk management, faster
 Single directory per floppy disk, limited to 64 files
- MS-DOS 2.0: (1983, PC/XT) Hard disk, hierarchical directory system, Input/Output redirection (imported from Unix)
- 1984 (PC/AT): Intel 80286 (extended address space, memory protection mechanisms). MS-DOS 3.0 (same as 2.0, 36 KB)
 3.1 version: network support
- 1990: Windows (not a real OS): graphical interface on top of MS-DOS, offering multitasking
- 1995: Windows95, multitasking, memory protection, and 32 bit addressing. Windows98 and WindowsME as evolutions
1.6.3. IBM: MVS, AS/400, VM

Mainframes. Proprietary OS

- MVS: ↑ complex, ↑ big; teleprocessing applications, fast access to huge databases, security mechanisms
- VM: virtual machine operating system
- AS/400: similar to MVS, but for minicomputers
- OS/2 (Warp): microcomputers (PCs)

1.6.4. Others: Macintosh, Digital, Google....

- MacOS: first graphical user interface. Proprietary system: only in Apple computers ↓
- Digital VMS: used heavily in academia (minicomputers)
- Mach, Amoeba, Chorus: distributed operating systems
- Real-time OS: Windows XP Embedded, QNX, RTLinux…
- PDA, smartphone, tablet: iOS, Windows Phone, Palm OS, Symbian, Android