
A Connectivity Model for Agreement
in Dynamic Systems ?

Carlos Gómez-Calzado1, Arnaud Casteigts2, Alberto Lafuente1, and Mikel Larrea1

1 University of the Basque Country UPV/EHU, Spain
{carlos.gomez, alberto.lafuente, mikel.larrea}@ehu.es

2 LaBRI, University of Bordeaux, France
arnaud.casteigts@labri.fr

Abstract. The consensus problem is a fundamental paradigm in distributed systems,
because it captures the difficulty to solve other agreement problems. Many current sys-
tems evolve with time, e.g., due to node mobility, and consensus has been little studied
in these systems so far. Specifically, it is not well established how to define an appropri-
ate set of assumptions for consensus in dynamic distributed systems. This paper studies
a hierarchy of three classes of time-varying graphs, and provides a solution for each
class to the problem of Terminating Reliable Broadcast (TRB). The classes introduce
increasingly stronger assumptions on timeliness, so that the trade-off between weak-
ness versus implementability and efficiency can be analysed. Being TRB equivalent
to consensus in synchronous systems, the paper extends this equivalence to dynamic
systems.

1 Introduction

The consensus problem is a central paradigm in distributed systems, as it represents many
agreement problems, e.g., leader election, atomic commitment and total-order broadcast.
Solving consensus has attracted a lot of attention in dependable computing and has gen-
erated fundamental results. In this regard, it is known that in crash-prone asynchronous dis-
tributed systems it is impossible to solve consensus deterministically due to the impossibility
of distinguishing between “slow” processes and crashed ones, a result known as FLP im-
possibility [8]. Alternatively, consensus can be easily solved in synchronous systems, where
perfect failure detection can be implemented [5].

Most of the research on consensus has considered a static distributed system with per-
manent connectivity among nodes. In many current distributed systems, however, these as-
sumptions are not valid any more. Instead, these new systems exhibit a dynamic behavior,
with nodes joining the system, leaving it or just moving, which implies uncertain connec-
tivity conditions. Indeed, and unlike in classical static systems, these events are no longer
considered incorrect or sporadic behaviors, but rather the natural dynamics of the system.

Clearly, even the synchrony assumptions of classical (static) models of distributed sys-
tems are not enough to solve agreement problems in dynamic systems. For example, having
? Research supported by the Spanish Research Council, under grant TIN2013-41123-P, and the Basque

Government, under grant IT395-10. Also, Carlos Gómez-Calzado is recipient of a doctoral fellow-
ship from the Basque Government.

2

an upper bound on link latencies is pointless if the link is not available at the time of transmis-
sion of the message. Note however that the nodes could still communicate using an alterna-
tive path in the network. Thus, assumptions should consider the overall system connectivity,
which encourages for a holistic approach to model dynamic distributed systems.

In recent years there was a rising interest in modeling dynamic distributed systems from
the perspective of graph theory. In this regard, there exists several works that study the solv-
ability of deterministic problems, including consensus, in highly-dynamic systems [2,3,7,10,11].
However, regarding consensus, none of them lowers the assumptions to the realm of tempo-
ral connectivity, i.e., not requiring that the graph be connected at every instant, but only
that paths exist over time and space (temporal path, aka journeys). The time-varying graph
formalism [4] (TVG, for short) provides a useful qualitative framework to model dynamic
distributed systems. In this formalism, the dynamic network is represented as a graph, to-
gether with a presence function that tells whether a given edge is present at a given time and
a latency function that tells how long it takes to cross a given edge at a given time. In [4],
Casteigts et al. define a hierarchy of classes of dynamic networks, most of which are based on
temporal connectivity concepts Among them, the recurrent connectivity class requires that
a journey exists between any two nodes infinitely often (that is, recurrently). Nevertheless,
this class lacks the necessary timeliness (i.e. time bounds in communication) to describe the
specific assumptions that are required by synchronous agreement algorithms, such as TRB,
to terminate. One of the goals of our paper is to extend some of the existing TVG classes
by introducing timeliness constraints, together with practical considerations, and analyze the
impact of these new constraints on solving consensus.

Our contribution

In this paper, we address timeliness in evolving systems (i.e., time-varying graphs, TVG)
from a synchronous point of view, i.e., systems where the transmission delay of messages is
bounded and the bound is known a priori by the processes. The resulting set of concepts and
mechanisms make it possible to describe system dynamics at different levels of abstraction
and with a gradual set of assumptions.

We first formulate a very abstract property on the temporal connectivity of the TVG,
namely, that the temporal diameter (i.e. maximum duration of a foremost journey) of a com-
ponent in the TVG is recurrently bounded by ∆. We refer to such a component as a ∆-
component, and define the concept of correct process in terms of this component. We then
specify a version of the Terminating Reliable Broadcast problem (TRB) for ∆-components,
which we relate to the ability of solving agreement at component level.

Although ∆-components are proven to be a sufficient concept at the most abstract level,
they rely on non implementable communication patterns in message-passing systems. In-
deed, the solution to TRB proposed in this abstract model relies on an oracle that provides
the algorithm with instantaneous knowledge of the appearance of an edge. Unfortunately, this
oracle does not have a straightforward implementation in terms of real processes and com-
munication links. Therefore, we introduce a first constraint to force the existence of journeys
whose edges presence duration is lower-bounded by some duration β (which holds a relation
to the maximal latency of a link), thereby enabling repetitive communication attempts to suc-
ceed eventually. These journeys are called β-journeys and their existence makes it possible
to implement the TRB algorithm without oracle. We then look at a further constrained class

3

of TVG, inspired by the work of Fernández-Anta et al [7], whereby the local appearance of
the edge used by every next hop of (at least one of the possibly many) β-journeys also must
be bounded by some duration α, yielding to the concept of (α, β)-journeys. The existence
of recurrent (α, β)-journeys allows the nodes to stop sending a message α time after they
receive it, which is much more efficient.

The rest of the paper is organized as follows. Section 2 introduces basic time-varying
graph notations, used in Section 3 to define the abstract timely connectivity model based
on ∆-components. In the same section we redefine the TRB problem with respect to ∆-
components and give a solution to it. Then, in Section 4, we introduce β-journeys (and the
corresponding β-components), which we show to be sufficient to implement an effective (i.e.,
oracle-free) version of the algorithm. We then define (α, β)-journeys and components, and
discuss their advantages (and disadvantages) over β-journeys. In Section 5, we describe how
consensus can be solved by using the TRB implementations introduced in Sections 3 and 4.
We finally conclude in Section 6 with open questions and future work.

2 Time-Varying Graphs

A recent framework called time-varying graphs, proposed by Casteigts et al. [4], aims to
provide a precise formalism for describing dynamic networks. As usual, the entities of the
system and the communication links between them are represented as a graph. More specifi-
cally, a time-varying graph (TVG, for short) is defined as a tuple G = (V,E, T , ρ, ζ), where:

– V is the set of communicating entities (or nodes, or processes, interchangeably).
– E is the set of edges (or links, interchangeably) that interconnect the nodes in V. In this

work, all edges are undirected.
– T is the lifetime of G, i.e. the interval of time over which the graph is defined. It is a

subset of the temporal domain T, itself being N or R+ depending on whether time is
discrete or continuous (in this work, it is continuous). For convenience, both endpoints
of T are referred to as T − and T +, the latter being possibly +∞.

– ρ : E × T → {true, false}, called the presence function, indicates whether a given
edge is present at a given time (i.e., ρ(e, t) = true if and only if edge e is present at time
t)

– ζ : E×T → T, called the latency function, indicates how long it takes to send a message
across a given edge for a given emission time (assuming the edge is present at that time)

The kind of network we are addressing is possibly disconnected at every instant. Still,
a form of communication can be achieved over time by means of journeys (a.k.a. temporal
path). Formally, a journey J = {((e1, t1), (e2, t2), . . . , (ek, tk))} is a sequence such that
(e1, e2, . . . , ek) is a valid path in the underlying graph (V,E), and (1) for every i ∈ [1, k]
edge ei is present at time ti long enough to send a message across (formally, ρ(ei, ti +
δ) = true for all δ ∈ [0, ζ(ei, ti))), and (2) the times when edges are crossed (we also
say activated) and the corresponding latencies allow a sequential traversal (formally, ti+1 ≥
ti + ζ(ei, ti) for all i ∈ [1, k)). What makes this form of connectivity temporal is the fact
that a journey can pause in between hops, e.g. if the next link is not yet available.

Given a journey J , departure(J) and arrival(J) denote respectively its starting time t1
and its ending time tk + ζ(ek, tk). Journeys can be thought of as paths over time, having

4

both a topological length k (i.e., the number of hops) and a temporal length (i.e., a duration)
arrival(J)−departure(J) = tk+ ζ(ek, tk)− t1. Note that journeys describe opportunities of
communication between an emitter and a receiver. J ∗G is the set of all such opportunities over
G’s lifetime, while J ∗(p,q) ⊆ J

∗
G are those journeys from p to q. A simplified way of denoting

the existence of a journey between a process q and a process q, when the context of G is clear,
is p; q. Finally, the graph is said to be temporally connected if for every p, q ∈ V, p; q.

An induced sub-TVG G′ ⊆ G is obtained by restricting either the set of vertices V ′ ⊆ V
or the lifetime T ′ ⊆ T , resulting in the tuple (V ′, E′, T ′, ρ′, ζ ′) such that:

– (V ′, E′) is the subgraph of (V,E) induced (in the usual sense) by V ′

– ρ′ : E′ × T ′ → {true, false} where ρ′(e, t) = ρ(e, t)

– ζ ′ : E′ × T ′ → {true, false} where ζ ′(e, t) = ζ(e, t)

If only the lifetime is rectricted, say to some interval [ta, tb), then the resulting graph G′
is called a temporal subgraph of G and denoted G[ta,tb). The temporal diameter of a graph G
at time t is the smallest duration d such that G[t,t+d) is temporally connected.

Finally, following Bhadra and Ferreira in [1], we consider a temporal variant of con-
nected components (hereafter, simply called components), which are maximal sets of nodes
V ′ ⊆ V such that ∀p, q ∈ V ′, p ; q. Two variants are actually considered, whether the cor-
responding journeys can also use nodes that are in V \ V ′ (open components) or not (closed
components). Observe that a close component is equivalent to an induced sub-TVG being
temporally connected.

3 A Timely Model for Dynamic Systems

This section focuses on the analysis of timeliness in dynamic systems at the most abstract
point of view, i.e. considering only a general communication bound ∆ for end-to-end com-
munication. We first provide a set of definitions related to this bound, which leads to the
formulation of a new class of TVGs that is a strict subset of Class 5 (recurrent connectivity)
in [4]. We then specify a solution to the problem of Terminating Reliable Broadcast (TRB)
in the corresponding context.

3.1 Definitions

We define the concept of bounded-time journey as follows:

Definition 1. A journeyJ is said to be a∆-journey if and only if arrival(J)−departure(J) ≤
∆.

Based on ∆-journeys we define the concept of bounded-time component. Unlike compo-
nents, we require here that connectivity be also recurrent by definition.

Definition 2. A ∆-component in G = (V,E, T , ρ, ζ) is a set V ′ ⊆ V such that for every t
in [T −, T + −∆], for every p, q in V ′, there exists a ∆-journey from p to q in G[t,t+∆).

5

Similarly to components, ∆-components can be open or closed, depending on whether
the ∆-journeys use nodes in V \V ′. Observe that, a graph behaving in an open way provides
flexibility in mobility, and therefore, a model allowing open ∆-components is weaker (in the
sense that it requires less assumption) than a model strictly based on closed ∆-components.
Henceforth we assume that in our system model ∆-components are open.

Informally, ∆-components allow us to think about subsets of nodes behaving timely with
each other. Hence, nodes in a ∆-component are also said to be timely connected. We define
the (parametrized) class of timely (and recurrently) connected TVGs T C(∆) as follows:

Definition 3. G ∈ T C(∆) ⇐⇒ V is a ∆-component.

3.2 Terminating Reliable Broadcast in T C(∆)

According to [6], consensus is equivalent to Terminating Reliable Broadcast in static syn-
chronous systems. We take this as a starting point and describe here a solution for TRB in
the scope of a ∆-component.

First of all, we assume that processes know a global time. Processing times are negligible
with respect to communication time. The system is composed by processes that can crash and
recover, and leave and join the system. Processes that crash or leave the system, even if they
recover or join again later, are by definition excluded from any ∆-component, however since
we assume the existence of open ∆-components, they can punctually take part on various
journeys.

Recall that a distributed system G may have several ∆-components. There may exist
values of ∆ for which a same processor belongs to different components, which are thus
overlapping. However, since every component is recurrently connected, then overlapping
components become naturally merged as the value for ∆ increases, and transitively, there
must exist a sufficiently large value of ∆ such that all remaining components are disjoint.
Henceforth, we consider ∆ to be (an upper bound on) such a value.

We define now which processes are correct in terms of the classical terminology. In a
classical partitioned system it can be considered that a process p behaves correctly in its
partition, and incorrectly with respect to the other partitions in the system. Similarly, in our
∆-component based system a process p behaves correctly with respect to the ∆-component
p belongs to, e.g. C. However p could still sporadically communicate timely with some pro-
cesses in other∆-component,C ′. Obviously, we consider p incorrect with respect toC ′, but a
messagem from p received by some process in C ′ should either be delivered by all processes
in C ′, or by none of them in order to hold the agreement property of reliable broadcast.

Thus, in T C(∆) a set of properties should be hold by a process with respect to a ∆-
component in order to provide ∆-TRB:

– ∆-Termination: Every process in the same ∆-component eventually delivers some mes-
sage.

– ∆-Validity: If a process in a ∆-component broadcasts a message m, then all processes in
the same ∆-component eventually deliver m.

– ∆-Agreement: If a process in a ∆-component delivers a message m, then all processes
in the same ∆-component eventually deliver m.

6

– ∆-Integrity: For any messagem in a∆-component, every process in the same∆-component
delivers at most one message, and if it delivers m 6= SF then the sender(m) must have
broadcast m.

As usual in TRB, the broadcast at time tinit of a message m should be considered in the
scope of m.

To guarantee the∆-Agreement property we should correctly understand when a message
m broadcast by p /∈ C should be delivered by all processes in C. If p has been able to
propagate m to some process q ∈ C, then we assume that there exists a ∆-journey from p to
q. Observe that this assumption is consistent with the fact that our model allows the existence
of open ∆-components.

To ∆-TRBroadcast a message m at time tinit:
if p = pB then

for all edge e = (pB ,−) s.t. ρ(e, tinit) = true do
send(m) on e at tinit

On appearance of e = (pB ,−) at time t ∈ [tinit, tinit +∆):
send(m) on e at t

On reception of a message m for the first time at time trec ∈ [tinit, tinit + 2∆):
if p 6= pB then

for all edge e = (p,−) s.t. ρ(e, trec) = true do
send(m) on e at trec

On appearance of e = (p,−) at time t ∈ [tinit, tinit + 2∆):
if a message m has been previously received then
send(m) on e at t

At time tinit + 2∆:
if a message m has been previously received then
∆-TRDeliver(m)

else
∆-TRDeliver(SF)

Fig. 1. Terminating Reliable Broadcast for T C(∆).

A solution to the TRB problem is described in Figure 1. Informally, the distinguished
process pB ∆-TRBroadcasts a message m by sending m on all its active edges at time tinit.
Whenever an edge in pB’s neighborhood appears3, pB also sends m on that edge. Every
other process p, upon reception of m for the first time, forwards m on all its active edges,
as well as upon the appearance of a new edge. Finally, at time tinit + 2∆ every process p
∆-TRBdelivers either m (if m has been received) or SF (sender faulty in the classical TRB
terminology).

3 We assume here the existence of an abstract oracle to capture events of edge appearance. In the next
section we will board the implementation of such an oracle.

7

We explain next why a time of 2∆ is necessary and sufficient to deliver m.
Observe that, since we are assuming that pB could be not in C, pB could not be able to

communicate to all nodes in C in ∆ time, (otherwise pB ∈ C), thus, after m is resent by q,
every process in C will receive m into a second ∆ time interval. Henceforth the bound for a
process in C to TRDeliver a message is 2∆.

Correctness proof We proof that the specification in Figure 1 is a solution to∆-TRBroadcast
in a ∆-component.

Observation 1 Observe that, by the system model assumptions, if a message m has been
communicated between any two processes p and q then the communication time is bounded
by ∆ even if p and q are not in the same ∆-component.

Lemma 1. The specification in Figure 1 provides the ∆-Termination property.

Proof. Observe that at time tinit+2∆ a process p ∆-TRDelivers either m or a SF message.

Lemma 2. The specification in Figure 1 provides the ∆-Validity property.

Proof. Observe that pB sends a message m at time tinit to all processes with an edge with
p at tinit and p keeps sending m for every edge whenever it appears during 2∆ time. Since
every process p ∈ C resends m on the appearance of its edges during the same time interval,
then m will be received by all processes in C and ∆-TRDelivered at time tinit + 2∆.

Lemma 3. The specification in Figure 1 provides the ∆-Agreement property.

Proof. By Lemma 3, every process q in a ∆-component C eventually receives and ∆-
TRRdelivers m if pB ∈ C. Else, if if pB /∈ C, we prove now that either (a) eventually
every process q ∈ C will ∆-TRDeliver m, or (b) no process in C will deliver m.

Assume first that a process q ∈ C has receivedm. Since pB has communicated with q, by
Observation 1m has been received by q not later than tinit+∆. Since q resendsm whenever
an edge appears during the next 2∆ time by definition of β-component C, and by the proof
of Lemma 2 every process in C receives m before tinit + 2∆ and ∆-TRDelivers m at time
tinit + 2∆.

Otherwise, if no process in C has received m before tinit + ∆, again by Observation 1
m will not be received by any process in C, thus no process in C will deliver m.

Lemma 4. The specification in Figure 1 provides the ∆-Integrity property.

Proof. Observe that a process p ∆-TRDelivers a message just once. Observe also that m and
SF are the only messages that can be delivered, been m the message that is ∆-TRBroadcast
by process pB .

Theorem 1. The specification in Figure 1 satisfies the properties of Terminating Reliable
Broadcast in a ∆-component.

Proof. Straightforward from Lemmas 1, 2, 3 and 4.

8

4 Implementability of TRB

The specification of TRB provided in Figure 1 relies on an “oracle” available at every process
p, which informs p instantaneously upon appearance of a new edge in its neighbourhood.
Such an abstraction has been recently used by Raynal et al. [12] to implement a broadcast
algorithm for recurrent dynamic systems. However, a strict implementation of this oracle in
a real system is far from being trivial, as we discuss now.

Observe that the only temporal assumption on ∆-journeys is that they satisfy a given
upper-bound ∆ in its temporal length, thus the duration of an edge may be as short as the
latency of the message. In consequence, an implementation of this oracle should be able
to allow the send of a message at the very same time that the edge get activated, which
is unrealistic since the oracle should be able to predict the behaviour of the links in a real
network. Alternatively, an algorithm could continuously send message m along the whole
time interval in the hope that one of the sending attempts will success in the appearance of an
edge. Observe, however, that this iteration would require a period of time zero between two
consecutive sends. In other words, the algorithm should be able to send an infinite number of
messages per unit of time, which is impossible.

Therefore, additional assumptions should be introduced in order to provide an implemen-
tation for the above specification of TRB. Specifically we first propose an extra assumption
that allow to maintain active the edge not only for communicating the message but also to
detect its appearance.

4.1 (Lower)-bounding the edge stability

We assume that the edge latency is bounded, i.e, there exist a bound on max{ζ(e, t) : t ∈
T , e ∈ E}, that we call ζMAX . Additionally, we assume that edges are active at least β time.
Let us call β-edge an edge that fulfils this bounded disposability. For this new model we
define β-journeys as follows:

Definition 4. A β-journey J at a time t is a ∆-journey such that:

1. ζMAX < β ≤ ∆.
2. ∀i ∈ [0, k), ei is a β-edge.
3. the times when edges are activated and their corresponding latencies allow a bounded

sequential traversal (formally, ∀i ∈ [0, k), ti+1 ≥ ti + β).

We now define β-components as a subset of ∆-components that uses β-journeys. For-
mally:

Definition 5. A β-component is a ∆-component where a set V ′ ⊆ V satisfies that ∀t ∈
[T −, T + −∆], V ′ is a β-journey based temporal component in G[t,t+∆).

We define the parametrized timely connectivity class T C′(β) as follows:

Definition 6. G ∈ T C′(β) ⇐⇒ V is a β-component.

9

W ← value ∈ (0, β − ζMAX]1

To ∆-TRBroadcast a message m at time tinit:2
if p = pB then3

while now() < tinit +∆ do4
send(m) to all5
wait(W)6

On reception of a message m for the first time at time trec ∈ [tinit, tinit + 2∆):7
∆-TRDeliver(m)8
if p 6= pB then9

while now() < trec +∆ do10
send(m) to all11
wait(W)12

At time tinit + 2∆:13
if p has not ∆-TRDelivered any message then14

∆-TRDeliver(SF)15

Fig. 2. Terminating Reliable Broadcast for T C′(β).

TRB in T C′(β)

We give now a TRB algorithm for the T C′(β) model, which is shown in Figure 2.
In the algorithm proposed in Figure 2 a process pB sends at time tinit a message m by

∆-TRBroadcasting it, and pB keeps sending m each W time in order to assure the correct
send of m by every β-journey. Observe that, according to the definition of β-edge, for a β-
edge e = (p, q) in a β-journey, if process p sends a message m on e each W ≤ β − ζMAX

time during ∆, q will receive m at least once. When a process p receives the message m
automatically ∆-TRDelivers m, and additionally, if p 6= pB , p sends m each W time during
∆. Finally, if a process does not receive the message m, at time tinit + 2∆, it ∆-TRDelivers
the special message SF .

Correctness proof We prove that Algorithm in Figure 2 solves ∆-TRBroadcast in a β-
component. Thus, note that ∆-TRB properties hold on β-components.

Lemma 5. Let β > ζMAX , 0 < W ≤ β − ζMAX and let e = (p, q) be a β-edge belonging
to a β-journey J . If a process p tries to send a message m on e each W from time t ∈
[T −, T + −∆] to time t+∆, q will receive m at least once.

Proof. Since J is a β-journey, by definition J is also a ∆-journey and thus its temporal
length is bounded by ∆. Also by definition of β-journey, e should appears at least once and
be active for at least β time. Let t′ be the time when the edge e appears, thus e is active in the
interval t′ + β. Observe that t ≤ t′ ≤ t+∆− β.

We proof now that if p is sending m on e at times t, t + W , t + 2W , . . ., m will be
received by q not later than t+∆.

Consider the worst-case situation, in which: (a) e becomes active only once in the interval
(recall that t′ ≤ t+∆− β), (b) e has activated just after a sending attempt at time t+ kW ,

10

and (c) the latency of the sending attempt at time t+ (k + 1)W is the maximum latency we
are assuming, ζMAX .

In this situation e is active in the interval (t+kW, t+kW +β]. Process p will try to send
m at time t + (k + 1)W , thus, in order to be a successful attempt, e should be active in the
interval [t+ (k + 1)W to t+ (k + 1)W + ζMAX]. We should proof then that

[t+ (k + 1)W, t+ (k + 1)W + ζMAX] ⊂ (t+ kW, t+ kW + β]
Observe first that at the time of the new sending of m by p, e continues to be active, since

W < β. Observe now that the bound for m to be received by q is not higher than the time in
which e disappears, since by definition W ≤ β − ζMAX . In effect,

t+ (k + 1)W + ζMAX ≤ t+ kW + β
which results in
ζMAX ≤W + β
Finally we show that m is received by q before t+∆.
In the limit, the only activation of e could happen at a time t′ ≤ t + ∆ − β. Thus,

t+ kW < t+∆− β. Since the last attempt of p sending q could be done as late as at time
t + (k + 1)W , m would be received by p before t + ∆ − β +W + ζMAX . Again, since
W ≤ β − ζMAX , the previous results in that m is received by q before t+∆.

Lemma 6. Algorithm in Figure 2 provides the∆-Termination property: Every process in the
same β-component eventually delivers some message.

Proof. Observe that by Lines 14-15 a process p executing the algorithm in Figure 2 ∆-
TRDelivers a SF message at time tinit + 2∆ if p has not previously ∆-TRDeliver m by
Line 8.

Lemma 7. Algorithm in Figure 2 provides the ∆-Validity property: If a process in a β-
component broadcasts a message m, then all processes in the same β-component eventually
deliver m.

Proof. Observe first that, since W ∈ (0, β − ζMAX) by Line 1, Lemma 5 is applicable. By
Lemma 5 and the definition of β-component, if a process pB in a β-component C sends a
message m to all processes at time tinit and pB keeps sending m periodically with a period
W < β − ζMAX (lines 4-6), then m will be received by Line 7 at least by one process in
C, otherwise pB is the only process in C. A process q ∈ C receiving m by Line 7 will ∆-
TRDeliver m, and will resend m by lines 10-12 of the Algorithm. Reasoning as previously
by iteration on Lemma 5 and the definition of β-component, every process in C will ∆-
TRDeliver m before tinit +∆.

Lemma 8. Algorithm in Figure 2 provides the ∆-Agreement property: If a process in a β-
component delivers a message m, then all processes in the same β-component eventually
deliver m.

Proof. By Lemma 7, every process q in a β-componentC eventually receives and∆-TRDelivers
m if pB ∈ C. Else, if pB /∈ C, we prove now that either (a) eventually every process q ∈ C
will ∆-TRDeliver m, or (b) no process in C will deliver m.

Assume first that a process q ∈ C has received m (by Line 7). Before resending m by
lines 10-12, q will ∆-TRDeliver m (by Line 8), thus we should prove now that every process

11

in C will∆-TRDeliverm. Since pB has communicated with q, by Observation 1m has been
received by q not later than tinit + ∆. Since q resends m by lines 10-12, by definition of
β-component C, and by the proof of Lemma 7 every process in C eventually receives and
∆-TRDelivers m.

Otherwise, if no process in C has received m before tinit + ∆, again by Observation 1
m will not be received by any process in C, thus no process in C will deliver m.

Lemma 9. Algorithm in Figure 2 provides the ∆-Integrity property: For any message m
present in a β-component, every process in the same β-component delivers at most one mes-
sage, and if it delivers m 6= SF then the sender(m) must have broadcast m.

Proof. A process p executes the ∆-TRDeliver primitive (after receiving m, Line 8) just once
since the Line 9 explicitly denotes “for the first time”, or by SF by Line 15 at time tinit +
∆. Observe that, by Line 14, ∆-TRDeliver(SF) is only executed if p has not previously
delivered m by Line 8, thus either one message m or SF will be delivered.

Observe also by the Algorithm that m and SF are the only messages that can be deliv-
ered, been m the message that is ∆-TRBroadcast by process pB .

Theorem 2. The algorithm in Figure 2 satisfies the properties of ∆-TRB in a β-component.

Proof. Straightforward from Lemmas 6, 7, 8 and 9.

4.2 (Upper)-bounding the edge appearance

Observe that, in the algorithm in Figure 2 messages are forwarded during the whole ∆ inter-
val. This is necessary because the ending edge of a β-journey could be activated at a time as
late as tinit +∆− β. It is apparent that more efficient implementations of a TRB algorithm
in terms of number of messages could be envisaged if stronger connectivity assumptions
are introduced in the model. Specifically, in this section we introduce an additional timely
assumption on the appearance of edges.

We adopt the assumption of [7], where, besides β, a bound α on the appearance of links
is defined. We define a new type of journey, that we call (α, β)-journey. Formally:

Definition 7. A (α, β)-journey J at a time t is a β-journey such that:

1. The appearance of e1 is bounded by t1 ≤ t+ α.
2. The appearance of the subsequent edges are also bounded by α. Formally, ti+1 ≤ ti +
ζ(ei, ti) + α for all i ∈ [1, k)).

We define a (α, β)-component as follows:

Definition 8. A (α, β)-component is a β-component where a set V ′ ⊆ V satisfies that
∀t ∈ [T −, T + −∆], V ′ is a (α, β)-journey based temporal component in G[t,t+∆).

We define the parametrized timely connectivity class T C′′(α, β) as follows:

Definition 9. G ∈ T C′′(α, β) ⇐⇒ V is a (α, β)-component.

12

W ← value ∈ (0, β − ζMAX]1

Γ ← (d α
W
e+ (|V | − 2)d ζMAX+α

W
e)W + ζMAX2

To ∆-TRBroadcast a message m at time tinit:3
if p = pB then4

send(m) to all5
repeat6

wait(W)7
send(m) to all8

until now() > tinit + α9

On reception of a message m for the first time at time trec:10
∆-TRDeliver(m)11
if p 6= pB then12

send(m) to all13
repeat14

wait(W)15
send(m) to all16

until now() > trec + α17

At time tinit + Γ :18
if p has not ∆-TRDelivered any message then19

∆-TRDeliver(SF)20

Fig. 3. Terminating Reliable Broadcast for T C′′(α, β).

TRB in T C′′(α, β)

The algorithm in Figure 3, describes a TRB algorithm executable in a T C′′(α, β) dynamic
system.

The new bound α, altogether with the latency bound β and ζMAX , allows to calculate
global system bounds, namely the period W and a time to deliver Γ , strictly in terms of spe-
cific network parameters. In the algorithm proposed in Figure 3 a process pB ∆-TRBroadcast
a message m at time tinit by sending each W time m until the time is strictly higher than
tinit+α, in order to assure the correct send of m by every (α, β)-journey. When a process p
receives the messagem at time trec for the first time, automatically∆-TRDeliversm and, ad-
ditionally, if p 6= pB , p sendsm eachW until the time is strictly higher than trec+α. Finally,
if any of the process in p does not receive the message m at time tinit + Γ , ∆-TRDelivers
the special message SF denoting the sender failure.

It is important to note that in the TRB algorithm for T C′′(α, β), differently to the upper
classes, processes need to known the network diameter, whic is bounded by |V | − 1. This
is a consequence of the fact of considering strictly local bounds in T C′′(α, β). Instead, both
T C(∆) and T C′(β) rely on a system-wide bound, ∆.

Bounding the time-to-deliver. We explain now how we calculate Γ , the bound used in the
algorithm in Figure 3 for a process to∆-TRBdeliver the message (see Figure 4 for a graphical
illustration).

13

A process p1 (the sender) will send a copy of m from tinit on, each W time units. In
the worst case, the first edge of the journey will appear at tinit + α, but p1 will not success
sending a copy of m until tinit + d αW eW , i.e., the d αW eW ’s sent. Observe that, tinit + α <
tinit + d αW eW ≤ tinit + α+W .

For a journey including a single edge (p1, p2), the message m would be delivered by p2
at time tinit + d αW eW + ζMAX .

In general, for a journey including k nodes (and thus k− 1 hops), excluding the first hop,
the subsequent k− 2 hops can be time-bounded as follows: a message m resent by a process
pi is received by pi+1 in ζMAX time units and pi+1 waits α time units until the appearance
of edge ei+1 to resent m on this edge. Consequently, pi+1 will success in the sent made on
ei+1 at a time not greater than tinit+d αW eW+d ζMAX+α

W eW . Summarizing, a message from
p1 to pk by a (α, β)-journey at time tinit will be delivered by pk at time tinit + Γ , where
Γ = (d αW e+ (k − 2)d ζMAX+α

W e)W + ζMAX .
In the worst case, k = |V | − 1, thus the bound to deliver a message will be tinit + Γ ,

where Γ = (d αW e+ (|V | − 2)d ζMAX+α
W e)W + ζMAX .

Fig. 4. A time-line explaining the Γ upper-bound for the worst case (α, β)-journey from a process p to
another process q in the system.

Correctness proof

Lemma 10. Algorithm in Figure 3 provides the ∆-Termination property: Every process in
the same (α, β)-component eventually delivers some message.

14

Proof. Observe that by Lines 19-20 a process p executing the algorithm in Figure 3 ∆-
TRDelivers a SF message at time tinit + Γ if p has not previously ∆-TRDeliver m by
Line 11.

Lemma 11. Algorithm in Figure 3 provides the∆-Validity property: If a process in a (alpha, β)-
component broadcasts a message m, then all processes in the same (alpha, β)-component
eventually deliver m.

Proof. By the definition of (α, β)-component, if a process pB in a (α, β)-componentC sends
a messagem to all processes at time tinit and pB keeps sendingm periodically with a period
W < β − ζMAX (lines 5-9) during the maximum time for the appearance of the link, α,
then m will be received by Line 10 at least by one process in C, otherwise pB is the only
process in C. Reasoning in the same way by iteration on lines 13-17 of the Algorithm, by
the definitions of (α, β)-component, every process q ∈ C will ∆-TRDeliver m by Line 11
before tinit + Γ . Observe by Line 2 that Γ has been set as a bound of the temporal length of
an (α, β)-journey in a system with |V | nodes.

Lemma 12. Algorithm in Figure 3 provides the ∆-Agreement property: If a process in a
(α, β)-component delivers a message m, then all processes in the same (α, β)-component
eventually deliver m.

Proof. By Lemma 11, every process q in a (α, β)-component C eventually receives and
∆TRDelivers m if pB ∈ C. Else, if pB /∈ C, we prove now that either (a) eventually every
process q ∈ C will ∆TRDeliver m, or (b) no process in C will deliver m.

Assume first that a process q ∈ C has received m (by Line 10). Since pB has commu-
nicated with q, m has been received by Line 10 of q according the time bounds α and β
following a journey topologically bounded by the maximum network diameter, |V − 1|, and
q ∆-TRDelivers m by Line 11. By Line 2, Γ has been set as a bound on the temporal length
of such an (α, β)-journey. By lines 13-17 m is resent by q during the maximum time for the
appearance of the link, α, and, again by Lemma 11, every process in a (α, β)-component
C eventually receives and ∆TRDelivers m. Again, Γ holds as the general bound, since it
considerer the worst-case diameter, which includes all the processes in the system.

Otherwise, if no process in C has received m before tinit + Γ , every process in C will
∆-TRDeliver SF at time tinit + Γ .

Lemma 13. Algorithm in Figure 3 provides the ∆-Integrity property: For any message m
present in a (α, β)-component, every process in the same (α, β)-component delivers at most
one message, and if it delivers m 6= SF then the sender(m) must have broadcast m.

Proof. A process p executes the ∆-TRDeliver primitive (after receiving m, Line 11) just
once since the Line 10 explicitly denotes “for the first time”, or by SF by Line 20 at time
tinit+Γ . Observe that, by Line 20,∆-TRDeliver(SF) is only executed if p has not previously
delivered a message m by Line 11.

Observe also by the Algorithm that m and SF are the only messages that can be deliv-
ered, been m the message that is ∆-TRBroadcast by process pB .

Theorem 3. The algorithm in Figure 3 satisfies the properties of Terminating Reliable Broad-
cast in a ∆-component.

Proof. Straightforward from Lemmas 10, 11, 12 and 13.

15

4.3 Relating timely classes

We have defined a hierarchy of classes with increasingly stronger timely assumptions. Being
T C(∆), T C′(β) and T C′′(α, β) the parametrized classes, we define now for each one the
union of all its possible instances:

G ∈ T C∗ ⇐⇒ ∃∆ 6=∞ : G ∈ T C(∆)

G ∈ T C′∗ ⇐⇒ ∃β 6=∞ : G ∈ T C′(β)

G ∈ T C′′∗ ⇐⇒ ∃α, β 6=∞ : G ∈ T C′′(α, β)
In spite of the different strength of the parametrized classes, we show that T C′′∗ ≡ T C′∗.

Besides, T C′∗ ⊂ T C∗ and T C′′∗ ⊂ T C∗.

Correctness proof

Theorem 4. T C′′∗ ≡ T C′∗

Proof. On the one hand, ∀G ∈ T C′′∗,∃β : G ∈ T C′(β), since by definition, a (α, β)-
component in T C′(β) is a β-component. More specifically, if G ∈ T C′′(α, β) then G ∈
T C′((|V | − 1)(α+ β), β). On the other hand, ∀G ∈ T C′∗,∃α, β : G ∈ T C′(α, β). Observe
that G ∈ T C′′(α′, β) such that α′ is max(t − t′) : t ∈ [T −, T +], t′ = t0) where ∀J =
{(e0, t0), (e1, t1), . . .} ∈ J ∗∧arrival(J) < t+∆ and G ∈ T C′(β). Since, T C′∗ \T C′′∗ =
∅, then T C′′∗ ≡ T C′∗.

Theorem 5. T C′∗ ⊂ T C∗

Proof. By the definition of T C′(β), ∀G ∈ T C′∗,∃∆ : G ∈ T C(∆). We proof now that there
exists G ∈ T C∗ such that G /∈ T C′∗. Assume a graph G such that which any of its journey
is composed by an edge ei which is active during a βi time where βi = ζMAX , and, by
Definition 4, those journeys are not allowed in any parametrized T C′(β) class. Consequently,
T C′∗ ⊂ T C∗.

Theorem 6. T C′′∗ ⊂ T C∗

Proof. By Theorem 4 and Theorem 5, T C′′∗ ⊂ T C∗.

5 From∆-TRB to∆-Consensus in Dynamic Systems

In this section we analyse the equivalence between TRB and consensus, originally stated for
synchronous static systems [6], in terms of a dynamic system as the one we have modelled.

In the former sections we have presented three ∆-TRB algorithms in the scope of re-
spectively ∆-, β- and (α, β)-components. We show now how the consensus problem can be
reduced4 to a ∆-TRB problem. We will refer as ∆-Consensus to this kind of consensus in
the scope of ∆-components.

By the properties of ∆-TRB, it is straightforward to define the ∆-Consensus properties
as follows:

4 We say that a problem A can be reduced to a problem B if A can be solved using B.

16

– ∆-Termination: Every process in the ∆-component eventually decides.
– ∆-Agreement: Every process in the ∆-component decides the same value.
– ∆-Validity: The decided value is a proposed one.

Without loosing generality we focus here on∆-Consensus using the∆-TRB specification
of Figure 1 for the T C(∆) Class.

Vector Vp(i)← ⊥ : i ∈ [0, |V |)1

To ∆-Propose v at time tinit:2
∆-TRBroadcast(v)3

On ∆-TRDeliver(m) by q:4
Vp(q)← m5

At time tinit + 2∆:6
∆-decide(Vp(min(i : Vp(i) 6= SF)))7

Fig. 5. ∆-TRB based ∆-Consensus algorithm for T C(∆).

The resulting ∆-Consensus algorithm is shown in Figure 5. Every process p holds a
vector Vp initialized to ⊥. At time tinit, |V | instances of of ∆-TRB are started, one per
process, being each process the sender in one instance. Every process p records in vector
Vp(q) the message mq delivered from process q (or SF in case mq has not been received on
time). At time tinit + 2∆, p decides on the first non-SF value of Vp.

Note that solving consensus at system level would require a second ∆-TRB round to
agree on the decision of the majority, provided that the temporal interval [T −, T +] in which
the∆-component is defined covers both rounds. In other words, the stability of∆-components
must be temporally extended to solve consensus at system level.

6 Conclusions

In this paper we have studied how to introduce timeliness in evolving systems so that the
resolution of agreement problems (specifically consensus) is possible. On the basis of previ-
ous works, we have adopted the concept of journey or temporal path and have introduced the
necessary timeliness (i.e., time bounds) to describe the specific assumptions that are required
by an agreement algorithm to terminate and satisfy the consensus properties.

We have first proposed a general class, T C(∆), with a very abstract property on the
temporal connectivity of the TVG to provide the necessary stability conditions, namely, that
the temporal diameter of a recurrent component in the TVG is bounded. We refer to such a
component as a ∆-component. To approach the consensus problem we have defined a TRB
specification in terms of ∆-components, ∆-TRB. However, ∆-TRB is not implementable in
T C(∆) by message-passing without zero processing time assumptions. Henceforth, by intro-
ducing increasingly stronger connectivity assumptions, we have provided two implementable
connectivity classes, namely T C′(β) and T C′′(α, β), as well as two respective implementa-
tions of ∆-TRB in these classes.

17

Finally, we have shown that consensus at ∆-component level is easily reduced to ∆-
TRB.

An open issue is the search of the weakest connectivity class that allows to implement
∆-TRB (and henceforth consensus) in message-passing systems. Of additional interest is to
extend the proposed classes to partially synchronous models. In this regard, in [9], leader
election is implemented in a partially synchronous system with dynamic partitions that could
be modelled as ∆-components.

References

1. Sandeep Bhadra and Afonso Ferreira. Complexity of connected components in evolving graphs
and the computation of multicast trees in dynamic networks. In Ad-Hoc, Mobile, and Wireless
Networks, pages 259–270. Springer, 2003.

2. Martin Biely, Peter Robinson, and Ulrich Schmid. Agreement in directed dynamic networks.
In Structural Information and Communication Complexity - 19th International Colloquium,
SIROCCO 2012, Reykjavik, Iceland, volume 7355 of Lecture Notes in Computer Science, pages
73–84. Springer, 2012.

3. Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro. Deterministic computa-
tions in time-varying graphs: Broadcasting under unstructured mobility. In Theoretical Computer
Science, pages 111–124. Springer, 2010.

4. Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Sys-
tems, 27(5):387–408, 2012.

5. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM, 43(2):225–267, 1996.

6. Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In Proceedings of
the twentieth annual ACM symposium on Theory of computing, pages 148–161. ACM, 1988.

7. Antonio Fernández-Anta, Alessia Milani, Miguel A Mosteiro, and Shmuel Zaks. Opportunistic
information dissemination in mobile ad-hoc networks: The profit of global synchrony. Distributed
Computing, 25(4):279–296, 2012.

8. Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

9. Carlos Gomez-Calzado, Alberto Lafuente, Mikel Larrea, and Michel Raynal. Fault-tolerant leader
election in mobile dynamic distributed systems. In Dependable Computing (PRDC), 2013 IEEE
19th Pacific Rim International Symposium on, pages 78–87, Dec 2013.

10. Fabian Kuhn, Nancy A. Lynch, and Rotem Oshman. Distributed computation in dynamic networks.
In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pages 513–522. ACM, 2010.

11. Fabian Kuhn and Rotem Oshman. Dynamic networks: models and algorithms. ACM SIGACT
News, 42(1):82–96, 2011.

12. M. Raynal, J. Stainer, Jiannong Cao, and Weigang Wu. A simple broadcast algorithm for recurrent
dynamic systems. In Advanced Information Networking and Applications (AINA), 2014 IEEE 28th
International Conference on, pages 933–939, May 2014.

