
Reliable Publish/Subscribe in Dynamic Systems

Ugaitz Amozarrain, Mikel Larrea
Computer Architecture and Technology Department

University of the Basque Country UPV/EHU
Paseo Manuel de Lardizabal 1

20018 Donostia-San Sebastián, Spain
Email: uamozarrain001@ikasle.ehu.eus, mikel.larrea@ehu.eus

March 15, 2016

Abstract

This work addresses content-based publish/subscribe in dynamic sce-
narios. We present an approach based on the simple routing strategy, that
is incrementally extended in order to support client and broker mobility.

1 Introduction

Publish/subscribe is a paradigm that allows a loosely coupled dissemination of
events on a distributed network. The objective of such a system has been the
distribution of the messages over a wide area and static topology [3, 11].

The increase of wireless devices on recent years, be it wireless sensor net-
works, smart-phones or other mobile devices has created a need to adapt the
initial publish/subscribe protocols designed for static systems. Indeed, in wire-
less sensor networks we lose the robustness of the Internet and focus more on
challenges such as the mobility of the network [2, 5, 6, 7, 9, 10, 14, 15]. Often the
simplest approach is to use message flooding, though this creates an unnecessary
overhead for the network and the devices on it.

Mobility is an intrinsic property of a wireless network and the protocols
designed for it should take this into account. Devices are able to freely move
constantly changing the topology of the network.

Following a previous work [13] where client mobility for content based pub-
lish/subscribe systems was introduced, we expand it to include mobility also on
the broker network. With this we allow a full range of dynamicity for all devices
that compose the publish/subscribe system ensuring that messages are delivered
to connected clients even while part of the broker network is disconnected from
the rest.

2 System Model

A basic publish/subscribe system is composed of two main components: a set
of clients that produce and consume events, and a notification service that

1

handles the subscriptions issued by clients and the delivery of events to the
corresponding clients.

There are two types of clients: publishers that produce events and send them
to the system, and subscribers that register to one or more filters and consume
events. We will use p ∈ P to refer to a publisher belonging to the global set of
publishers P . Similarly, we will use s ∈ S to refer to a subscriber belonging to
the global set of subscribers S. Any client can behave as a publisher, subscriber
or even both at the same time. Finally, we will use f ∈ F to refer to a filter
belonging to the global set of filters F .

On the other hand the notification service is composed of a set of brokers B
which we will refer to by using the notation b ∈ B. This set of brokers will be
connected at the logical level by an acyclic graph. The brokers will store the
subscriptions issued by subscribers and route correctly the published events.
A broker will have at any moment a set of brokers it can communicate with,
which will be its neighbors in the graph, we will call this set Ni for broker
bi. Furthermore, a broker will also communicate directly with clients that are
connected to it, for this reason we call Ii to the set of interfaces that broker bi
can communicate with, be it clients or other brokers. All communications are
by point-to-point message passing over reliable and FIFO links.

3 From Static to Dynamic Publish/Subscribe

This section describes our incremental approach to support dynamicity in pub-
lish/subscribe. First, we present a Simple Routing protocol for a system where
both clients and brokers are static. Then, we describe Phoenix [13], a protocol
that extends the Simple Routing protocol in order to support dynamic clients.
Finally, we present our extension to Phoenix in order to support dynamic bro-
kers.

3.1 Simple Routing

This section presents a publish/subscribe routing protocol which implements the
Simple Routing [1] strategy in a static system where brokers are connected in
an acyclic graph, and each client is permanently bound to a single broker. This
routing strategy is based on the propagation of subscription and unsubscription
messages to all of the brokers in the system. Every broker bi maintains a routing
table Ri that is based on the received SUB and UNS messages and models
the subscriptions in the system. The routing tables enable brokers to filter
incoming events received as PUB messages, and forward them only towards
those subscribers with matching subscriptions.

Algorithm 1 is ran by every broker in the system and routing tables contain,
for every subscription in the system, a routing entry (f, z) where f ∈ F and
z ∈ Ii, to indicate that the publication of an event e matching f must either be
forwarded towards broker z (if z ∈ B) or delivered to subscriber z (if z ∈ S).

A generic correctness proof of the Simple Routing strategy can be found
in [8]. In addition, the interested reader is referred to [12] for the correctness
proof of Algorithm 1.

2

1 when receive(SUB, f) from z ∈ Ii do
2 Ri ← Ri ∪ {(f, z)}
3 foreach b ∈ Ni where b 6= z do
4 send(SUB, f) to b

5 when receive(UNS, f) from z ∈ Ii do
6 Ri ← Ri \ {(f, z)}
7 foreach b ∈ Ni where b 6= z do
8 send(UNS, f) to b

9 when receive(PUB, e) from z ∈ Ii do
10 X ← ∅
11 foreach (f, y) ∈ Ri where y /∈ X ∧ y 6= z do
12 if f(e) = true then
13 X ← X ∪ {y}

14 foreach y ∈ X do
15 send(PUB, e) to y

Algorithm 1: Simple Routing (code executed by broker bi)

3.2 Supporting Dynamic Clients

Phoenix [13] is an extension to the Simple Routing protocol that is able to
seamlessly handle subscriber migrations (publisher migration is inherently sup-
ported by Simple Routing). In order to achieve this some changes had to be
made to the Simple Routing protocol of Algorithm 1. In the usual case, when a
subscriber changes the broker it uses to connect to the network, the subscriber
would have to send the subscription messages again to the new broker in order
to continue receiving events. To avoid the potential flooding of the network that
such migrations might cause, Phoenix extends the routing table of the brokers
to include the subscriber that registered each filter. Using this information the
broker can route not only publication messages, but also messages regarding the
subscriber.

Two new messages were added on top of the preexisting ones in the protocol
of Algorithm 1. A MIG message used to notify the broker network when a
subscriber has migrated, and a REP message used to send the subscriber any
event it might have not delivered during the migration. Both of these messages
will follow the delivery path of a published message so there is no need to flood
the network.

In order to adapt the Phoenix protocol for supporting broker migrations,
some changes have been made, see Algorithm 2. For simplicity on this first
approach the replaying of undelivered messages has been omitted. On the han-
dling of SUB and UNS messages we now check for the existence of the values on
the routing table, seen on lines 2 and 7, since if the network is still converging

3

1 when receive(SUB, f, s) from z ∈ Ii do
2 if @(f, , s) ∈ Ri then
3 Ri ← Ri ∪ {(f, z, s)}
4 foreach b ∈ Ni where b 6= z do
5 send(SUB, f, s) to b

6 when receive(UNS, f, s) from z ∈ Ii do
7 if ∃(f, , s) ∈ Ri then
8 Ri ← Ri \ {(f, , s)}
9 foreach b ∈ Ni where b 6= z do

10 send(UNS, f, s) to b

11 when receive(PUB, e) from z ∈ Ii do
12 X ← ∅
13 foreach (f, y,) ∈ Ri where y /∈ X ∧ y 6= z do
14 if f(e) = true then
15 X ← X ∪ {y}

16 foreach y ∈ X do
17 send(PUB, e) to y

18 when receive(MIG, s, b) from z ∈ Ii do
19 if z = s then
20 X ← ∅
21 foreach (f, , s) ∈ Ri do
22 X ← X ∪ {f}
23 send(FILTERS, X) to s

24 if b 6= bi then
25 if ∃(, , s) ∈ Ri then
26 bj ← y ∈ Ni where (, y, s) ∈ Ri

27 send(MIG, s, b) to bj

28 foreach (, , s) ∈ Ri do
29 replace (, , s) with (, z, s) in Ri

Algorithm 2: Simple Routing with dynamic clients

a broker could receive some of the messages out of order.
Some changes were also made in the handling of a MIG message so that

the first broker that receives the message will send back to the subscriber a set
containing all the subscriptions for that subscriber from its routing table, see
lines 19-23. A new message type FILTERS was added to send this information.
This is done in order to support the migration of the subscribers from a partition

4

to another. If the network is partitioned and a subscriber is connected to just
one of the partitions, the other ones do not receive any SUB messages. And
if the subscriber then migrates to another partition this partition will have no
information on the subscriber so it will depend on the subscriber to review
the set of subscriptions and correct it if necessary. Another change consists
in the subscriber sending the identity of the previous broker it was connected
to, which together with the check of line 24 allows us to handle reconnections
as a particular case of migration. The inclusion of the check on line 25 is for
the same reason SUB and UNS handling had to be changed, we need to check
for consistency on the routing table. Finally, the entries of the routing table
corresponding to the migrating subscriber are adjusted in order to correctly
route future events.

3.3 Supporting Dynamic Brokers

After reviewing mobility support for clients, in this section we introduce an
extension to the protocol for supporting broker mobility and crash-recovery.
Unlike subscriber mobility, when a broker migrates, the physical change on the
network might force a recalculation of the spanning tree that is used for routing
the events. Using standard spanning tree algorithms this recalculation might
end up changing several of the previous stable connections between brokers, thus
potentially forcing the migration of more brokers than the one that is actually
migrating.

In order to avoid this issue a leader election algorithm [4] was chosen for
the broker network. Using the periodic heartbeat message from the leader that
the algorithm uses we can create a spanning tree with the leader itself as the
root node. Whit this heartbeat message the brokers will realize when they have
moved from their previous position on the network and migrate accordingly. The
leader election algorithm is also able to handle small independent partitions on
the network and once connectivity is restored between them, they come together
forming a bigger network with a unique leader. For all migrations we consider
the partition with the final leader as the primary partition and the others as
migrating partitions.

Each broker will keep stored the next hop to the leader, following the op-
posite path of the heartbeat message, and a set of brokers that are connected
to itself. Using this information we can easily create a spanning tree. All bro-
kers keep a set of connected subscribers which will change according due to the
connectivity of the subscribers. We will refer to this set as Ci for broker bi.

We consider that a broker has migrated when its path to the leader changes.
Taking as a reference the initial network of Figure 1a, an example of broker
migration can be seen in Figure 1b. In this case the migrating broker bi (b5 in
Figure 1b) will connect to a new broker bj (b2 in Figure 1b) designated as next
hop for the leader and send a BMIG message. This message contains the set Ci

of local subscribers connected to bi.
This message causes the broker to function as a proxy for subscriber mi-

gration and it will follow the delivery path for those subscribers as with single
subscriber migrations, without the need to flood the whole network, note that
on all migrations shown on Figure 1 broker b6 will not receive any notification.
Algorithm 3 shows on lines 30-39 how a broker will handle a BMIG message.
As seen on lines 32-35 the behavior is similar to a MIG message for subscriber

5

30 when receive(BMIG, Cj, bj) from z ∈ Ni do
31 X ← ∅
32 foreach s ∈ Cj do
33 X ← X ∪ {b ∈ Ni where (, b, s) ∈ Ri ∧ b 6= z}
34 foreach (, , s) ∈ Ri do
35 replace (, , s) with (, z, s) in Ri

36 foreach y ∈ X do
37 send(BMIG, Cj, bj) to y

38 if z = bj then
39 send(BTAB, Ri) to bj

40 when receive(BTAB, Rj) from bj ∈ Ni do
41 foreach (, , s) ∈ Ri where s /∈ Ci do
42 Ri ← Ri \ {(, , s)}
43 foreach (, , s) ∈ Rj where s /∈ Ci do
44 Ri ← Ri ∪ {(, bj , s)}
45 foreach (f, , s) ∈ (Ri −Rj) do
46 send(SUB, f, s) to bj

47 foreach (f, , s) ∈ (Rj −Ri) do
48 send(UNS, f, s) to bj

49 foreach b ∈ Ni where b 6= bj do
50 send(FMIG) to b

51 when receive(FMIG) from z ∈ Ni do
52 send(BMIG, Ci, bi) to z

Algorithm 3: Simple Routing with dynamic brokers

migration, we are just generalizing it for a set of subscribers, using a loop. It
is important to save the value of the next hop on line 33 since we are changing
its value on line 35. After replacing all required values the broker will send
the same message it received to the previously stored brokers. Finally, on lines
38-39 we specify that if the broker from which the BMIG message has been
received is the same as the originator of the message, meaning that the broker
that received the message is actually bj , the broker will reply with a BTAB
message.

A BTAB message contains the routing table of the broker that sends the
message. Since while a broker is migrating it might have lost all communication
to the primary partition, it will not be able to receive any message that indicates
a change in the subscriptions. This message is used to update the table on
bi to the latest version on the primary partition. Broker bi knows the latest
subscriptions from its local subscribers but it cannot trust any other entry on
its routing table, for this reason once it receives a BTAB message it will remove

6

Table 1: Message types for a system with mobile clients and brokers

Message Payload Client/Broker Meaning
SUB f ∈ F s ∈ S Subscribe s to filter f
UNS f ∈ F s ∈ S Unsubscribe s from filter f
PUB e ∈ E p ∈ P Publish event e
MIG — s ∈ S Notify the migration of s

FILTERS f : f ∈ F b ∈ B Send active subscriptions
BMIG Cb b ∈ B Notify the migration of b
BTAB Rb b ∈ B Updated routing table of b
FMIG — b ∈ B Force the migration of a broker

all entries from its table that do not belong to its local subscribers, lines 41-
42, and it will store all entries, except the ones pertaining to bi’s subscribers,
from the table it received, changing the next hop to the broker that sent the
message, lines 43-44, so that any PUB message can be routed correctly. Then
bi will check to see what new information it has on its table with respect to
bj , lines 45-48, this way bi will know if the subscriptions of its subscribers in
the primary network are the correct ones, if there are any inconsistencies it will
fix them by sending a SUB or UNS message for the corresponding subscription
propagating it to the network using the standard protocol.

Until this point, the protocol works if a broker migrates alone, but if the
broker that migrates has more brokers connected to it, bi cannot know if there
has been any change on that side of the network. For example if a subscriber
migrates to the primary partition, bi might not have received the corresponding
MIG message. If we look at Figures 1c and 1d, both of the migrations, even
though they are different, they are the same from the point of view of broker b4.
For modularity we have decided to force a sequential migration of all the brokers
that are hanging from the migrating broker, this way each broker will update
in the primary partition the information corresponding to its local subscribers.
In Figures 1c and 1d the migration of b4 will force the migration of b5. This
behavior can be seen on Algorithm 3, lines 49-50 where the message sent to all
brokers still to bi, and lines 51-52 where we show how to handle the message.

Table 1 summarizes all the message types used in the proposed protocol.

4 Conclusion

This work has presented an extension to the Phoenix framework that supports
broker mobility, besides the client mobility already supported. This is done
without the need to use a flooding mechanism for mobility messages.

Further work is needed in order to solve possible mobility related incon-
sistencies on the network. Also an evaluation of this method using network
simulation tools is required to asses the performance of the protocol.

7

b1

b2 b3

b4 s1

b5 s2

b6

(a) Initial network

b1

b2 b3

b4 s1b5s2

b6

(b) b5 migrates from b4 to b2

b1

b2 b3

b4s1

b5s2

b6

(c) b4 migrates from
b3 to b2

b1

b2 b3

b4s1

b5

s2

b6

(d) b4 migrates from
b3 to b2 and s2 mi-
grates from b5 to b3

Figure 1: Network example and 3 posible migrations. Broker b1 is the leader

8

References

[1] Guruduth Banavar, Tushar Deepak Chandra, Bodhi Mukherjee, Jay Na-
garajarao, Robert E. Strom, and Daniel C. Sturman. An efficient multicast
protocol for content-based publish-subscribe systems. In Proceedings of the
19th International Conference on Distributed Computing Systems, Austin,
TX, USA, May 31 - June 4, 1999, pages 262–272. IEEE Computer Society,
1999.

[2] Ioana Burcea, Hans-Arno Jacobsen, Eyal de Lara, Vinod Muthusamy, and
Milenko Petrovic. Disconnected operation in publish/subscribe middleware.
In 5th IEEE International Conference on Mobile Data Management (MDM
2004), 19-22 January 2004, Berkeley, CA, USA, page 39. IEEE Computer
Society, 2004.

[3] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design
and evaluation of a wide-area event notification service. ACM Trans. Com-
put. Syst., 19(3):332–383, 2001.

[4] Carlos Gómez-Calzado, Alberto Lafuente, Mikel Larrea, and Michel Ray-
nal. Fault-tolerant leader election in mobile dynamic distributed systems.
In IEEE 19th Pacific Rim International Symposium on Dependable Com-
puting, PRDC 2013, Vancouver, BC, Canada, December 2-4, 2013, pages
78–87. IEEE, 2013.

[5] Yongqiang Huang and Hector Garcia-Molina. Publish/subscribe in a mobile
enviroment. In Proceedings of the Second ACM International Workshop on
Data Engineering for Wireless and Mobile Access, May 20, 2001, Santa
Barbara, California, USA, pages 27–34. ACM, 2001.

[6] Michael A. Jaeger, Helge Parzyjegla, Gero Mühl, and Klaus Herrmann.
Self-organizing broker topologies for publish/subscribe systems. In Yookun
Cho, Roger L. Wainwright, Hisham Haddad, Sung Y. Shin, and Yong Wan
Koo, editors, Proceedings of the 2007 ACM Symposium on Applied Com-
puting (SAC), Seoul, Korea, March 11-15, 2007, pages 543–550. ACM,
2007.

[7] Luca Mottola, Gianpaolo Cugola, and Gian Pietro Picco. A self-repairing
tree topology enabling content-based routing in mobile ad hoc networks.
IEEE Trans. Mob. Comput., 7(8):946–960, 2008.

[8] Gero Mühl. Large-scale content based publish, subscribe systems. PhD
thesis, Darmstadt University of Technology, 2002.

[9] Gero Mühl, Andreas Ulbrich, Klaus Herrmann, and Torben Weis. Dissemi-
nating information to mobile clients using publish-subscribe. IEEE Internet
Computing, 8(3):46–53, 2004.

[10] Vinod Muthusamy, Milenko Petrovic, and Hans-Arno Jacobsen. Effects
of routing computations in content-based routing networks with mobile
data sources. In Thomas F. La Porta, Christoph Lindemann, Elizabeth M.
Belding-Royer, and Songwu Lu, editors, Proceedings of the 11th Annual In-
ternational Conference on Mobile Computing and Networking, MOBICOM

9

2005, Cologne, Germany, August 28 - September 2, 2005, pages 103–116.
ACM, 2005.

[11] David S. Rosenblum and Alexander L. Wolf. A design framework for
internet-scale event observation and notification. In Mehdi Jazayeri and
Helmut Schauer, editors, Software Engineering - ESEC/FSE ’97, 6th Eu-
ropean Software Engineering Conference Held Jointly with the 5th ACM
SIGSOFT Symposium on Foundations of Software Engineering, Zurich,
Switzerland, September 22-25, 1997, Proceedings, volume 1301 of Lecture
Notes in Computer Science, pages 344–360. Springer, 1997.

[12] Zigor Salvador, Alberto Lafuente, and Mikel Larrea. Client Mobility Sup-
port and Communication Efficiency in Distributed Publish/Subscribe. PhD
thesis, University of the Basque Country, Spain, 2012.

[13] Zigor Salvador, Mikel Larrea, and Alberto Lafuente. Phoenix: A protocol
for seamless client mobility in publish/subscribe. In 11th IEEE Interna-
tional Symposium on Network Computing and Applications, NCA 2012,
Cambridge, MA, USA, August 23-25, 2012, pages 111–120. IEEE Com-
puter Society, 2012.

[14] Jan Hendrik Schönherr, Helge Parzyjegla, and Gero Mühl. Clustered
publish/subscribe in wireless actuator and sensor networks. In Sotirios
Terzis, editor, Proceedings of the 6th International Workshop on Mid-
dleware for Pervasive and Ad-hoc Computing (MPAC 2008), held at the
ACM/IFIP/USENIX 9th International Middleware Conference, December
1-5, 2008, Leuven, Belgium, pages 60–65. ACM, 2008.

[15] Gerry Siegemund, Volker Turau, and Khaled Maamra. A self-stabilizing
publish/subscribe middleware for wireless sensor networks. In 2015 Inter-
national Conference and Workshops on Networked Systems, NetSys 2015,
Cottbus, Germany, March 9-12, 2015, pages 1–8. IEEE, 2015.

10

	Introduction
	System Model
	From Static to Dynamic Publish/Subscribe
	Simple Routing
	Supporting Dynamic Clients
	Supporting Dynamic Brokers

	Conclusion

