
Full Mobility and Fault Tolerance in

Content-Based Publish/Subscribe∗

Ugaitz Amozarrain and Mikel Larrea
Department of Computer Architecture and Technology

University of the Basque Country UPV/EHU
{ugaitz.amozarrain,mikel.larrea}@ehu.eus

October 13, 2019

Abstract

Publish/subscribe is a mature communication paradigm to route and
deliver events from publishers to interested subscribers. Initially conceived
for large scale systems, e.g., the Internet, it has been used more recently
in new scenarios, e.g., wireless sensor networks and the Internet of Things,
where mobility and dynamicity are the norm. This paper presents a fully
mobile and fault tolerant content-based publish/subscribe protocol. We
prove the validity of our solution by experimentation, and compare it with
other routing approaches of mobile ad hoc networking.

1 Introduction

The publish/subscribe paradigm provides a anonymous, loosely coupled commu-
nication between event producers and interested subscribers [43]. This paradigm
has been initially used for large scale systems. e.g., the Internet [21, 22, 76]. Re-
cently, it has been used in new scenarios, e.g., wireless sensor networks [9, 18, 88]
and the Internet of Things [1, 49, 50]. In this regard, several systems can be
mentioned as relevant in the field, e.g., SIENA [21], JEDI [32], REBECA [66]
and REDS [35] for both publish/subscribe in general and for their client mobility
support in particular.

In content-based publish/subscribe protocols subscribers register to filters,
publishers produce events, and brokers route and deliver events matching posi-
tively to interested subscribers. Phoenix [78, 80, 81] is a recent protocol support-
ing client mobility in content-based publish/subscribe systems targeting wireless
sensor networks and the Internet of Things. Observe that content-based pub-
lish/subscribe naturally provides publisher mobility, so the Phoenix protocol
handles subscriber mobility. In order to accomplish this, it assumes a static and
reliable broker topology. Basically two tasks must be solved when a subscriber
migrates [52]: update the routing tables of the corresponding brokers such that

∗Research supported by the Spanish Research Council (MINECO), grant TIN2016-79897-
P, and the Department of Education, Universities and Research of the Basque Government,
grant IT980-16.

1

new events are properly routed, and deliver the events published during the
migration. Phoenix solves both tasks in a communication-efficient manner, i.e.,
without flooding the network.

Besides client mobility, in this paper we propose two approaches to han-
dle broker mobility in a wireless ad hoc network. The first approach is more
modular and pedagogical, while the second approach is more efficient as it re-
duces network traffic. In both approaches the amount of devices connected to
the network, and the connections between them are able to change. Whenever
a broker moves physically a change is made in the network topology. Due to
the wireless nature of the network the broker might lose connections or be able
to connect to new devices. The protocol we propose tries to minimize these
changes in topology to help with stability. We can also simplify a fault in one
of the brokers as a loss of connectivity, making it easier to the protocol to also
be fault tolerant.

The rest of the paper is organized as follows. Section 2 introduces the related
work on publish/subscribe and the mobility and fault tolerance in these systems.
Section 3 presents the model and definitions, and describes briefly the Simple
Routing and Phoenix protocols. Section 4 addresses the creation of the network
overlay to route events among brokers. Section 5 presents a first, pedagogical
protocol to handle broker migration. Section 6 presents an alternative, more
efficient protocol. Section 7 presents performance results of both approaches
and compares them to other routing protocols. Finally, Section 8 concludes the
paper.

2 Related work

Most of the research done in publish/subscribe systems is centered on improving
current solutions. Be it the reliability of delivering an event [41], improving the
performance or increasing the fault tolerance [96]. Some work try to improve on
a typical tree structure for event delivery. In [38] authors propose the creation of
a tree for each topic a subscriber can subscribe to with the publisher being the
root of the tree for optimal message delivery. In some cases a communication
tree might be too weak against node failure and the authors of [77] propose
using gossiping so that the system can keep working while the tree is being
repaired due to a node failure. Our proposal uses a tree created by a leader
election algorithm that is constantly being updated in order to support fault
tolerance.

Another topic is the support for mobility. Though there are various proto-
cols for publish/subscribe middleware, few of them support mobility [83]. There
has been some effort on trying to adapt current protocols for mobile environ-
ments [64], detecting when a broker has lost its connection to the rest of the
network and storing the messages until that connection is reestablished. In [3]
a possible solution is suggested for highly mobile environments, though only
edge brokers are mobile, while the backbone is cloud based. Different to these
solutions or work allows for full mobility of all the devices on the network.

Another possible solution to support mobility if the use of information-
centric networks [39, 89]. Since this kind of networks support mobility natively,
authors propose exploiting this property instead of using traditional TCP/IP
communications. The work presented in this paper is similar to these last ones,

2

but it also allows for direct communication between any two nodes on the net-
work.

Gryphon [87] is a large scale content-based publish/subscribe system that
provides high throughput and low latency. Gryphon integrates the following
technologies: event matching, multicasting, graph transformations, fault toler-
ance, ordered delivery, optimistic delivery, compression, reconfiguration, reflec-
tion, and security. Bayeux [98] is an efficient application-level multicast system
that scales to arbitrarily large receiver groups while tolerating failures in nodes
and network links. It includes specific mechanisms for load balancing across
replicated nodes. Bayeux leverages the architecture of Tapestry [95], a fault
tolerant, wide area overlay routing and location network.

In [34], Cugola and Jacobsen investigate the use of publish/subscribe mid-
dleware for large scale mobile applications, identifying two key problems: scal-
ability and the ability to support changes in the topology which result from
mobility. In [28], Cilia et al. address the use of publish/subscribe notifica-
tion services in pervasive applications where mobility plays a prime role. They
propose two enhancements of the publish/subscribe platform REBECA that
provide applications with sequences of past notifications.

In [15], Burcea et al. study the factors that affect the performance of dis-
tributed publish/subscribe systems supporting subscriber mobility. In [67],
Mühl et al. address client mobility in the REBECA publish/subscribe sys-
tem. In [68], Muthusamy et al. study the effects of routing computations in
content-based routing networks with mobile data sources. Additionally, the
paper identifies the factors that affect the performance of a distributed pub-
lish/subscribe architecture supporting mobile publishers. In [92], Xylomenos et
al. propose the publish/subscribe Internet (PSI) architecture, a information-
centric networking approach designed to satisfy the user demands for pervasive
content delivery. PSI supports seamless user mobility.

Mobile XSiena [79] is a publish/subscribe platform which seeks to extend
the XSiena [58] content-based publish/subscribe system in order to support user
mobility. The key mobility-related features of Mobile XSiena are mobile device
integration, seamless networking, reconnection support, location-based match-
ing, and persistent events. In [20], Caporuscio et al. propose a support service
for mobile, wireless clients of a distributed publish/subscribe system. The goal
is to support applications on mobile, wireless host devices in such a way that
the applications can be oblivious to the mobility and intermittent connectivity
of their hosts as they move from one broker to another. In [44], Fiege et al.
investigate the support of mobility in content-based publish/subscribe middle-
ware. They distinguish two orthogonal forms of mobility: the system-centric
physical mobility and an application-centric logical mobility (where users are
aware that they are changing location).

In [5], Baldoni et al. introduce a self-configurable and adaptive peer-to-
peer architecture for implementing content-based publish/subscribe communi-
cations on top of structured overlay networks. In [4], Baldoni et al. propose a
self-organizing algorithm executed by brokers whose aim is to directly connect,
through overlay links, pairs of brokers matching same events. In this way, on
average, the number of brokers involved in an event dissemination decreases.

HoP-and-Pull (HoPP) [47] is a robust publish/subscribe scheme for Internet
of Things scenarios that targets networks consisting of hundreds of resource con-
strained devices at intermittent connectivity. In [70], Pham and Huh propose an

3

efficient edge-cloud publish/subscribe model that coordinates brokers in the sys-
tem for large scale Internet of Things applications. They show that their broker
overlay network can support low delay data delivery in a high scalable manner.
In [84], Siegemund and Turau propose a self-stabilizing publish/subscribe mid-
dleware for Internet of Things applications. The middleware eventually provides
safety and liveness properties such as the guaranteed delivery of all published
messages to all subscribers and the correct handling of subscriptions and un-
subscriptions. In [40], Dominguez et al. propose an algorithm for distributing
hot-topics, subscribers and the process of notifying events over mobile and fixed
brokers, focusing on the Internet of Things.

MQTT-S [53] is a data-centric publish/subscribe protocol for wireless sensor
networks. It is designed in such a way that it can be run on low-end and battery-
operated sensor/actuator devices and operate over bandwidth-constraint wire-
less sensor networks. In [13], Boonma and Suzuki propose La Nina, a self-
adaptive framework for event routing in TinyDDS, which is a publish/subscribe
middleware for wireless sensor networks. Mires [86] is a publish/subscribe mid-
dleware for wireless sensor networks. It has been implemented on top of TinyOS,
an event-based operating system explicitly designed for sensor networks. Mires
supports sudden topology changes and individual node crashes.

In [82], Schönherr et al. present a method to realize a self-organizing and self-
stabilizing publish/subscribe middleware for wireless actuator and sensor net-
works. Their approach combines a content-based publish/subscribe algorithm
and a clustering scheme. The publish/subscribe clusters are able to adapt them-
selves to changing network topologies supporting moderately dynamic settings.
PS-QUASAR [26] is a lightweight, topic-based, Quality of Service aware pub-
lish/subscribe middleware for wireless sensor and actor networks. PS-QUASAR
handles reliability and supports a many-to-many exchange of messages between
nodes in a fully distributed way by means of multicasting techniques.

P2S [24] is a fault tolerant publish/subscribe infrastructure for building large
scale distributed event notification systems. P2S contributes a practical solu-
tion by replicating the broker in a replicated architecture based on Paxos [62].
In [57], Jehl and Meling propose a Byzantine fault tolerant publish/subscribe
system, on a tree-based overlay, tolerating a configurable number of failures in
any part of the system. In [25], Chang and Meling address the design of a
Byzantine fault tolerant publish/subscribe system suitable for use as a cloud
computing infrastructure for building large scale distributed event notification
systems. In [11], Berger and Reiser address Byzantine fault tolerance for resilient
interactive web applications. They explore the possibility of using web-based
clients for interaction with a Byzantine fault tolerant service.

In [60], Kazemzadeh and Jacobsen propose reliable distributed publish/subscribe
algorithms that can tolerate concurrent failure of brokers and communication
links. They propose protocols to address three problems in presence of broker
or link failures: (i) subscription propagation, (ii) publication forwarding, and
(iii) broker recovery. In [59], Kazemzadeh and Jacobsen propose a reliable dis-
tributed publish/subscribe approach that provides availability of service in the
face of concurrent crash failure of up to δ brokers. They also propose a recovery
procedure that recovering brokers execute in order to re-enter the system, and
synchronize their routing information. XNET [23] is a reliable content-based
publish/subscribe system. It gracefully handles broker and link failures and
maintains the system global state consistent at all times. The key principle

4

underlying the recovery mechanism is that the local state of a broker can be
reconstructed from the state of its neighbor brokers.

In [29, 30], Costa et al. address the problem of reliable event delivery in
content-based publish/subscribe in dynamic environments by means of epidemic
algorithms, which are by nature decentralized, scalable, and resilient to topolog-
ical changes. Sub-2-Sub [90] is a self-organizing content-based publish/subscribe
system for dynamic large scale collaborative environments. Sub-2-Sub deploys
an unstructured overlay network, and relies on an epidemic-based algorithm in
which peers continuously exchange subscription information to get clustered to
similar peers.

In [73], Pongthawornkamol et al. analyze the reliability and timeliness of
fault tolerant distributed publish/subscribe systems. They propose a model
to predict Quality of Service in terms of event delivery probability and timeli-
ness based on statistical attributes of each component in the distributed pub-
lish/subscribe system. In [37], Garćıa and Calveras propose a mechanism that
establishes different Quality of Service levels, based on the publish/subscribe
model for wireless networks to meet application requirements, to provide relia-
bility and timeliness.

Mist [85] is a reliable and delay-tolerant publish/subscribe middleware for
dynamic networks. It provides publish/subscribe with guaranteed message de-
livery in dynamic topologies with high mobility. In [55], Jaeger et al. present a
self-organizing broker overlay infrastructure that adapts dynamically to achieve
a better efficiency in large scale publish/subscribe systems.

In [6], Baldoni et al. study distributed event routing in publish/subscribe
systems, addressing the issue of achieving scalable information dissemination in
mobile ad hoc networks. COMAN [65] is a protocol to organize the nodes of
mobile ad hoc networks in a tree-shaped network able to self-repair to toler-
ate the frequent topological reconfigurations typical of mobile ad hoc networks.
COMAN builds upon the tree maintenance algorithm of the MAODV multi-
cast protocol [10]. PSAMANET [75], is a publish/subscribe architecture for
mobile ad hoc networks, which properly adapts to the highly dynamic topol-
ogy of such networks using the nodes’ movement to disseminate publications to
the whole network with few transmissions. In [51], Huang and Garcia-Molina
study the tree construction problem in wireless ad hoc publish/subscribe sys-
tems. They define the optimality of a publish/subscribe tree by developing a
metric to evaluate its efficiency, and propose a greedy algorithm that builds the
publish/subscribe tree in a fully distributed fashion.

In [36], Cugola et al. propose an algorithm to dynamically reconfigure the
topology of a distributed publish/subscribe dispatching infrastructure. The al-
gorithm strikes a balance between simplicity and efficiency by tolerating frequent
reconfigurations at the cost of moderate overhead. In [71], Picco et al. study
the efficient content-based event dispatching problem in the presence of topo-
logical reconfigurations by means of a strawman approach whose simplicity is
often outweighed by its inefficiency. In [12], Bhola et al. propose an efficient
and scalable protocol for exactly-once delivery to subscribers in a content-based
publish/subscribe system. The protocol requires persistent storage only at the
publishing site, and is tolerant to message drops, node failures, and link failures.

PADRES [54] is a robust and scalable content-based publish/subscribe sys-
tem providing redundancy in routes between publishers and subscribers and thus
tolerating load imbalances, congestion, and broker and network failures. In [61],

5

Kazemzadeh and Jacobsen propose an approach to adapt a publish/subscribe
overlay based on publication traffic and network conditions by selectively creat-
ing special links that boost the network connectivity and provide a large num-
ber of end-to-end forwarding paths, improving the system’s throughput and
efficiency.

In [94], Zhang et al. investigate the issue of total ordering in content-based
publish/subscribe systems, proposing a solution using reliable FIFO channels.
The solution does not require any global knowledge and is implemented directly
in the brokers, eschewing the need for an external sequencing service.

Herald [17] is a highly scalable global event notification system that trans-
parently scales in the numbers of publishers and subscribers, and event delivery
rates. Herald has been designed to operate correctly in the presence of broken
and disconnected components. Hermes [72] is a robust distributed event-based
middleware architecture to build large scale publish/subscribe systems. It relies
on a scalable and fault tolerant routing algorithm using an overlay network that
avoids global broadcasts.

In [56], Jafarpour et al. propose a fast and robust content-based pub-
lish/subscribe architecture based on clustering brokers and forming rings be-
tween these clusters. The proposed approach can mask broker failures and
increase dissemination service availability. It can also provide load balancing.
In [27], Cheung and Jacobsen propose a load balancing solution specifically
tailored to the needs of content-based publish/subscribe systems that is dis-
tributed, dynamic, adaptive, transparent, and accommodates heterogeneity.

In [33], Cugola et al. study how to minimize the reconfiguration overhead
in content-based publish/subscribe, in order to adapt to changes which impact
the topology of the dispatching infrastructure. They propose an algorithm that
minimizes the portion of the system affected by the reconfiguration.

In [31], Costa and Picco propose an approach where event routing relies on
deterministic decisions driven by a limited view on the subscription information
and, when this is not sufficient, resorts to probabilistic decisions performed by
selecting links at random. They show that mixing deterministic and probabilis-
tic decisions is very effective at providing high event delivery and low overhead
in highly dynamic scenarios, without sacrificing scalability.

In [63], Li et al. propose a content-based publish/subscribe algorithm to sup-
port general overlay topologies, as opposed to traditional acyclic or tree-based
topologies. Content-based routing in a general overlay improves the scalability
and robustness of publish/subscribe systems by offering routing path alterna-
tives.

Dynamoth [45] is a dynamic, scalable, channel-based publish/subscribe mid-
dleware targeted at large scale, distributed and latency constrained systems
in the cloud. In [8], Barazzutti et al. propose an elastic content-based pub-
lish/subscribe engine, E-STREAMHUB, running as a service on cloud environ-
ments.

DYNATOPS [97] is a dynamic topic-based publish/subscribe architecture
that provides efficient scalable large scale event notifications for dynamic sub-
scriptions. In DYNATOPS, brokers are repositioned on the overlay structure
for efficient event notifications, to adapt to the publications and subscription
dynamics.

Meghdoot [48] is a middleware for a content-based publish/subscribe sys-
tem, which leverages peer-to-peer based Distributed Hash Tables for scalable

6

dissemination of events to subscribers distributed across the network. PubSub-
Coord [2] is an autonomous and dynamic coordination and discovery service for
large scale publish/subscribe applications.

In [91], Wang at al. propose a solution for supporting mobile clients in
publish/subscribe systems. The key of their solution is the two-phase handover
protocol, which can guarantee the exactly-once and ordered event delivery to
mobile clients with little extra overhead, and allow mobile clients to get the
undelivered events in a very short time after reconnection.

Trinity [74] is a distributed publish/subscribe broker with blockchain-based
immutability for Internet of Things applications. Through the use of a blockchain
network, Trinity can guarantee persistence, ordering, and immutability across
trust boundaries. HyperPubSub [99] is a decentralized, permissioned, pub-
lish/subscribe service using blockchains, which provides secure and privacy pre-
serving messaging. In [14], Bu et al. propose a publish/subscribe system, also
named HyperPubSub, where the broker role is played by a private blockchain.

In [93], Yoon et al. investigate the foundations for highly available content-
based publish/subscribe overlays. They propose a set of primitive operations to
allow arbitrary transformations of a broker overlay to an optimal one, and to
enable on-demand adjustments when there are permanent or transient failures.

In [42], Esposito et al. present a state-of-the-art on reliability in pub-
lish/subscribe services, addressing aspects like efficient and robust multi-point
data dissemination, performance, and scalability.

3 Model and definitions

In a publish/subscribe system we might find two different components. Clients
will produce and consume events while the notification service handles the sub-
scriptions issued by the clients and assures the correct delivery of events to the
interested clients.

We can further divide the clients into two subsets: subscribers that will
register their interests and consume events, and publishers that will produce
those events. We will use s ∈ S to refer to a subscriber belonging to the set
of subscribers S and p ∈ P to refer to a publisher that belongs to the set of
publishers P . Any clients in the system may behave as a subscriber, publisher
or even both at the same time. We will also use the nomenclature f ∈ F when
referring to a filter that belongs to the set of filters F .

The notification service is composed of a set of brokers which we will call B
and refer to individually as b ∈ B. The brokers will be connected at the logical
level by an acyclic graph or a spanning tree. The brokers are the ones responsible
of storing the subscriptions issued by the subscribers and route the published
events to the matching subscribers. At any moment a broker will have a set
of neighbouring brokers, in the graph, that it can communicate with. We will
refer to this set as Ni for broker bi. A broker will also be able to communicate
with clients that are connected to it. For this reason we will refer to the set of
interfaces, be it other brokers or clients, that a broker bi can communicate with
at any moment as Ii.

All communications are by point-to-point message passing over FIFO chan-
nels. Since participants are mobile, the set of channels linking them, as well
as the neighbour set evolves. There is no need of having previous knowledge

7

Message Payload Client/Broker Meaning
SUB f ∈ F s ∈ S Subscribe s to filter f
UNS f ∈ F s ∈ S Unsubscribe s from filter f
PUB e ∈ E p ∈ P Publish event e

Table 1: Simple Routing message description

of the sets, i.e., initially each participant knows only itself and the amount of
participants on each set might change as time passes.

3.1 Simple Routing

The Simple Routing [7] protocol assumes a static system where brokers are
connected in an acyclic graph, and clients are permanently bound to a single
broker. This routing strategy is based on the propagation of subscription (SUB)
and unsubscription (UNS) messages to all of the brokers in the system. Every
broker bi maintains a routing table Ri that is based on the received SUB and
UNS messages and models the subscriptions in the system. The routing tables
enable brokers to filter incoming events received as PUB messages, and forward
them only towards those subscribers with matching subscriptions.

The routing table Ri at every broker bi contains, for every subscription in
the system, a routing entry (f, z) where f ∈ F and z ∈ Ii, to indicate that the
publication of an event e matching f must either be forwarded towards broker
z (if z ∈ B) or delivered to subscriber z (if z ∈ S).

Table 1 shows the three types of messages used in the Simple Routing pro-
tocol, for subscribing to a filter, unsubscribing from a filter and publishing an
event respectively.

3.2 Phoenix

The Phoenix protocol handles subscriber mobility in content-based publish/subscribe.
In order to do so, the routing table at brokers also stores the identity of the sub-
scriber that issued each subscription. This way, when a subscriber migrates, the
broker to which it was connected can be notified of the change. Whenever the
subscriber re-connects to the system, possibly to another broker, it will issue a
MIG message, whose propagation allows updating routing tables and delivering
published messages for the subscriber.

Message Payload Client/Broker Meaning
MIG — s ∈ S Notify the migration of s
REP e ∈ E s ∈ S Replay event e towards s

Table 2: Phoenix message description

Table 2 shows the two extra types of messages used by Phoenix, for notifying
the migration of a subscriber, and for replaying queued events to a migrated
subscriber respectively.

8

4 Creating the network overlay

In order for the devices on the network to communicate efficiently we must
create a logical overlay. We need a way to create an acyclic graph (a spanning
tree) in order to correctly route the messages. We also need a mechanism that
detects when a change in the topology has occurred so a new link will be created
when an old one disappears. The algorithm that creates this graph must also
support the formation of several partitions in the network, each one working
independently until they can merge together again. Lowering the changes made
to the graph caused by physical changes on the network will also help to reduce
the migrations needed to synchronize the publish/subscribe system.

We can use any algorithm that gives us these properties. In our case, we
have chosen a leader election algorithm that has a heartbeat mechanism in order
to keep the leader stable [46]. Once a leader has been elected, this node will
keep sending messages so that all the other nodes will have this one as their
leader. When a node receives one of this messages it will know the path to the
leader [16], and it will broadcast it so the message spreads to all nodes within
communication range. With this we create the overlay we need for constructing
the publish/subscribe system.

Using this algorithm, in the event that the network is partitioned, each of
the partitions will choose a leader. And eventually when the network becomes
connected again both partitions will merge choosing a single leader and main-
taining a single graph. Furthermore, with this heartbeat message, when a node
first receives the message of a new round it will store the sender as next hop
to the leader. This next hop might be modified by any physical change in the
location of a node or by a failure since the heartbeat message will arrive via
another node. With this we can detect when the topology has changed and
notify the publish/subscribe system so that it can migrate accordingly.

5 A modular protocol

The first version of the protocol for broker migration follows a modular ap-
proach. Since the brokers are moving any change in the topology can happen
at any time. These changes can range from a simple client migration to the
migration of multiple brokers at the same time. Due to this each broker only
knows the nodes that are directly connected to it, and the broker might not
have been notified of a change further down on the connection tree. For this
reason a broker has to maintain an updated list of subscribers that are directly
connected to it. And, when it migrates, it is only responsible for the migration
of those subscribers. Every other broker connected to the one that has migrated
has to be notified of this migration so they can migrate too. This way the whole
branch of the tree that the migrating broker is responsible for has to migrate.

9

Message Payload Client/Broker Meaning
FILTERS f : f ∈ F b ∈ B Send active subscriptions

BMIG Cb b ∈ B Notify the migration of b
BTAB Rb b ∈ B Updated routing table of b
FMIG — b ∈ B Force the migration of a broker

Table 3: Broker mobility message description

Table 3 shows the additional messages used in order to support broker mo-
bility, for sending the set of filters a subscriber has issued, for notifying the
migration of a broker, for updating the routing table based on the informa-
tion of the primary partition (i.e., the partition containing the leader), and for
forcing the migration of a broker respectively.

For this version of the protocol we have simplified the code of Phoenix, for
example by removing the timestamp values from messages. In Phoenix, when a
subscriber migrates it can request for the events that it has lost to be resent by
specifying the timestamp of the last received message. When the broker where
it was connected previously receives this message, it will resend all the messages
that are newer than that timestamp. But, in our case the subscribers are not
the only ones that are migrating, brokers will also migrate. As a broker migrates
it has no knowledge of the last received message by a subscriber. Furthermore
since the broker network is also changing, we cannot designate a single broker
as the one responsible for storing the events. In order to solve this we need
a mechanism that tells us if a message has been delivered. With this, if an
error occurs, the broker will store the message as undelivered. When a broker
receives a migration message, from a subscriber or another broker, it will send
all messages stored for the subscribers that migrate. This changes are reflected
on Algorithms 1 and 2.

To complicate things more we may have a subscriber migrating from one
partition of the network to another, and since both partitions function individ-
ually the subscriber will have different subscriptions in each of them. We added
a new message called FILTERS to fix this issue. We can see how this message
is sent on lines 23-27 of Algorithm 1. Whenever a subscribers sends a MIG
message the broker it migrates to will answer with a FILTERS message. This
message contains all the subscriptions of that subscriber that the broker has
in its routing table. Using this information the subscriber may decide that the
subscriptions are outdated and issue SUB or UNS messages to fix and update
the routing tables of the brokers on that partition.

Algorithm 3 shows how the broker migration works. Whenever a broker
migrates it will send a BMIG message with two parameters: a list of the
subscribers connected to it and the identifier of the broker that is migrating.
Any broker that receives this message will first replace the next hop of those
subscribers in the routing table to the sender of the message and then resend
the BMIG message to the old next hops so that they are notified of the change.
This behavior can be seen on lines 2-8 on Algorithm 3 and it is similar to what
happens when a subscriber migrates. Then if the broker is the first one receiving
the message it will answer with a BTAB message containing its whole routing
table. Finally the broker will send any stored messages for those subscribers.

Whenever a broker migrates it can only trust the subscribers that are con-
nected directly. For this reason when after sending a BMIG message it receives

10

1 when receive(SUB, f, s) from z ∈ Ii do
2 if @(f, , s) ∈ Ri then
3 Ri ← Ri ∪ {(f, z, s)}
4 foreach b ∈ Ni where b 6= z do
5 send(SUB, f, s) to b

6 when receive(UNS, f, s) from z ∈ Ii do
7 if ∃(f, , s) ∈ Ri then
8 Ri ← Ri \ {(f, , s)}
9 foreach b ∈ Ni where b 6= z do

10 send(UNS, f, s) to b

11 when receive(PUB, e) from z ∈ Ii do
12 X ← ∅
13 foreach (f, y,) ∈ Ri where y /∈ X ∧ y 6= z do
14 if f(e) = true then
15 X ← X ∪ {y}

16 foreach y ∈ X do
17 if y /∈ Ii then
18 foreach (f, y, s) ∈ Ri where f(e) = true do
19 enqueue {e} in Qi(s)

20 else
21 send(PUB, e) to y

22 when receive(MIG, s, b) from z ∈ Ii do
23 if z = s then
24 X ← ∅
25 foreach (f, , s) ∈ Ri do
26 X ← X ∪ {f}
27 send(FILTERS, X) to s

28 if b 6= bi then
29 if ∃(, , s) ∈ Ri then
30 bj ← y ∈ Ni where (, y, s) ∈ Ri

31 send(MIG, s, b) to bj

32 foreach (, , s) ∈ Ri do
33 replace (, , s) with (, z, s) in Ri

34 sendQueuedMessages(s, z)

Algorithm 1: Simple Routing with mobile clients

11

35 function sendQueuedMessages(s, y)
36 while Qi(s) is not empty do
37 dequeue {e} from Qi(s)
38 if y /∈ Ii then
39 enqueue {e} in Qi(s)
40 return

41 else
42 send(REP, e, s) to y

43 when receive(REP, e, s) from z ∈ Ii do
44 y ← x ∈ Ii where (, x, s) ∈ Ri

45 if y /∈ Ii then
46 enqueue {e} in Qi(s)
47 else
48 send(REP, e, s) to y

Algorithm 2: Simple Routing with mobile clients - Message replay

a BTAB message back it will empty its routing table except the entries of the
local subscribers. And then it will store all the information that comes with
the message as shown on lines 14-17. On lines 18-21 the broker checks for any
information that is missing on the other broker’s routing table and sends the
necessary SUB and UNS messages to fix it. After this, the broker will force the
migration of all the brokers that are connected to it with an FMIG message.
As soon as a broker receives a FMIG message it will answer back with a BMIG
message starting the process again. And finally, as before, the broker will send
any stored messages for all subscribers.

On Figure 1 we show two examples of migrations with a sequence of messages
for each of the migrations explained on Figure 2. Independently of the changes
that have happened on the topology a migrating broker will always try to force
all the other brokers that it is connected with to also migrate. If there was not
a forced migration in the example b3 would not be able to differentiate between
both examples.

12

1 when receive(BMIG, Cj, bj) from z ∈ Ni do
2 X ← ∅
3 foreach s ∈ Cj do
4 X ← X ∪ {b ∈ Ni where (, b, s) ∈ Ri ∧ b 6= z}
5 foreach (, , s) ∈ Ri do
6 replace (, , s) with (, z, s) in Ri

7 foreach y ∈ X do
8 send(BMIG, Cj, bj) to y

9 if z = bj then
10 send(BTAB, Ri) to bj

11 foreach s ∈ Cj do
12 sendQueuedMessages (s, z)

13 when receive(BTAB, Rj) from bj ∈ Ni do
14 foreach (, , s) ∈ Ri where s /∈ Ci do
15 Ri ← Ri \ {(, , s)}
16 foreach (, , s) ∈ Rj where s /∈ Ci do
17 Ri ← Ri ∪ {(, bj , s)}
18 foreach (f, , s) ∈ (Ri −Rj) do
19 send(SUB, f, s) to bj

20 foreach (f, , s) ∈ (Rj −Ri) do
21 send(UNS, f, s) to bj

22 foreach b ∈ Ni where b 6= bj do
23 send(FMIG) to b

24 foreach (, , s) ∈ Rj where s /∈ Ci do
25 sendQueuedMessages (s, bj)

26 when receive(FMIG) from z ∈ Ni do
27 send(BMIG, Ci, bi) to z

Algorithm 3: Simple Routing with mobile brokers

13

b1

b2 b3

1

2

b4 b5 b6 b7

s1

s2 s3

s4 s5 s6 s7

(a) b3 ↔ b1 link is lost and b3 ↔ b2 is
created.

b1

b2 b3

1

4

b4 b5 b6
23

b7

s1

s2 s3

s4 s5 s6 s7

(b) First b3 ↔ b1 link is lost and af-
ter b6 ↔ b3 is also lost. b6 ↔ b5 is
connected and allowed to completelly
migrate before b3 ↔ b2 is created.

Figure 1: Two migration examples, Figure 1a shows a straightforward migration
of one broker whereas Figure 1b has two migrating nodes. Numbers in links refer
to the order of events.

1. b3 → b2 ⇒ BMIG : {Cj = [s3] , bj = b3}
2. b2 → b3 ⇒ BTAB : {Rj = R2}
3. b2 → b1 ⇒ BMIG : {Cj = [s3] , bj = b3}
4. b3 → b6 ⇒ FMIG

5. b3 → b7 ⇒ FMIG

6. b6 → b3 ⇒ BMIG : {Cj = [s6] , bj = b6}
7. b7 → b3 ⇒ BMIG : {Cj = [s7] , bj = b7}
8. b3 → b6 ⇒ BTAB : {Rj = R3}
9. b3 → b7 ⇒ BTAB : {Rj = R3}
10. b3 → b2 ⇒ BMIG : {Cj = [s6] , bj = b6}
11. b3 → b2 ⇒ BMIG : {Cj = [s7] , bj = b7}
12. b2 → b1 ⇒ BMIG : {Cj = [s6] , bj = b6}
13. b2 → b1 ⇒ BMIG : {Cj = [s7] , bj = b7}

(a) Message sequence when the mi-
gration on Figure 1a occurs.

1. b6 → b5 ⇒ BMIG : {Cj = [s6] , bj = b6}
2. b5 → b6 ⇒ BTAB : {Rj = R5}
3. b5 → b2 ⇒ BMIG : {Cj = [s6] , bj = b6}
4. b2 → b1 ⇒ BMIG : {Cj = [s6] , bj = b6}
5. b3 → b2 ⇒ BMIG : {Cj = [s3] , bj = b3}
6. b2 → b3 ⇒ BTAB : {Rj = R2}
7. b2 → b1 ⇒ BMIG : {Cj = [s3] , bj = b3}
8. b3 → b7 ⇒ FMIG

9. b7 → b3 ⇒ BMIG : {Cj = [s7] , bj = b7}
10. b3 → b7 ⇒ BTAB : {Rj = R3}
11. b3 → b2 ⇒ BMIG : {Cj = [s7] , bj = b7}
12. b2 → b1 ⇒ BMIG : {Cj = [s7] , bj = b7}

(b) Message sequence when the mi-
gration on Figure 1b occurs.

Figure 2: Message sequences when the migration on Figure 1 occurs following
the modular protocol. R2, R3 and R5 contain the whole routing table of the
corresponding broker, b2, b3 and b5 respectively.

14

6 A more efficient protocol

In this section we will describe the changes made to the protocol in order to avoid
the cascade of messages that a migrating broker might cause. For this we add a
timestamp to any message sent by a subscriber. This timestamp will consist of
a sequence number that increases each time a subscriber sends a message. We
will also include a hop count to the messages, this way any broker will know
on how many hops it can reach a subscriber. With these two values we have
useful information when a migration occurs in order to find how the topology
is changing. Any broker with a higher sequence number will be deemed to have
the latest information and correct path on that subscriber, if the timestamps
are equal the one that reports being the closest will have a higher probability
of being correct.

If we want to include this information we have to modify the previously de-
fined SUB, UNS and MIG messages. The changes can be seen on Algorithm 4.
When a broker bi receives one of these messages it will first check if the message
contains new information by comparing the timestamps. Then it will store the
new value and before propagating the message to the rest of the network it will
increase the hop count of the message by one.

Message Payload Client/Broker Meaning
FILTERS f : f ∈ F b ∈ B Send active subscriptions

BMIG {Cb, Ob} ∈ Sb b ∈ B Notify the migration of b
BQUERY s ∈ S b ∈ B Ask for the subscriptions of s

BSUB f : f ∈ F b ∈ B Send active subscriptions

Table 4: Message description

Table 4 shows the messages used in order to support broker mobility without
forcing migrations, the new messages will be BQUERY and BSUB for asking
about the subscriptions a broker has of an specific subscriber and for sending
the subscriptions issued by a single subscriber that a broker has in its routing
table respectively. These messages replace the BTAB message of the previ-
ous approach. We also keep the BMIG message for notifying when a broker
migrates, but change its behaviour.

When a broker bi migrates from bo to bn, it calculates two sets of subscribers,
C for its children and O for the rest, based on their next hop. It updates its
routing table for the subscribers in O with bn as their new next hop. After
sending a BMIG message to bn, it sends any queued message for subscribers in
O through bn. The code that describes this behavior can be seen on Algorithm 5.

A BMIG message has three parameters; two lists of subscribers with their
timestamps, separating what the sending broker believes that are children nodes
Cj , and the rest Oj , and a hop count for the message. Upon reception of this
message from another broker bj , a broker bi first goes through the Cj set in order
to find inconsistencies, as shown on lines 15-30 on Algorithm 6. If bi has a newer
timestamp or a lower hop count to the subscriber than what is shown on Cj

bi will send a message containing the subscriptions of that subscriber with the
correct timemstamp and hop count to bj (lines 59-63 of Algorithm 7). On the
other hand if the timestamp is lower it will ask bj to send updated information on
the subscriber. At the same time a new list of children subscribers is created with

15

1 when receive(SUB, f, s, t, h) from z ∈ Ii where (t, h) > Ti(s) do
2 Ti(s)← (t, h+ 1)
3 if @(f, , s) ∈ Ri then
4 Ri ← Ri ∪ {(f, z, s)}
5 foreach b ∈ Ni where b 6= z do
6 send(SUB, f, s, t, h+1) to b

7 when receive(UNS, f, s, t, h) from z ∈ Ii where (t, h) > Ti(s) do
8 Ti(s)← (t, h+ 1)
9 if ∃(f, , s) ∈ Ri then

10 Ri ← Ri \ {(f, , s)}
11 foreach b ∈ Ni where b 6= z do
12 send(UNS, f, s, t, h+1) to b

13 when receive(MIG, s, b, t, h) from z ∈ Ii where (t, h) > Ti(s) do
14 Ti(s)← (t, h+ 1)
15 if z = s then
16 X ← ∅
17 foreach (f, , s) ∈ Ri do
18 X ← X ∪ {f}
19 send(FILTERS, X) to s

20 if b 6= bi then
21 if ∃(, , s) ∈ Ri then
22 bj ← y ∈ Ni where (, y, s) ∈ Ri

23 send(MIG, s, b, t, h+1) to bj

24 foreach (, , s) ∈ Ri do
25 replace (, , s) with (, z, s) in Ri

26 sendQueuedMessages(s, z)

Algorithm 4: Simple Routing with mobile clients

the corrected information. The same procedure is followed for all subscribers
in Oj on lines 31-35, in this case hop counts are ignored and bi will only check
the timestamps. To finish checking for inconsistencies on bj ’s routing table on
lines 36-38 the first broker that receives a BMIG message will check if both
sets Cj and Oj contain all the subscribers bi knows. For any subscriber that is
not in the combination of both sets, bi will send a message back to bj with its
subscriptions.

Once all inconsistencies have been fixed, on lines 40-43, bi updates its routing
table to show the change in topology for the subscribers that are children of bj
and previous next hops for those subscribers are stored. The corrected children
list will be forwarded to those stored brokers. Finally any queued message will
be forwarded to the updated subscribers.

16

1 function migrate(bo, bn)
2 C ← ∅
3 O ← ∅
4 foreach (s, z,) ∈ Ri do
5 if z = bo then
6 O ← O ∪ {(s, Ti(s).t, Ti(s).h)}
7 replace (s, ,) with (s, bn,)

8 else
9 C ← C ∪ {(s, Ti(s).t, Ti(s).h)}

10 send(BMIG, C, O, 0) to bn
11 foreach ((s, ,) ∈ O) do
12 sendQueuedMessages (s, bn)

Algorithm 5: Migration of broker bi

1. b3 → b2 ⇒ BMIG :


Cj = [(s3, 1, 1), (s6, 1, 2), (s7, 1, 2)]

Oj = [(s1, 1, 2), (s2, 1, 3), (s4, 1, 4), (s5, 1, 4)]

h = 0


2. b2 → b1 ⇒ BMIG :


Cj = [(s3, 1, 1), (s6, 1, 2), (s7, 1, 2)]

Oj = ∅
h = 1


Figure 3: Message sequence when the migration on Figure 1a occurs following
the more efficient protocol.

Once a broker bi receives a BSUB message it will check if it has a newer
timestamp for the subscriber than what bi itself has, if it is older bi will ignore
the message. Then bi will first remove all entries for that subscriber from its
routing table and add the ones that came with the message updating the sub-
scriber’s timestamp as shown on lines 49-53 of Algorithm 7. This message will
be forwarded as if it were a SUB message issued by any subscriber. Finally any
queued message will be sent to the subscriber.

When a broker receives a BQUERY message, with a timestamp older than
what it has, it will directly answer back with the subscriptions of the subscriber
the message is asking for, lines 57-58 of Algorithm 7.

A sequence of the messages sent whenever a broker migrates can be seen on
Figures 3 and 4, referring to the migrations that happened on Figure 1. The
number of messages is completely different in both cases. In the first example
no changes have been made to the topology before the migration. With the
help of the timestamps and hop numbers the brokers are able to detect it and
no further messages are needed. Instead on the second example b6 is the one
that realizes some error on the message with respect to the number of hops of
s6. And answers back with a BSUB message that is propagated to the whole
network.

17

13 when receive(BMIG, Cj, Oj, h) from bj ∈ Ni do
14 Ci ← ∅
15 foreach (s, (t, hj)) ∈ Cj do
16 if t > Ti(s).ts then
17 //If j is newer than i

18 send(BQUERY, s, Ti(s).ts, Ti(s).h) to bj
19 Ci ← Ci ∪ {(s, (Ti(s).ts, hj))}
20 else if t < Ti(s).ts then
21 //If i is newer than j

22 sendSubscriptions(s, bj)

23 else if t = Ti(s).ts then
24 if h ≤ Ti(s).hops then
25 //If j is closer than i

26 Ci ← Ci ∪ {(s, (Ti(s).ts, hj))}
27 Ti(s)← (t, h+ hj + 1)

28 else if h > Ti(s).hops then
29 //If i is closer than j

30 sendSubscriptions(s, bj)

31 foreach (s, (t,)) ∈ Oj do
32 if t > Ti(s).ts then
33 send(BQUERY, s, Ti(s).ts, Ti(s).h) to bj
34 else if t < Ti(s).ts then
35 sendSubscriptions(s, bj)

36 if h = 0 then
37 foreach (s, ,) ∈ Ri where s /∈ (Cj ∪Oj) do
38 sendSubscriptions(s, bj)

39 X ← ∅
40 foreach s ∈ Ci do
41 X ← X ∪ {b ∈ Ni where (, b, s,) ∈ Ri ∧ b 6= bj}
42 foreach (, , s) ∈ Ri do
43 replace (, , s) with (, bj , s) in Ri

44 foreach y ∈ X do
45 send(BMIG, Ci, ∅, h+1) to y

46 foreach s ∈ Ci do
47 sendQueuedMessages (s, bj)

Algorithm 6: Mobile brokers with timestamps

18

48 when receive(BSUB, s, Sj, Tj(s), h) from z ∈ Ni where
Tj(s) > Ti(s) do

49 foreach (, , s) ∈ Ri do
50 Ri ← Ri \ {(, , s)}
51 foreach f ∈ Sj do
52 Ri ← Ri ∪ {(f, z, s)}
53 Ti(s)← {(Tj(s).ts, Tj(s).h+ h+ 1)}
54 foreach b ∈ Ni where b 6= z do
55 send(BSUB, s, Sj, Tj(s), h+ 1) to b

56 sendQueuedMessages (s, z)

57 when receive(BQUERY, s, t, h) from z ∈ Ni where (t, h) < Ti(s)
do

58 sendSubscriptions(s, z)

59 function sendSubscriptions(s, z)
60 Si ← ∅
61 foreach (f, , s) ∈ Ri do
62 Si ← Si ∪ {f}
63 send(BSUB, s, Si, Ti(s), 0) to z

Algorithm 7: Messages to fix inconsistent routing tables

19

1. b6 → b5 ⇒ BMIG :


Cj = [(s6, 1, 1)]

Oj =

[
(s1, 1, 3), (s2, 1, 4), (s3, 1, 2),

(s4, 1, 5), (s5, 1, 5), (s7, 1, 3)

]
h = 0


2. b5 → b2 ⇒ BMIG :


Cj = [(s6, 1, 1)]

Oj = ∅
h = 1


3. b2 → b1 ⇒ BMIG :


Cj = [(s6, 1, 1)]

Oj = ∅
h = 2


4. b3 → b2 ⇒ BMIG :


Cj = [(s3, 1, 1), (s6, 1, 2), (s7, 1, 2)]

Oj = [(s1, 1, 2), (s2, 1, 3), (s4, 1, 4), (s5, 1, 4)]

h = 0


5. b2 → b1 ⇒ BMIG :


Cj = [(s3, 1, 1), (s6, 1, 2), (s7, 1, 2)]

Oj = ∅
h = 1


6. b2 → b5 ⇒ BMIG :


Cj = [(s3, 1, 1), (s6, 1, 2), (s7, 1, 2)]

Oj = ∅
h = 1


7. b5 → b6 ⇒ BMIG :


Cj = [(s3, 1, 1), (s6, 1, 2), (s7, 1, 2)]

Oj = ∅
h = 2


8. b6 → b5 ⇒ BSUB : {s = s6, Sj = [f6] , Tj(s) = (1, 1), 0}
9. b5 → b2 ⇒ BSUB : {s = s6, Sj = [f6] , Tj(s) = (1, 1), 1}
10. b2 → b4 ⇒ BSUB : {s = s6, Sj = [f6] , Tj(s) = (1, 1), 2}
11. b2 → b1 ⇒ BSUB : {s = s6, Sj = [f6] , Tj(s) = (1, 1), 2}
12. b2 → b3 ⇒ BSUB : {s = s6, Sj = [f6] , Tj(s) = (1, 1), 2}
13. b3 → b7 ⇒ BSUB : {s = s6, Sj = [f6] , Tj(s) = (1, 1), 3}

Figure 4: Message sequence when the migration on Figure 1b occurs following
the more efficient protocol.

20

7 Performance evaluation

This section presents the performance evaluation of the protocols presented in
the previous sections. Results have been obtained by simulation, using the
OMNeT++1 tool with the Castalia simulation framework.

We choose to only implement the protocol introduced in Section 6 since it is
a direct improvement over the first one. We have named this protocol “Mobile
Fault-Tolerant Publish/Subscribe”, or MFT-PubSub for short.

Table 5 presents the different scenarios simulated. The area has been calcu-
lated for a node density of 0,005 nodes per square meter, which is adequate for
wireless sensor networks, i.e., giving an area of 200 square meters per node. We
also define a role (publisher, subscriber or broker) for each node.

Configuration #publishers #susbscribers #brokers area

C2 2 2 2 35x35 m2

C4 2 4 4 45x45 m2

C8 2 8 8 60x60 m2

C16 2 16 16 80x80 m2

C32 2 32 32 110x110 m2

Table 5: Simulation configurations.

The duration of the simulations is set at 700 seconds, with a publication rate
by publishers of 1 message every second. At the end there is a 200 second period
where no new messages are sent so that messages that are still in buffers have
time, and opportunity, to be delivered. The mobility of nodes follows a random
waypoint model [19], with speeds of 2-4-6-8-10 meters per second. Using this
mobility model nodes will choose a random point in the simulation area and
move towards it at a constant speed. Once the point is reached the process will
be repeated. All possible combinations of size and speed are repeated 10 times
with a different seed for the mobility pattern and the results are averaged.

We compare our protocol with Ad hoc On-Demand Distance Vector (AODV) [69],
which is a more general communication protocol for ad-hoc networks. In order
to better compare both of them we also use the same roles that can be seen on
Table 5. With AODV publishers are informed of the subscriber identifiers via
a configuration file and all nodes work as brokers.

Delivery rate

One of the metrics that is able to tell us how well our protocol works is the
delivery rate of messages. We consider the delivery rate as the number of mes-
sages a subscriber receives with respect to the ones that were originally sent to
it.

On Figure 5 we can see a comparison between our protocol and AODV. MFT-
PubSub seems to have better resilience to speed, even improving the delivery
rate as the speed goes up. Both protocols are strongly affected by the network
size, the bigger the network, the harder it is to correctly deliver a message.

1https://omnetpp.org/

21

In addition, if we look at Figure 6 we can see how many messages are actually
delivered. The behavior we see on Figure 5a, where we see an improvement of
delivery rate for higher speeds can be further analyzed with Figure 6b. Here
we can see a slight increase on the total number of messages delivered related
to the speed, but as the speed reaches 6 m/s it starts to drop. This behavior
can be explained by the way our algorithm buffers the messages. Whenever a
broker cannot find the path to a subscriber it will store it and wait for new
information on that subscriber, as the speed goes there are more opportunities
for a subscriber to pass by a broker that has a message for it. If we compare
the delivery rate differences on Figure 5 with the amount of messages delivered
on Figure 6a, we might think that the difference on delivered messages is not
as big as the delivery rate might suggest. This difference is due to how a
publish/subscribe system works, in order to deliver a message to a subscriber
that subscriber has to first subscribe to some content. In these simulations we
only take into account the messages that are routed to a subscriber as having
to be delivered to that subscriber. If a broker receives a PUB message but does
not know a subscriber on the other side of the network is interested on it, the
message will not be considered a loss.

 0

 0.2

 0.4

 0.6

 0.8

 1

C2 C4 C8 C16 C32

M
e
ss

a
g

e
 D

e
liv

e
ry

 R
a
te

Configuration

2 m/s
4 m/s
6 m/s
8 m/s

10 m/s

(a) MFT-PubSub.

 0

 0.2

 0.4

 0.6

 0.8

 1

C2 C4 C8 C16 C32

M
e
ss

a
g

e
 D

e
liv

e
ry

 R
a
te

Configuration

2 m/s
4 m/s
6 m/s
8 m/s

10 m/s

(b) AODV.

Figure 5: Message delivery rate comparison of both algorithms depending on
the size of the simulation.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

C2 C4 C8 C16 C32

A
v
e
ra

g
e
 M

e
ss

a
g

e
s

D
e
liv

e
re

d

Configuration

MFT-PubSub
AODV

(a) Node speed of 8 m/s.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

2m/s 4m/s 6m/s 8m/s 10m/s

A
v
e
ra

g
e
 M

e
ss

a
g

e
s

D
e
liv

e
re

d

Speed

MFT-PubSub
AODV

(b) C16 configuration.

Figure 6: Average number of messages correctly delivered. In Figure 6a we
show the results for a node speed of 8 m/s on different configurations. And, in
Figure 6b we show the results of all speeds for the C16 configuration.

22

End-to-end delay

Another metric is the time it takes a message to reach its destination, we call
this the end-to-end delay. On Figure 7 we can see how network size affects the
end-to-end delay. Even though MFT-PubSub uses buffering of messages to be
delivered at a later date, it still keeps up with AODV that tries to deliver a
message as soon as possible, even obtaining better results on bigger networks
where AODV struggles with keeping updated routing tables.

We also observed that some of these values in the case of AODV are higher
than they should. If we look at Figure 8, that shows the average and maximum
number of hops for a message to be delivered, there is something unusual hap-
pening on C4 and C8. On Figure 8b for C4 the maximum number of hops on
the simulations was 13, and taking into account that in that configuration there
are only 10 nodes, this would mean that the the nodes are not able to correctly
route the message.

 0.001

 0.01

 0.1

 1

 10

C2 C4 C8 C16 C32

E
n
d
 t

o
 E

n
d
 D

e
la

y

Configuration

MFT-PubSub
AODV

Figure 7: Comparison of end-to-end delay, in seconds, for data messages for a
node speed of 8 m/s. Note the logarithmic scale on the y axis.

 0

 1

 2

 3

 4

 5

 6

 7

 8

C2 C4 C8 C16 C32

A
v
e
ra

g
e
 H

o
p

s

Configuration

MFT-PubSub
AODV

(a) Average number of hops.

 0

 2

 4

 6

 8

 10

 12

 14

p2 p4 p8 p16 p32

M
a
x
 H

o
p

s

Configuration

MFT-PubSub
AODV

(b) Maximum number of hops.

Figure 8: Number of hops a message does on the network before it is delivered
for a node speed of 8 m/s.

23

Number of messages exchanged

Finally, an interesting metric is the total number of messages exchanged in the
network. This gives us insight into how efficiently a protocol is able to route
messages, and how much overhead the protocol creates. On Figure 9 we have
this data as the average number of messages sent by each node, be it to find a
route, delivery of a publication or any other kind of message. For the smallest
configuration AODV has better performance than our protocol, since MFT-
PubSub has to maintain a communication tree. But, whereas the number of
messages needed as the network size gets bigger barely changes on our algorithm,
AODV has a huge increase in the number of messages it needs to find the correct
routes.

 100

 1000

 10000

 100000

C2 C4 C8 C16 C32

A
v
e
ra

g
e
 M

e
ss

a
g
e
s

S
e
n
t

Configuration

MFT-PubSub
AODV

Figure 9: Comparison of the average number of messages sent by each node in
order to correctly route messages for a node speed of 8 m/s. Note the logarithmic
scale on the y axis.

In the case of MFT-PubSub we also observed that there is a big difference
between the publishers/subscribers and brokers in the number of messages. The
former only need to send a few messages in total to keep connected to the
spanning tree and the brokers do most of the work.

8 Conclusion

We have presented two approaches to introduce mobility support for a pub-
lish/subscribe system. Both of them are based on a spanning tree created via
a leader election algorithm that works in situations where we do not know how
many nodes there are. This algorithm also gives us a mechanism to detect the
movement of nodes as a migration.

The first of the protocols is simpler, but whenever a broker migrates it
creates a cascade of messages for all the nodes in its branch on the spanning tree,
and those messages contain the whole routing table of the broker. The second
protocol, MFT-PubSub, improves on the first one by reducing the number of
messages for any migration and only exchanging information when asked.

We have simulated MFT-PubSub on Castalia and compared it to AODV,
to compare the performance with respect to mobility support and number of
devices supported. We improve on the message delivery rate of AODV, though

24

the performance is significantly reduced for networks of 66 nodes. We have
also shown that the number of messages exchanged increases linearly with the
number of nodes in the system and is an order of magnitude lower than AODV
for simulations of more than 10 nodes.

MFT-PubSub allows for any node in the network to behave as any role of
a publish/subscribe system; be it publisher, subscriber or broker. In the future
we want to further test this approach and use it as a solution for multicast
communication in mobile environments.

References

[1] Sven Akkermans, Rafael Bachiller, Nelson Matthys, Wouter Joosen, Danny
Hughes, and Malisa Vucinic. Towards efficient publish-subscribe middle-
ware in the IoT with IPv6 multicast. In 2016 IEEE International Confer-
ence on Communications, ICC 2016, Kuala Lumpur, Malaysia, May 22-27,
2016, pages 1–6. IEEE, 2016.

[2] Kyoungho An, Shweta Khare, Aniruddha S. Gokhale, and Akram Hakiri.
An Autonomous and Dynamic Coordination and Discovery Service for
Wide-Area Peer-to-peer Publish/Subscribe: Experience Paper. In Proceed-
ings of the 11th ACM International Conference on Distributed and Event-
based Systems, DEBS 2017, Barcelona, Spain, June 19-23, 2017, pages
239–248. ACM, 2017.

[3] Aleksandar Antonić, Martina Marjanović, Krešimir Pripužić, and
Ivana Podnar Žarko. A mobile crowd sensing ecosystem enabled by CU-
PUS: Cloud-based publish/subscribe middleware for the Internet of Things.
Future Generation Computer Systems, 56:607–622, 2016.

[4] Roberto Baldoni, Roberto Beraldi, Leonardo Querzoni, and Antonino Vir-
gillito. Efficient Publish/Subscribe Through a Self-Organizing Broker Over-
lay and its Application to SIENA. Comput. J., 50(4):444–459, 2007.

[5] Roberto Baldoni, Carlo Marchetti, Antonino Virgillito, and Roman Viten-
berg. Content-Based Publish-Subscribe over Structured Overlay Net-
works. In 25th International Conference on Distributed Computing Systems
(ICDCS 2005), 6-10 June 2005, Columbus, OH, USA, pages 437–446. IEEE
Computer Society, 2005.

[6] Roberto Baldoni, Leonardo Querzoni, Sasu Tarkoma, and Antonino Vir-
gillito. Distributed Event Routing in Publish/Subscribe Systems. In Benôıt
Garbinato, Hugo Miranda, and Lúıs E. T. Rodrigues, editors, Middleware
for Network Eccentric and Mobile Applications, pages 219–244. Springer,
2009.

[7] Guruduth Banavar, Tushar Deepak Chandra, Bodhi Mukherjee, Jay Na-
garajarao, Robert E. Strom, and Daniel C. Sturman. An Efficient Multi-
cast Protocol for Content-Based Publish-Subscribe Systems. In Proceedings
of the 19th International Conference on Distributed Computing Systems,
Austin, TX, USA, May 31 - June 4, 1999, pages 262–272. IEEE Computer
Society, 1999.

25

[8] Raphaël Barazzutti, Thomas Heinze, André Martin, Emanuel Onica, Pas-
cal Felber, Christof Fetzer, Zbigniew Jerzak, Marcelo Pasin, and Eti-
enne Riviere. Elastic Scaling of a High-Throughput Content-Based Pub-
lish/Subscribe Engine. In IEEE 34th International Conference on Dis-
tributed Computing Systems, ICDCS 2014, Madrid, Spain, June 30 - July
3, 2014, pages 567–576. IEEE Computer Society, 2014.

[9] Kai Beckmann and Marcus Thoss. A wireless sensor network protocol for
the OMG Data Distribution Service. In Proceedings of the 10th Inter-
national Workshop on Intelligent Solutions in Embedded Systems, WISES
2012, Klagenfurt, Carinthia, Austria, July 5-6, 2012, pages 45–50. IEEE,
2012.

[10] Elizabeth M. Belding-Royer and Charles E. Perkins. Multicast Operation
of the Ad-Hoc On-Demand Distance Vector Routing Protocol. In Harel
Kodesh, Victor Bahl, Tomasz Imielinski, and Martha Steenstrup, editors,
MOBICOM ’99, The Fifth Annual ACM/IEEE International Conference
on Mobile Computing and Networking, Seattle, Washington, USA, August
15-19, 1999., pages 207–218. ACM, 1999.

[11] Christian Berger and Hans P. Reiser. WebBFT: Byzantine Fault Tolerance
for Resilient Interactive Web Applications. In Silvia Bonomi and Etienne
Rivière, editors, Distributed Applications and Interoperable Systems - 18th
IFIP WG 6.1 International Conference, DAIS 2018, Held as Part of the
13th International Federated Conference on Distributed Computing Tech-
niques, DisCoTec 2018, Madrid, Spain, June 18-21, 2018, Proceedings,
volume 10853 of Lecture Notes in Computer Science, pages 1–17. Springer,
2018.

[12] Sumeer Bhola, Robert E. Strom, Saurabh Bagchi, Yuanyuan Zhao, and
Joshua S. Auerbach. Exactly-once Delivery in a Content-based Publish-
Subscribe System. In 2002 International Conference on Dependable Sys-
tems and Networks (DSN 2002), 23-26 June 2002, Bethesda, MD, USA,
Proceedings, pages 7–16. IEEE Computer Society, 2002.

[13] Pruet Boonma and Junichi Suzuki. La Nina: framework in self-adaptive
publish/subscribe middleware for wireless sensor networks. International
Journal of Autonomous and Adaptive Communications Systems, 4(2):180–
201, 2011.

[14] Gewu Bu, Thanh Son Lam Nguyen, Maria Potop-Butucaru, and Kim
Tha. HyperPubSub: Blockchain based Publish/Subscribe. CoRR,
abs/1907.03627, 2019.

[15] Ioana Burcea, Hans-Arno Jacobsen, Eyal de Lara, Vinod Muthusamy, and
Milenko Petrovic. Disconnected Operation in Publish/Subscribe Middle-
ware. In 5th IEEE International Conference on Mobile Data Management
(MDM 2004), 19-22 January 2004, Berkeley, CA, USA, page 39. IEEE
Computer Society, 2004.

[16] Unai Burgos, Ugaitz Amozarrain, Carlos Gómez-Calzado, and Alberto La-
fuente. Routing in Mobile Wireless Sensor Networks: A Leader-Based
Approach. Sensors, 17(7):1587, 2017.

26

[17] Luis-Felipe Cabrera, Michael B. Jones, and Marvin Theimer. Herald:
Achieving a Global Event Notification Service. In Proceedings of HotOS-
VIII: 8th Workshop on Hot Topics in Operating Systems, May 20-23, 2001,
Elmau/Oberbayern, Germany, pages 87–92. IEEE Computer Society, 2001.

[18] Hakan Cam, Ozgur Koray Sahingoz, and Ahmet Coskun Sonmez. Wireless
Sensor Networks Based on Publish/Subscribe Messaging Paradigms. In
Jukka Riekki, Mika Ylianttila, and Minyi Guo, editors, Advances in Grid
and Pervasive Computing - 6th International Conference, GPC 2011, Oulu,
Finland, May 11-13, 2011. Proceedings, volume 6646 of Lecture Notes in
Computer Science, pages 233–242. Springer, 2011.

[19] Tracy Camp, Jeff Boleng, and Vanessa Davies. A survey of mobility models
for ad hoc network research. Wireless Communications and Mobile Com-
puting, 2(5):483–502, 2002.

[20] Mauro Caporuscio, Antonio Carzaniga, and Alexander L. Wolf. Design and
Evaluation of a Support Service for Mobile, Wireless Publish/Subscribe
Applications. IEEE Trans. Software Eng., 29(12):1059–1071, 2003.

[21] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design
and evaluation of a wide-area event notification service. ACM Trans. Com-
put. Syst., 19(3):332–383, 2001.

[22] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony I. T.
Rowstron. Scribe: a large-scale and decentralized application-level multi-
cast infrastructure. IEEE Journal on Selected Areas in Communications,
20(8):1489–1499, 2002.

[23] Raphaël Chand and Pascal Felber. XNET: A Reliable Content-Based Pub-
lish/Subscribe System. In 23rd International Symposium on Reliable Dis-
tributed Systems (SRDS 2004), 18-20 October 2004, Florianpolis, Brazil,
pages 264–273. IEEE Computer Society, 2004.

[24] Tiancheng Chang, Sisi Duan, Hein Meling, Sean Peisert, and Haibin Zhang.
P2S: a fault-tolerant publish/subscribe infrastructure. In Umesh Bellur
and Ravi Kothari, editors, The 8th ACM International Conference on
Distributed Event-Based Systems, DEBS ’14, Mumbai, India, May 26-29,
2014, pages 189–197. ACM, 2014.

[25] Tiancheng Chang and Hein Meling. Byzantine Fault-Tolerant Pub-
lish/Subscribe: A Cloud Computing Infrastructure. In IEEE 31st Sym-
posium on Reliable Distributed Systems, SRDS 2012, Irvine, CA, USA,
October 8-11, 2012, pages 454–456. IEEE Computer Society, 2012.

[26] Jaime Chen, Manuel Dı́az, Bartolomé Rubio, and José M. Troya. PS-
QUASAR: A publish/subscribe QoS aware middleware for Wireless Sensor
and Actor Networks. Journal of Systems and Software, 86(6):1650–1662,
2013.

[27] Alex King Yeung Cheung and Hans-Arno Jacobsen. Load Balancing
Content-Based Publish/Subscribe Systems. ACM Trans. Comput. Syst.,
28(4):9:1–9:55, 2010.

27

[28] Mariano Cilia, Ludger Fiege, C. Haul, Andreas Zeidler, and Alejandro P.
Buchmann. Looking into the past: enhancing mobile publish/subscribe
middleware. In Hans-Arno Jacobsen, editor, Proceedings of the 2nd In-
ternational Workshop on Distributed Event-Based Systems, DEBS 2003,
Sunday, June 8th, 2003, San Diego, California, USA (in conjunction with
SIGMOD/PODS). ACM, 2003.

[29] Paolo Costa, Matteo Migliavacca, Gian Pietro Picco, and Gianpaolo Cu-
gola. Introducing reliability in content-based publish-subscribe through
epidemic algorithms. In Hans-Arno Jacobsen, editor, Proceedings of the
2nd International Workshop on Distributed Event-Based Systems, DEBS
2003, Sunday, June 8th, 2003, San Diego, California, USA (in conjunc-
tion with SIGMOD/PODS). ACM, 2003.

[30] Paolo Costa, Matteo Migliavacca, Gian Pietro Picco, and Gianpaolo Cu-
gola. Epidemic Algorithms for Reliable Content-Based Publish-Subscribe:
An Evaluation. In 24th International Conference on Distributed Computing
Systems (ICDCS 2004), 24-26 March 2004, Hachioji, Tokyo, Japan, pages
552–561. IEEE Computer Society, 2004.

[31] Paolo Costa and Gian Pietro Picco. Semi-Probabilistic Content-Based
Publish-Subscribe. In 25th International Conference on Distributed Com-
puting Systems (ICDCS 2005), 6-10 June 2005, Columbus, OH, USA,
pages 575–585. IEEE Computer Society, 2005.

[32] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The JEDI
event-based infrastructure and its application to the development of the
OPSS WFMS. IEEE Transactions on Software Engineering, 27(9):827–
850, 2001.

[33] Gianpaolo Cugola, Davide Frey, Amy L. Murphy, and Gian Pietro
Picco. Minimizing the reconfiguration overhead in content-based publish-
subscribe. In Hisham Haddad, Andrea Omicini, Roger L. Wainwright,
and Lorie M. Liebrock, editors, Proceedings of the 2004 ACM Symposium
on Applied Computing (SAC), Nicosia, Cyprus, March 14-17, 2004, pages
1134–1140. ACM, 2004.

[34] Gianpaolo Cugola and Hans-Arno Jacobsen. Using publish/subscribe mid-
dleware for mobile systems. Mobile Computing and Communications Re-
view, 6(4):25–33, 2002.

[35] Gianpaolo Cugola, Amy L. Murphy, and Gian Pietro Picco. Content-Based
Publish-Subscribe in a Mobile Environment. In Paolo Bellavista and Anto-
nio Corradi, editors, The Handbook of Mobile Middleware, pages 257–285.
Auerbach Publications/CRC, 2006.

[36] Gianpaolo Cugola, Gian Pietro Picco, and Amy L. Murphy. Towards Dy-
namic Reconfiguration of Distributed Publish-Subscribe Middleware. In
Alberto Coen-Porisini and André van der Hoek, editors, Software Engineer-
ing and Middleware, Third International Workshop, SEM 2002. Orlando,
FL, USA, May 20-21, 2002, Revised Papers, volume 2596 of Lecture Notes
in Computer Science, pages 187–202. Springer, 2002.

28

[37] Ernesto Garćıa Davis and Anna Calveras Augé. Publish/Subscribe Pro-
tocol in Wireless Sensor Networks: Improved Reliability and Timeliness.
KSII Transactions on Internet and Information Systems, 12(4):1527–1552,
2018.

[38] João Paulo de Araujo, Luciana Arantes, Elias P. Duarte, Luiz A. Ro-
drigues, and Pierre Sens. VCube-PS: A causal broadcast topic-based pub-
lish/subscribe system. Journal of Parallel and Distributed Computing,
125:18–30, 2019.

[39] Andrea Detti, Dimitri Tassetto, Nicola Blefari Melazzi, and Francesco Fedi.
Exploiting content centric networking to develop topic-based, publish–
subscribe MANET systems. Ad hoc networks, 24:115–133, 2015.

[40] Augusto Morales Dominguez, Tomás Robles, Ramón Alcarria, and Ed-
win Cedeño. A Hot-topic based Distribution and Notification of Events in
Pub/Sub Mobile Brokers. Network Protocols & Algorithms, 5(1):90–110,
2013.

[41] C. Esposito, M. Platania, and R. Beraldi. Reliable and Timely Event
Notification for Publish/Subscribe Services Over the Internet. IEEE/ACM
Transactions on Networking, 22(1):230–243, Feb 2014.

[42] Christian Esposito, Domenico Cotroneo, and Stefano Russo. On reliability
in publish/subscribe services. Computer Networks, 57(5):1318–1343, 2013.

[43] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The Many Faces of Publish/Subscribe. ACM Computing Sur-
veys, 35(2):114–131, 2003.

[44] Ludger Fiege, Felix C. Gärtner, Oliver Kasten, and Andreas Zei-
dler. Supporting Mobility in Content-Based Publish/Subscribe Middle-
ware. In Markus Endler and Douglas C. Schmidt, editors, Middleware
2003, ACM/IFIP/USENIX International Middleware Conference, Rio de
Janeiro, Brazil, June 16-20, 2003, Proceedings, volume 2672 of Lecture
Notes in Computer Science, pages 103–122. Springer, 2003.

[45] Julien Gascon-Samson, Franz-Philippe Garcia, Bettina Kemme, and Jörg
Kienzle. Dynamoth: A Scalable Pub/Sub Middleware for Latency-
Constrained Applications in the Cloud. In 35th IEEE International Con-
ference on Distributed Computing Systems, ICDCS 2015, Columbus, OH,
USA, June 29 - July 2, 2015, pages 486–496. IEEE Computer Society, 2015.

[46] Carlos Gómez-Calzado, Alberto Lafuente, Mikel Larrea, and Michel Ray-
nal. Fault-Tolerant Leader Election in Mobile Dynamic Distributed Sys-
tems. In IEEE 19th Pacific Rim International Symposium on Dependable
Computing, PRDC 2013, Vancouver, BC, Canada, December 2-4, 2013,
pages 78–87. IEEE, 2013.

[47] Cenk Gündogan, Peter Kietzmann, Thomas C. Schmidt, and Matthias
Wählisch. HoPP: Robust and Resilient Publish-Subscribe for an
Information-Centric Internet of Things. In 43rd IEEE Conference on Lo-
cal Computer Networks, LCN 2018, Chicago, IL, USA, October 1-4, 2018,
pages 331–334. IEEE, 2018.

29

[48] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Ab-
badi. Meghdoot: Content-Based Publish/Subscribe over P2P Networks. In
Hans-Arno Jacobsen, editor, Middleware 2004, ACM/IFIP/USENIX Inter-
national Middleware Conference, Toronto, Canada, October 18-20, 2004,
Proceedings, volume 3231 of Lecture Notes in Computer Science, pages
254–273. Springer, 2004.

[49] Akram Hakiri, Pascal Berthou, Aniruddha S. Gokhale, and Slim Abdellatif.
Publish/subscribe-enabled software defined networking for efficient and
scalable IoT communications. IEEE Communications Magazine, 53(9):48–
54, 2015.

[50] Daniel Happ, Niels Karowski, Thomas Menzel, Vlado Handziski, and Adam
Wolisz. Meeting IoT platform requirements with open pub/sub solutions.
Annales des Télécommunications, 72(1-2):41–52, 2017.

[51] Yongqiang Huang and Hector Garcia-Molina. Publish/Subscribe Tree Con-
struction in Wireless Ad-Hoc Networks. In Ming-Syan Chen, Panos K.
Chrysanthis, Morris Sloman, and Arkady B. Zaslavsky, editors, Mobile
Data Management, 4th International Conference, MDM 2003, Melbourne,
Australia, January 21-24, 2003, Proceedings, volume 2574 of Lecture Notes
in Computer Science, pages 122–140. Springer, 2003.

[52] Yongqiang Huang and Hector Garcia-Molina. Publish/Subscribe in a Mo-
bile Environment. Wireless Networks, 10(6):643–652, 2004.

[53] Urs Hunkeler, Hong Linh Truong, and Andy J. Stanford-Clark. MQTT-S
- A publish/subscribe protocol for Wireless Sensor Networks. In Sunghyun
Choi, Jim Kurose, and Krithi Ramamritham, editors, Proceedings of the
Third International Conference on COMmunication System softWAre and
MiddlewaRE (COMSWARE 2008), January 5-10, 2008, Bangalore, India,
pages 791–798. IEEE, 2008.

[54] Hans-Arno Jacobsen, Alex King Yeung Cheung, Guoli Li, Bala-
subramaneyam Maniymaran, Vinod Muthusamy, and Reza Sherafat
Kazemzadeh. The PADRES Publish/Subscribe System. In Annika Hinze
and Alejandro P. Buchmann, editors, Principles and Applications of Dis-
tributed Event-Based Systems, pages 164–205. IGI Global, 2010.

[55] Michael A. Jaeger, Helge Parzyjegla, Gero Mühl, and Klaus Herrmann.
Self-organizing broker topologies for publish/subscribe systems. In Yookun
Cho, Roger L. Wainwright, Hisham Haddad, Sung Y. Shin, and Yong Wan
Koo, editors, Proceedings of the 2007 ACM Symposium on Applied Com-
puting (SAC), Seoul, Korea, March 11-15, 2007, pages 543–550. ACM,
2007.

[56] Hojjat Jafarpour, Sharad Mehrotra, and Nalini Venkatasubramanian. A
Fast and Robust Content-based Publish/Subscribe Architecture. In Pro-
ceedings of The Seventh IEEE International Symposium on Networking
Computing and Applications, NCA 2008, July 10-12, 2008, Cambridge,
Massachusetts, USA, pages 52–59. IEEE Computer Society, 2008.

30

[57] Leander Jehl and Hein Meling. Towards Byzantine fault tolerant pub-
lish/subscribe: a state machine approach. In Christian Cachin and Rob-
bert van Renesse, editors, Proceedings of the 9th Workshop on Hot Topics
in Dependable Systems, HotDep 2013, Farmington, Pennsylvania, USA,
November 3, 2013, pages 5:1–5:5. ACM, 2013.

[58] Zbigniew Jerzak. XSiena: The Content-Based Publish/Subscribe System.
PhD thesis, Dresden University of Technology, 2009.

[59] Reza Sherafat Kazemzadeh and Hans-Arno Jacobsen. Reliable and Highly
Available Distributed Publish/Subscribe Service. In 28th IEEE Symposium
on Reliable Distributed Systems (SRDS 2009), Niagara Falls, New York,
USA, September 27-30, 2009, pages 41–50. IEEE Computer Society, 2009.

[60] Reza Sherafat Kazemzadeh and Hans-Arno Jacobsen. Partition-Tolerant
Distributed Publish/Subscribe Systems. In 30th IEEE Symposium on Reli-
able Distributed Systems (SRDS 2011), Madrid, Spain, October 4-7, 2011,
pages 101–110. IEEE Computer Society, 2011.

[61] Reza Sherafat Kazemzadeh and Hans-Arno Jacobsen. Opportunistic
Multipath Forwarding in Content-Based Publish/Subscribe Overlays. In
Priya Narasimhan and Peter Triantafillou, editors, Middleware 2012 -
ACM/IFIP/USENIX 13th International Middleware Conference, Mon-
treal, QC, Canada, December 3-7, 2012. Proceedings, volume 7662 of Lec-
ture Notes in Computer Science, pages 249–270. Springer, 2012.

[62] Leslie Lamport. The Part-Time Parliament. ACM Trans. Comput. Syst.,
16(2):133–169, 1998.

[63] Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen. Adaptive Content-
Based Routing in General Overlay Topologies. In Valérie Issarny and
Richard E. Schantz, editors, Middleware 2008, ACM/IFIP/USENIX 9th
International Middleware Conference, Leuven, Belgium, December 1-5,
2008, Proceedings, volume 5346 of Lecture Notes in Computer Science,
pages 1–21. Springer, 2008.

[64] Jorge E Luzuriaga, Juan Carlos Cano, Carlos Calafate, Pietro Manzoni,
Miguel Perez, and Pablo Boronat. Handling mobility in IoT applications
using the MQTT protocol. In 2015 Internet Technologies and Applications
(ITA), pages 245–250. IEEE, 2015.

[65] Luca Mottola, Gianpaolo Cugola, and Gian Pietro Picco. A Self-Repairing
Tree Topology Enabling Content-Based Routing in Mobile Ad Hoc Net-
works. IEEE Trans. Mob. Comput., 7(8):946–960, 2008.

[66] Gero Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD
thesis, Darmstadt University of Technology, 2002.

[67] Gero Mühl, Andreas Ulbrich, Klaus Herrmann, and Torben Weis. Dis-
seminating Information to Mobile Clients Using Publish-Subscribe. IEEE
Internet Computing, 8(3):46–53, 2004.

31

[68] Vinod Muthusamy, Milenko Petrovic, and Hans-Arno Jacobsen. Effects
of routing computations in content-based routing networks with mobile
data sources. In Thomas F. La Porta, Christoph Lindemann, Elizabeth M.
Belding-Royer, and Songwu Lu, editors, Proceedings of the 11th Annual In-
ternational Conference on Mobile Computing and Networking, MOBICOM
2005, Cologne, Germany, August 28 - September 2, 2005, pages 103–116.
ACM, 2005.

[69] Charles E. Perkins and Elizabeth M. Belding-Royer. Ad-hoc On-Demand
Distance Vector Routing. In 2nd Workshop on Mobile Computing Systems
and Applications (WMCSA ’99), February 25-26, 1999, New Orleans, LA,
USA, pages 90–100. IEEE Computer Society, 1999.

[70] Van-Nam Pham and Eui-Nam Huh. An Efficient Edge-Cloud Pub-
lish/Subscribe Model for Large-Scale IoT Applications. In Sukhan Lee,
Roslan Ismail, and Hyunseung Choo, editors, Proceedings of the 13th In-
ternational Conference on Ubiquitous Information Management and Com-
munication, IMCOM 2019, Phuket, Thailand, January 4-6, 2019, volume
935 of Advances in Intelligent Systems and Computing, pages 130–140.
Springer, 2019.

[71] Gian Pietro Picco, Gianpaolo Cugola, and Amy L. Murphy. Efficient
Content-Based Event Dispatching in the Presence of Topological Recon-
figuration. In 23rd International Conference on Distributed Computing
Systems (ICDCS 2003), 19-22 May 2003, Providence, RI, USA, pages 234–
243. IEEE Computer Society, 2003.

[72] Peter R. Pietzuch and Jean Bacon. Hermes: A Distributed Event-Based
Middleware Architecture. In 22nd International Conference on Distributed
Computing Systems, Workshops (ICDCSW ’02) July 2-5, 2002, Vienna,
Austria, Proceedings, pages 611–618. IEEE Computer Society, 2002.

[73] Thadpong Pongthawornkamol, Klara Nahrstedt, and Guijun Wang. Re-
liability and Timeliness Analysis of Fault-tolerant Distributed Pub-
lish/Subscribe Systems. In Jeffrey O. Kephart, Calton Pu, and Xiaoyun
Zhu, editors, 10th International Conference on Autonomic Computing,
ICAC’13, San Jose, CA, USA, June 26-28, 2013, pages 247–257. USENIX
Association, 2013.

[74] Gowri Sankar Ramachandran, Kwame-Lante Wright, and Bhaskar Kr-
ishnamachari. Trinity: A Distributed Publish/Subscribe Broker with
Blockchain-based Immutability. CoRR, abs/1807.03110, 2018.

[75] Cristiano G. Rezende, Bruno P. S. Rocha, and Antonio Alfredo Ferreira
Loureiro. Publish/subscribe architecture for mobile ad hoc networks. In
Roger L. Wainwright and Hisham Haddad, editors, Proceedings of the 2008
ACM Symposium on Applied Computing (SAC), Fortaleza, Ceara, Brazil,
March 16-20, 2008, pages 1913–1917. ACM, 2008.

[76] David S. Rosenblum and Alexander L. Wolf. A Design Framework for
Internet-Scale Event Observation and Notification. In Mehdi Jazayeri and
Helmut Schauer, editors, Software Engineering - ESEC/FSE’97, 6th Eu-
ropean Software Engineering Conference Held Jointly with the 5th ACM

32

SIGSOFT Symposium on Foundations of Software Engineering, Zurich,
Switzerland, September 22-25, 1997, Proceedings, volume 1301 of Lecture
Notes in Computer Science, pages 344–360. Springer, 1997.

[77] Pooya Salehi, Christoph Doblander, and Hans-Arno Jacobsen. Highly-
available Content-based Publish/Subscribe via Gossiping. In Proceedings
of the 10th ACM International Conference on Distributed and Event-based
Systems, DEBS 2016, pages 93–104, New York, NY, USA, 2016. ACM.

[78] Zigor Salvador. Client Mobility Support and Communication Efficiency
in Distributed Publish/Subscribe. PhD thesis, University of the Basque
Country UPV/EHU, Spain, 2012.

[79] Zigor Salvador, Aurkene Alzua, Mikel Larrea, and Alberto Lafuente. Mobile
XSiena: towards mobile publish/subscribe. In Jean Bacon, Peter R. Piet-
zuch, Joe Sventek, and Ugur Çetintemel, editors, Proceedings of the Fourth
ACM International Conference on Distributed Event-Based Systems, DEBS
2010, Cambridge, United Kingdom, July 12-15, 2010, pages 91–92. ACM,
2010.

[80] Zigor Salvador, Alberto Lafuente, and Mikel Larrea. Design and Evaluation
of a Publish/Subscribe Framework for Ubiquitous Systems. In Kan Zheng,
Mo Li, and Hongbo Jiang, editors, Mobile and Ubiquitous Systems: Com-
puting, Networking, and Services - 9th International Conference, MobiQui-
tous 2012, Beijing, China, December 12-14, 2012. Revised Selected Papers,
volume 120 of Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, pages 50–63. Springer,
2012.

[81] Zigor Salvador, Mikel Larrea, and Alberto Lafuente. Phoenix: A Protocol
for Seamless Client Mobility in Publish/Subscribe. In 11th IEEE Inter-
national Symposium on Network Computing and Applications, NCA 2012,
Cambridge, MA, USA, August 23-25, 2012, pages 111–120. IEEE Com-
puter Society, 2012.

[82] Jan Hendrik Schönherr, Helge Parzyjegla, and Gero Mühl. Clustered
publish/subscribe in wireless actuator and sensor networks. In Sotirios
Terzis, editor, Proceedings of the 6th International Workshop on Mid-
dleware for Pervasive and Ad-hoc Computing (MPAC 2008), held at the
ACM/IFIP/USENIX 9th International Middleware Conference, December
1-5, 2008, Leuven, Belgium, pages 60–65. ACM, 2008.

[83] Tarek R. Sheltami, Anas A. Al-Roubaiey, and Ashraf S. Hasan Mahmoud.
A survey on developing publish/subscribe middleware over wireless sen-
sor/actuator networks. Wireless Networks, 22(6):2049–2070, 2016.

[84] Gerry Siegemund and Volker Turau. A Self-Stabilizing Publish/Subscribe
Middleware for IoT Applications. ACM Transactions on Cyber-Physical
Systems, 2(2):12:1–12:26, 2018.

[85] Magnus Skjegstad, Frank T. Johnsen, Trude Hafsøe Bloebaum, and Torleiv
Maseng. Mist: A Reliable and Delay-Tolerant Publish/Subscribe Solution
for Dynamic Networks. In Albert Levi, Mohamad Badra, Matteo Cesana,

33

Mona Ghassemian, Özgür Gürbüz, Nafaâ Jabeur, Marek Klonowski, Anto-
nio Maña, Susana Sargento, and Sherali Zeadally, editors, 5th International
Conference on New Technologies, Mobility and Security, Istanbul, Turkey,
NTMS 2012, May 7-10, 2012, pages 1–8. IEEE, 2012.

[86] Eduardo Souto, Germano Guimarães, Glauco Vasconcelos, Mardoqueu
Vieira, Nelson S. Rosa, Carlos André Guimarães Ferraz, and Judith Kel-
ner. Mires: a publish/subscribe middleware for sensor networks. Personal
and Ubiquitous Computing, 10(1):37–44, 2006.

[87] Robert E. Strom, Guruduth Banavar, Tushar Deepak Chandra, Marc A.
Kaplan, Kevan Miller, Bodhi Mukherjee, Daniel C. Sturman, and Michael
Ward. Gryphon: An Information Flow Based Approach to Message Bro-
kering. CoRR, cs.DC/9810019, 1998.

[88] Yasin Tekin and Ozgur Koray Sahingoz. A Publish/Subscribe messaging
system for wireless sensor networks. In Sixth International Conference on
Digital Information and Communication Technology and its Applications,
DICTAP 2016, Konya, Turkey, July 21-23, 2016, pages 171–176. IEEE,
2016.

[89] Agnese V. Ventrella, Giuseppe Piro, and L. Alfredo Grieco. Publish-
subscribe in mobile information centric networks: Modeling and perfor-
mance evaluation. Computer Networks, 127:317–339, 2017.

[90] Spyros Voulgaris, Etienne Riviere, Anne-Marie Kermarrec, and Maarten
van Steen. Sub-2-Sub: Self-Organizing Content-Based Publish Subscribe
for Dynamic Large Scale Collaborative Networks. In Emin Gün Sirer and
Ben Y. Zhao, editors, 5th International workshop on Peer-To-Peer Systems,
IPTPS 2006, Santa Barbara, CA, USA, February 27-28, 2006, 2006.

[91] Jinling Wang, Jiannong Cao, and Jing Li. Supporting Mobile Clients
in Publish/Subscribe Systems. In 25th International Conference on Dis-
tributed Computing Systems Workshops (ICDCS 2005 Workshops), 6-10
June 2005, Columbus, OH, USA, pages 792–798. IEEE Computer Society,
2005.

[92] George Xylomenos, Xenofon Vasilakos, Christos Tsilopoulos, Vasilios A.
Siris, and George C. Polyzos. Caching and Mobility Support in a
Publish-Subscribe Internet Architecture. IEEE Communications Maga-
zine, 50(7):52–58, 2012.

[93] Young Yoon, Vinod Muthusamy, and Hans-Arno Jacobsen. Foundations
for Highly Available Content-Based Publish/Subscribe Overlays. In 2011
International Conference on Distributed Computing Systems, ICDCS 2011,
Minneapolis, Minnesota, USA, June 20-24, 2011, pages 800–811. IEEE
Computer Society, 2011.

[94] Kaiwen Zhang, Vinod Muthusamy, and Hans-Arno Jacobsen. Total Order
in Content-Based Publish/Subscribe Systems. In 2012 IEEE 32nd Interna-
tional Conference on Distributed Computing Systems, Macau, China, June
18-21, 2012, pages 335–344. IEEE Computer Society, 2012.

34

[95] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: a fault-
tolerant wide-area application infrastructure. Computer Communication
Review, 32(1):81, 2002.

[96] Yaxiong Zhao and Jie Wu. Building a reliable and high-performance
content-based publish/subscribe system. Journal of Parallel and Dis-
tributed Computing, 73(4):371–382, 2013.

[97] Ye Zhao, Kyungbaek Kim, and Nalini Venkatasubramanian. DY-
NATOPS: a dynamic topic-based publish/subscribe architecture. In
Sharma Chakravarthy, Susan Darling Urban, Peter R. Pietzuch, and
Elke A. Rundensteiner, editors, The 7th ACM International Conference
on Distributed Event-Based Systems, DEBS ’13, Arlington, TX, USA -
June 29 - July 03, 2013, pages 75–86. ACM, 2013.

[98] Shelley Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and
John Kubiatowicz. Bayeux: an architecture for scalable and fault-tolerant
wide-area data dissemination. In Network and Operating System Support
for Digital Audio and Video, 11th International Workshop, NOSSDAV
2001, Port Jefferson, NY, USA, June 25-26, 2001, Proceedings, pages 11–
20. ACM, 2001.

[99] Nejc Zupan, Kaiwen Zhang, and Hans-Arno Jacobsen. HyperPubSub: a
Decentralized, Permissioned, Publish/Subscribe Service using Blockchains:
Demo. In Parisa Jalili Marandi and Alessandro Margara, editors, Proceed-
ings of the 18th ACM/IFIP/USENIX Middleware Conference: Posters and
Demos, Las Vegas, NV, USA, December 11 - 15, 2017, pages 15–16. ACM,
2017.

35

	Introduction
	Related work
	Model and definitions
	Simple Routing
	Phoenix

	Creating the network overlay
	A modular protocol
	A more efficient protocol
	Performance evaluation
	Conclusion

