

Unreliable Failure Detectors
for

Reliable Distributed Systems

Mikel Larrea

Departamento de Arquitectura y
Tecnología de Computadores

UPV / EHU

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 2

Contents

References

Introduction

System Model

Failure Detectors

Reliable Broadcast

The Consensus Problem

Solving Consensus using Unreliable Failure Detectors

Conclusions

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 3

References

(1) Unreliable Failure Detectors for Asynchronous Distributed Systems

Tushar Deepak Chandra

PhD Thesis, Cornell University, May 1993. TR93-1377, Cornell University

(2) Unreliable Failure Detectors for Reliable Distributed Systems

Tushar Deepak Chandra and Sam Toueg

Journal of the ACM, 43(2): 225-267, March 1996

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 4

Introduction

Consensus is a fundamental problem of fault tolerant distributed computing
(common denominator between many agreement type problems: atomic
broadcast, group membership, atomic commitment, leader election, etc.)

Informally, Consensus allows processes to reach a common decision, which
depends on their initial inputs, despite failures

We focus on solutions to Consensus in the asynchronous model of distributed
computing: no timing assumptions

FLP Impossibility result (Fischer, Lynch, and Paterson, 1985): Consensus
cannot be solved deterministically in an asynchronous system that is subject to
even a single crash failure. Essentially, the impossibility stems from the inherent
difficulty of determining whether a process has actually crashed or is only ‘very
slow’

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 5

Introduction

To circumvent the FLP impossibility result, Chandra and Toueg propose to
augment the asynchronous model of computation with a model of an external
failure detection mechanism that can make mistakes (unreliable failure detector)

Consensus can be solved using a ‘perfect’ failure detector (one that does not
make mistakes). But is perfect failure detection necessary to solve Consensus?

Possibility result (Chandra and Toueg, 1991): Consensus can be solved in
asynchronous systems with unreliable failure detectors, even if they make an
infinite number of mistakes

Certain failure detectors can be used to solve Consensus despite any number of
crashes, while others require a majority of correct processes

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 6

Introduction

How much information about failures is necessary and sufficient to solve
Consensus?

The Eventually Weak Failure Detector (◊W), a failure detector that provides
surprisingly little information about which processes have crashed, is sufficient to
solve Consensus in asynchronous systems with a majority of correct processes

Moreover, to solve Consensus, any failure detector has to provide at least as
much information about failures as ◊W. Thus, ◊W is indeed the weakest failure
detector for solving Consensus in asynchronous systems with a majority of
correct processes

Reference: The Weakest Failure Detector for Solving Consensus. T.D. Chandra,
V. Hadzilacos, and S. Toueg. Journal of the ACM, 43(4): 685-722, July 1996

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 7

System Model

Asynchronous distributed system: there is no bound on message delay, clock
drift, or the time necessary to execute a step

The system consists of a finite set of processes:

Π = {p1, p2, ..., pn}

Message passing model. Every pair of processes is connected by a reliable
communication channel

Processes can fail by crashing. Once a process crashes, it does not recover

An algorithm A is a collection of n deterministic automata, one for each process in
the system. Computation proceeds in steps of A. In each step, a process pi ∈ Π
may (1) send a message to a single process, (2) receive a message that was
sent to it, (3) perform some local computation (e.g., query its failure detector
module), or (4) fail

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 8

System Model

A run is an infinite execution of the system. Given any run σ, crashed(t, σ) is the
set of processes that have crashed by time t in σ, and correct(t, σ) = Π –
crashed(t, σ)

crashed(σ) = ∪t crashed(t, σ)
correct(σ) = Π - crashed(σ)

If p ∈ correct(σ) then p is correct in σ. Otherwise, we say that p is faulty in σ, and
p ∈ crashed(σ). We consider only runs with at least one correct process, i.e.,
correct(σ) ≠ ∅

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 9

Failure Detectors

A failure detector is a distributed oracle that provides hints about the operational
status of other processes

Each process p ∈ Π has access to a local failure detector module Dp. Each local
failure detector module monitors a subset of the processes in the system, and
maintains a list of those that it currently suspects to have crashed

Each failure detector module can make mistakes by erroneously adding
processes to its list of suspects. If it later believes that suspecting a given process
was a mistake, it can remove this process from its list. At any given time, the
modules at two different processes may have different lists of suspects

The mistakes made by an unreliable failure detector should not prevent any
correct process from behaving according its specification, even if that process is
(erroneously) suspected to have crashed by all the other processes

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 10

Properties of Failure Detectors

Failure detectors are abstractly characterised in terms of two properties:
completeness and accuracy

Completeness characterises the degree to which crashed processes are
permanently suspected by correct processes

Accuracy restricts the false suspicions that a failure detector can make

Strong completeness: Eventually every process that crashes is permanently
suspected by every correct process

∀σ, ∀p ∈ crashed(σ), ∀q ∈ correct(σ), ∃t, ∀t’ ≥ t: p ∈ Dq(t’, σ)

Weak completeness: Eventually every process that crashes is permanently
suspected by some correct process

∀σ, ∀p ∈ crashed(σ), ∃q ∈ correct(σ), ∃t, ∀t’ ≥ t: p ∈ Dq(t’, σ)

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 11

Properties of Failure Detectors

Completeness by itself is not a useful property: a failure detector may trivially
satisfy this property by always suspecting all the processes in the system. To be
useful, a failure detector must also satisfy some accuracy requirement

(Perpetual) Accuracy

Strong accuracy: No process is suspected before it crashes

∀σ, ∀t, ∀p, q ∈ Π - crashed(t, σ): p ∉ Dq(t, σ)

Weak accuracy: Some correct process is never suspected

∀σ, ∃p ∈ correct(σ), ∀q ∈ Π, ∀t: p ∉ Dq(t, σ)

Obviously, accuracy by itself is neither useful (e.g., “never suspect any process”
trivially satisfies strong accuracy)

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 12

Properties of Failure Detectors

Eventual Accuracy

Even weak accuracy guarantees that at least one correct process is never
suspected. Since this type of accuracy may be difficult to achieve, we consider
failure detectors that may suspect every process at one time or another.
Informally, we only require that strong accuracy or weak accuracy are eventually
satisfied

Eventual strong accuracy: There is a time after which correct processes are not
suspected by any correct process

∀σ, ∃t, ∀p, q ∈ correct(σ), ∀t’ ≥ t: p ∉ Dq(t’, σ)

Eventual weak accuracy: There is a time after which some correct process is
never suspected by any correct process

∀σ, ∃t, ∃p ∈ correct(σ), ∀q ∈ correct(σ), ∀t’ ≥ t: p ∉ Dq(t’, σ)

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 13

Classes of Failure Detectors

Strong completeness: Eventually every process that crashes is permanently

suspected by every correct process
Weak completeness: Eventually every process that crashes is permanently

suspected by some correct process

Strong accuracy: No process is suspected before it crashes
Weak accuracy: Some correct process is never suspected
Eventual strong accuracy: There is a time after which correct processes are not

suspected by any correct process
Eventual weak accuracy: There is a time after which some correct process is never

suspected by any correct process

 Accuracy
Completeness Strong Weak Eventual strong Eventual weak

Strong Perfect
P

Strong
S

Eventually Perfect
◊P

Eventually Strong
◊S

Weak Quasi-Perfect
Q

Weak
W

Eventually Quasi-Perfect
◊Q

Eventually Weak
◊W

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 14

Implementation of Failure Detectors

Can ◊◊◊◊W be implemented in an asynchronous system?

Most implementations of failure detectors are based on some timeout
mechanism. The definition of ◊W must be seen as a specification for the
implementation of this mechanism: the timeout value chosen should be as small
as possible (if fast reaction to process crash is required), but not too small, to
guarantee the properties of ◊W with a probability close to 1

One possible implementation of ◊W could be the following:

“Every process q periodically sends a ‘q is alive’ message to all. If a process p
times out on some process q, it adds q to its list of suspects. If p later receives a
‘q is alive’ message, p recognises that it made a mistake by prematurely timing
out on q: p removes q from its list of suspects, and increases the length of its
timeout period for q in an attempt to prevent a similar mistake in the future”

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 15

Failure Detectors: Reducibility

A failure detector D is said to be stronger than a failure detector D’ (written D ≥
D’) if there is a distributed algorithm TD→D’ that can transform D into D’. Failure
detector D’ is said to be reducible to D (D provides at least as much information
about failures as D’ does)

The following relations are obvious (by definition):

P ≥ Q
S ≥ W
◊P ≥ ◊Q
◊S ≥ ◊W

Given a reduction algorithm TD→D’, any problem that can be solved using failure
detector D’, can be solved using D instead

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 16

Failure Detectors: Reducibility

Suppose a given algorithm A requires failure detector D’, but only D is available.
We can still execute A as follows. Concurrently with A, processes run TD→D’ to
transform D into D’

 D
 D’ emulated

 TD→D’

 Algorithm A uses D’

Transforming D into D’

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 17

Failure Detectors: Reducibility

From weak completeness to strong completeness, preserving accuracy

Every process p executes the following:

outputp ← ∅ {outputp emulates D’p}

cobegin
|| Task 1: repeat forever

{p queries its local failure detector module Dp}
suspectsp ← Dp
send (p, suspectsp) to all

|| Task 2: when receive (q, suspectsq) for some q

outputp ← (outputp ∪ suspectsq) – {q}
coend

TD→D’: From weak completeness to strong completeness

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 18

Failure Detectors: Reducibility

By the previous reduction algorithm, we have:

Q ≥ P
W ≥ S
◊Q ≥ ◊P
◊W ≥ ◊S

Two failure detectors are equivalent if they are reducible to each other. Thus,
every failure detector with weak completeness is actually equivalent to the
corresponding failure detector with strong completeness:

Q ≅ P
W ≅ S
◊Q ≅ ◊P
◊W ≅ ◊S

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 19

Failure Detectors: Comparison

Comparing failure detectors by reducibility

 Q ◊Q

 P ◊P

 W ◊W

 S ◊S

 D → D’: D is strictly stronger than D’
 D D’: D is equivalent to D’

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 20

Reliable Broadcast

Reliable Broadcast is a communication primitive that satisfies the following
properties:

Validity: If a correct process R_broadcasts a message m, then it eventually
R_delivers m

Agreement: If a correct process R_delivers a message m, then all correct
processes eventually R_deliver m

Uniform Integrity: For any message m, every process R_delivers m at most
once, and only if m was previously R_broadcast by sender(m)

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 21

Implementation of Reliable Broadcast

Reliable Broadcast is defined in terms of two primitives, R_broadcast(m) and
R_deliver(m), where m is the message to be broadcast

Every process p executes the following:

To execute R_broadcast(m):
 send m to all (including p)

R_deliver(m) occurs as follows:
 when receive m for the first time
 if sender(m) ≠ p then send m to all
 R_deliver(m)

Reliable Broadcast by message diffusion

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 22

The Consensus Problem

In the Consensus problem, every process proposes an input value, and correct
processes (those that do not crash) must eventually decide on some common
output value

We define the Consensus problem in terms of two primitives, propose(v) and
decide(v). The Consensus problem is specified as follows:

Termination: Every correct process eventually decides some value

Uniform Integrity: Every process decides at most once

Agreement: No two correct processes decide differently

Uniform Validity: If a process decides v, then v was proposed by some process

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 23

Solving Consensus using Unreliable Failure Detector s

By equivalence between failure detectors, we only need to solve Consensus
using each one of the four classes of failure detectors that satisfy strong
completeness, namely, P, S, ◊P, and ◊S

Two algorithms:

(1) Solving Consensus using a Strong failure detector S. Since by definition
P ≥ S, this algorithm also solves Consensus using a Perfect failure
detector P

(2) Solving Consensus using an Eventually Strong failure detector ◊S. Since

by definition ◊P ≥ ◊S, this algorithm also solves Consensus using an
Eventually Perfect failure detector ◊P

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 24

Solving Consensus using Unreliable Failure Detector s

Solving Consensus using a Strong Failure Detector (S)

S: strong completeness, weak accuracy. Eventually every process that crashes is
permanently suspected by every correct process. Some correct process is never
suspected

The algorithm tolerates up to n - 1 faulty processes. It runs through 3 phases: a
proposition phase, an agreement phase, and a decision phase

By W ≅ S, given any Weak Failure Detector W, Consensus is solvable in
asynchronous systems with f < n (f is the maximum number of processes that
may crash)

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 25

Solving Consensus using Unreliable Failure Detector s

Solving Consensus using an Eventually Strong Failure Detector (◊◊◊◊S)

◊S: strong completeness, eventual weak accuracy. Eventually every process that
crashes is permanently suspected by every correct process. There is a time after
which some correct process is not suspected by any correct process

The algorithm uses the rotating coordinator paradigm, and it proceeds in
asynchronous rounds. In each round, all messages are either to or from the
‘current’ coordinator. Every time a process becomes a coordinator, it tries to
determine a consistent decision value. If the current coordinator is correct and is
not suspected by any correct process, then it will succeed, and it will R_broadcast
the decision value

Each round of the algorithm is divided into four asynchronous phases: a voting
phase, a proposition phase, an acknowledgement phase, and a decision phase

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 26

Solving Consensus using Unreliable Failure Detector s

Solving Consensus using an Eventually Strong Failure Detector (◊◊◊◊S)

P 1

P 2

P 3

P 4

P 5

S t e p P . 1 S t e p C . 1 S t e p P . 2 S t e p C . 2

e s t i m a t e s p r o p o s i t i o n a c k / n a c k d e c i s i o n

The algorithm goes through three asynchronous epochs, each of which may span
several asynchronous rounds. In the first epoch, several decision values are
possible. In the second epoch, a value gets locked: no other decision value is
possible. In the third epoch, processes decide the locked value

By ◊W ≅ ◊S, given any Eventually Weak Failure Detector ◊W, Consensus is
solvable in asynchronous systems with a majority of correct processes (f < n/2)

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 27

Conclusions

Advantages of the failure detectors approach

It is a ‘clean’ extension of the asynchronous model

It has been used to determine the minimal information about failures necessary to
solve Consensus

Lower bounds on fault tolerance: failure detectors with perpetual accuracy can be
used to solve Consensus in asynchronous systems with any number of failures.
In contrast, with failure detectors with eventual accuracy, Consensus can be
solved if and only if a majority of the processes are correct

Algorithms based on ◊W (the weakest failure detector considered) always
preserve safety: if an algorithm assumes a failure detector with the properties of
◊W, but the failure detector that it actually uses fails to meet these properties, the
algorithm may lose its liveness properties, but its safety properties will never be
violated

Mikel Larrea, Departamento de Arquitectura y Tecnología de Computadores, UPV/EHU 28

Conclusions

Disadvantage of the failure detector approach

Algorithms are harder to design, because they must be aware of (and deal with)
the mistakes that the failure detector can make

