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1. INTRODUCTION

The design and verification of fault-tolerant distributed applications is widely viewed
as a complex endeavour. In recent years, several paradigms have been identified
which simplify this task. Key among these are Consensus and Atomic Broadcast.
Roughly speaking, Consensus allows processes to reach a common decision, which
depends on their initial inputs, despite failures. Consensus algorithms can be used
to solve many problems that arise in practice, such as electing a leader or agreeing
on the value of a replicated sensor. Atomic Broadcast allows processes to reliably
broadcast messages, so that they agree on the set of messages they deliver and the
order of message deliveries. Applications based on these paradigms include SIFT
[Wensley et al. 1978], State Machines [Lamport 1978; Schneider 1990], Isis [Birman
and Joseph 1987; Birman et al. 1990], Psync [Peterson et al. 1989], Amoeba [Mul-
lender 1987], Delta-4 [Powell 1991], Transis [Amir et al. 1991], HAS [Cristian 1987],
FAA [Cristian et al. 1990], and Atomic Commitment.

Given their wide applicability, Consensus and Atomic Broadcast have been exten-
sively studied by both theoretical and experimental researchers for over a decade.
In this paper, we focus on solutions to Consensus and Atomic Broadcast in the
asynchronous model of distributed computing. Informally, a distributed system
is asynchronous if there is no bound on message delay, clock drift, or the time
necessary to execute a step. Thus, to say that a system is asynchronous is to
make no timing assumptions whatsoever. This model is attractive and has recently
gained much currency for several reasons: It has simple semantics; applications
programmed on the basis of this model are easier to port than those incorporating
specific timing assumptions; and in practice, variable or unexpected workloads are
sources of asynchrony—thus synchrony assumptions are at best probabilistic.

Although the asynchronous model of computation is attractive for the reasons
outlined above, it is well known that Consensus and Atomic Broadcast cannot be
solved deterministically in an asynchronous system that is subject to even a single
crash failure [Fischer et al. 1985; Dolev et al. 1987].1 Essentially, the impossibility
results for Consensus and Atomic Broadcast stem from the inherent difficulty of
determining whether a process has actually crashed or is only “very slow”.

To circumvent these impossibility results, previous research focused on the use
of randomisation techniques [Chor and Dwork 1989], the definition of some weaker
problems and their solutions [Dolev et al. 1986; Attiya et al. 1987; Bridgland and
Watro 1987; Biran et al. 1988], or the study of several models of partial synchrony
[Dolev et al. 1987; Dwork et al. 1988]. Nevertheless, the impossibility of deter-
ministic solutions to many agreement problems (such as Consensus and Atomic
Broadcast) remains a major obstacle to the use of the asynchronous model of com-
putation for fault-tolerant distributed computing.

In this paper, we propose an alternative approach to circumvent such impossibil-
ity results, and to broaden the applicability of the asynchronous model of compu-
tation. Since impossibility results for asynchronous systems stem from the inherent
difficulty of determining whether a process has actually crashed or is only “very
slow”, we propose to augment the asynchronous model of computation with a model

1Roughly speaking, a crash failure occurs when a process that has been executing correctly, stops

prematurely. Once a process crashes, it does not recover.
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of an external failure detection mechanism that can make mistakes. In particular,
we model the concept of unreliable failure detectors for systems with crash failures.
In the rest of this introduction, we informally describe this concept and summarise
our results.

We consider distributed failure detectors: each process has access to a local failure
detector module. Each local module monitors a subset of the processes in the
system, and maintains a list of those that it currently suspects to have crashed.
We assume that each failure detector module can make mistakes by erroneously
adding processes to its list of suspects: i.e, it can suspect that a process p has
crashed even though p is still running. If this module later believes that suspecting
p was a mistake, it can remove p from its list. Thus, each module may repeatedly
add and remove processes from its list of suspects. Furthermore, at any given time
the failure detector modules at two different processes may have different lists of
suspects.

It is important to note that the mistakes made by an unreliable failure detector
should not prevent any correct process from behaving according to specification
even if that process is (erroneously) suspected to have crashed by all the other
processes. For example, consider an algorithm that uses a failure detector to solve
Atomic Broadcast in an asynchronous system. Suppose all the failure detector
modules wrongly (and permanently) suspect that correct process p has crashed.
The Atomic Broadcast algorithm must still ensure that p delivers the same set of
messages, in the same order, as all the other correct processes. Furthermore, if p
broadcasts a message m, all correct processes must deliver m.2

We define failure detectors in terms of abstract properties as opposed to giving
specific implementations; the hardware or software implementation of failure detec-
tors is not the concern of this paper. This approach allows us to design applications
and prove their correctness relying solely on these properties, without referring to
low-level network parameters (such as the exact duration of time-outs that are used
to implement failure detectors). This makes the presentation of applications and
their proof of correctness more modular. Our approach is well-suited to model
many existing systems that decouple the design of fault-tolerant applications from
the underlying failure detection mechanisms, such as the Isis Toolkit [Birman et al.
1990] for asynchronous fault-tolerant distributed computing.

We characterise a class of failure detectors by specifying the completeness and ac-
curacy properties that failure detectors in this class must satisfy. Roughly speaking,
completeness requires that a failure detector eventually suspects every process that
actually crashes,3 while accuracy restricts the mistakes that a failure detector can
make. We define two completeness and four accuracy properties, which gives rise
to eight classes of failure detectors, and consider the problem of solving Consensus
using failure detectors from each class.4

2A different approach was taken by the Isis system [Ricciardi and Birman 1991]: a correct process
that is wrongly suspected to have crashed, is forced to crash itself. In other words, the Isis failure
detector forces the system to conform to its view. To applications such a failure detector makes

no mistakes. For a more detailed discussion on this, see Section 9.3.
3In this introduction, we say that the failure detector suspects that a process p has crashed if any

local failure detector module suspects that p has crashed.
4We later show that Consensus and Atomic Broadcast are equivalent in asynchronous systems:
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To do so, we introduce the concept of “reducibility” among failure detectors.

Informally, a failure detector D′ is reducible to failure detector D if there is a
distributed algorithm that can transform D into D′. We also say that D′ is weaker
than D: Given this reduction algorithm, anything that can be done using failure
detector D′, can be done using D instead. Two failure detectors are equivalent
if they are reducible to each other. Using the concept of reducibility (extended
to classes of failure detectors), we show how to reduce our eight classes of failure
detectors to four, and consider how to solve Consensus for each class.

We show that certain failure detectors can be used to solve Consensus in systems
with any number of process failures, while others require a majority of correct
processes. In order to better understand where the majority requirement becomes
necessary, we study an infinite hierarchy of failure detector classes and determine
exactly where in this hierarchy the majority requirement becomes necessary.

Of special interest is
�
W , the weakest class of failure detectors considered in

this paper. Informally, a failure detector is in
�
W if it satisfies the following two

properties:

Completeness. There is a time after which every process that crashes is perma-
nently suspected by some correct process.

Accuracy. There is a time after which some correct process is never suspected by
any correct process.

Such a failure detector can make an infinite number of mistakes: Each local failure
detector module can repeatedly add and then remove correct processes from its list
of suspects (this reflects the inherent difficulty of determining whether a process
is just slow or whether it has crashed). Moreover, some correct processes may be
erroneously suspected to have crashed by all the other processes throughout the
entire execution.

The two properties of
�
W state that eventually some conditions must hold for-

ever; of course this cannot be achieved in a real system. However, in practice it is
not really required that these conditions hold forever. When solving a problem that
“terminates”, such as Consensus, it is enough that they hold for a “sufficiently long”
period of time: This period should be long enough for the algorithm to achieve its
goal (e.g., for correct processes to decide). When solving a problem that does not
terminate, such as Atomic Broadcast, it is enough that these properties hold for
“sufficiently long” periods of time: Each period should be long enough for some
progress to occur (e.g., for correct processes to deliver some messages). However, in
an asynchronous system it is not possible to quantify “sufficiently long”, since even
a single process step is allowed to take an arbitrarily long amount of time. Thus,
it is convenient to state the properties of

�
W in the stronger form given above.5

Another desirable feature of
�
W is the following. If an application assumes a

failure detector with the properties of
�
W , but the failure detector that it actually

any Consensus algorithm can be transformed into an Atomic Broadcast algorithm and vice versa.

Thus, we can focus on solving Consensus since all our results will automatically apply to Atomic
Broadcast as well.
5Solving a problem with the assumption that certain properties hold for sufficiently long has been

done previously, see [Dwork et al. 1988].
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uses “malfunctions” and continuously fails to meet these properties — for example,
there is a crash that no process ever detects, and all correct processes are repeatedly
(and forever) falsely suspected — the application may lose liveness but not safety .
For example, if a Consensus algorithm assumes the properties of

�
W , but the

failure detector that it actually uses misbehaves continuously, processes may be
prevented from deciding, but they never decide different values (or a value that is
not allowed). Similarly, with an Atomic Broadcast algorithm, processes may stop
delivering messages, but they never deliver messages out-of-order.

The failure detector abstraction is a clean extension to the asynchronous model of
computation that allows us to solve many problems that are otherwise unsolvable.
Naturally, the question arises of how to support such an abstraction in an actual
system. Since we specify failure detectors in terms of abstract properties, we are
not committed to a particular implementation. For instance, one could envision
specialised hardware to support this abstraction. However, most implementations of
failure detectors are based on time-out mechanisms. For the purpose of illustration,
we now outline one such implementation based on an idea in [Dwork et al. 1988]
(a more detailed description of this implementation and of its properties is given in
Section 9.1).

Every process q periodically sends a “q-is-alive” message to all. If a process p
times-out on some process q, it adds q to its list of suspects. If p later receives a
“q-is-alive” message, p recognises that it made a mistake by prematurely timing out
on q: p removes q from its list of suspects, and increases the length of its timeout
period for q in an attempt to prevent a similar mistake in the future.

In an asynchronous system, this scheme does not implement a failure detector
with the properties of

�
W :6 an unbounded sequence of premature time-outs may

cause every correct process to be repeatedly added and then removed from the
list of suspects of every correct process, thereby violating the accuracy property of

�
W . Nevertheless, in many practical systems, increasing the timeout period after

each mistake ensures that eventually there are no premature time-outs on at least
one correct process p. This gives the accuracy property of

�
W : there is a time

after which p is permanently removed from all the lists of suspects. Recall that, in
practice, it is not necessary for this to hold permanently; it is sufficient that it holds
for periods that are “long enough” for the application using the failure detector to
make sufficient progress or to complete its task. Accordingly, it is not necessary for
the premature time-outs on p to cease permanently: it is sufficient that they cease
for “long enough” periods of time.

Having made the point that in practical systems one can use time-outs to imple-
ment a failure detector with the properties of

�
W , we reiterate that all reasoning

about failure detectors (and algorithms that use them) should be done in terms of
their abstract properties and not in terms of any particular implementation. This is
an important feature of this approach, and the reader should refrain from thinking
of failure detectors in terms of specific time-out mechanisms.

Any failure detector that satisfies the completeness and accuracy properties of

6Indeed, no algorithm can implement such a failure detector in an asynchronous system: as we
show in Section 6.2, this implementation could be used to solve Consensus in such a system,

contradicting the impossibility result of [Fischer et al. 1985].
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�
W provides sufficient information about failures to solve Consensus. But is this

information necessary? Indeed, what it is the “weakest” failure detector for solving
Consensus?

[Chandra et al. 1992] answer this question by considering
�
W0, the weakest

failure detector in
�
W . Roughly speaking,

�
W0 satisfies the properties of

�
W ,

and no other properties. [Chandra et al. 1992] show that
�
W0 is the weakest

failure detector that can be used to solve Consensus in asynchronous systems (with
a majority of correct processes). More precisely, [Chandra et al. 1992] show that
if a failure detector D can be used to solve Consensus, then there is a distributed
algorithm that transforms D into

�
W0. Thus, in a precise sense,

�
W0 is necessary

and sufficient for solving Consensus in asynchronous systems (with a majority of
correct processes). This result is further evidence to the importance of

�
W for

fault-tolerant distributed computing in asynchronous systems.
In our discussion so far, we focused on the Consensus problem. In Section 7, we

show that Consensus is equivalent to Atomic Broadcast in asynchronous systems
with crash failures. This is shown by reducing each problem to the other.7 In
other words, a solution for one automatically yields a solution for the other. Thus,
Atomic Broadcast can be solved using the unreliable failure detectors described in
this paper. Furthermore,

�
W0 is the weakest failure detector that can be used to

solve Atomic Broadcast.
A different tack on circumventing the unsolvability of Consensus is pursued in

[Dolev et al. 1987] and [Dwork et al. 1988]. The approach of those papers is based
on the observation that between the completely synchronous and completely asyn-
chronous models of distributed systems there lie a variety of intermediate partially
synchronous models. In particular, those two papers consider at least 34 different
models of partial synchrony and for each model determine whether or not Consensus
can be solved. In this paper, we argue that partial synchrony assumptions can be
encapsulated in the unreliability of failure detectors. For example, in the models of
partial synchrony considered in [Dwork et al. 1988] it is easy to implement a failure
detector that satisfies the properties of

�
W . This immediately implies that Con-

sensus and Atomic Broadcast can be solved in these models. Thus, our approach
can be used to unify several seemingly unrelated models of partial synchrony.8

As we argued earlier, using the asynchronous model of computation is highly de-
sirable in many applications: it results in code that is simple, portable and robust.
However, the fact that fundamental problems such as Consensus and Atomic Broad-
cast have no (deterministic) solutions in this model is a major obstacle to its use
in fault-tolerant distributed computing. Our model of unreliable failure detectors
provides a natural and simple extension of the asynchronous model of computation,
in which Consensus and Atomic Broadcast can be solved deterministically. Thus,
this extended model retains the advantages of asynchrony without inheriting its
disadvantages.

Finally, even though this paper is concerned with solvability rather than effi-

7They are actually equivalent even in asynchronous systems with arbitrary , i.e., “Byzantine”,
failures. However, that reduction is more complex and is omitted from this paper.
8The relation between our approach and partial synchrony is discussed in more detail in Section

9.1.
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ciency, one of our algorithms (the one assuming a failure detector with the proper-
ties of

�
W) appears to be quite efficient: We have recently implemented a slightly

modified version that achieves Consensus within two “asynchronous rounds” in
most runs. Thus, we believe that unreliable failure detectors can be used to bridge
the gap between known impossibility results and the need for practical solutions
for fault-tolerant asynchronous systems.

The remainder of this paper is organised as follows. In Section 2, we describe our
model and introduce eight classes of failure detectors defined in terms of properties.
In Section 3, we use the concept of reduction to show that we can focus on four
classes of failure detectors rather than eight. In Section 4, we present Reliable
Broadcast, a communication primitive for asynchronous systems used by several
of our algorithms. In Section 5, we define the Consensus problem. In Section 6,
we show how to solve Consensus for each one of the four equivalence classes of
failure detectors. In Section 7, we show that Consensus and Atomic Broadcast
are equivalent to each other in asynchronous systems. In Section 8, we complete
our comparison of the failure detector classes defined in this paper. In Section
9, we discuss related work, and in particular, we describe an implementation of a
failure detector with the properties of

�
W in several models of partial synchrony.

Finally, in the Appendix we define an infinite hierarchy of failure detector classes,
and determine exactly where in this hierarchy a majority of correct processes is
required to solve Consensus.

2. THE MODEL

We consider asynchronous distributed systems in which there is no bound on mes-
sage delay, clock drift, or the time necessary to execute a step. Our model of
asynchronous computation with failure detection is patterned after the one in [Fis-
cher et al. 1985]. The system consists of a set of n processes, Π = {p1, p2, . . . , pn}.
Every pair of processes is connected by a reliable communication channel.

To simplify the presentation of our model, we assume the existence of a discrete
global clock. This is merely a fictional device: the processes do not have access to
it. We take the range T of the clock’s ticks to be the set of natural numbers.

2.1 Failures and failure patterns

Processes can fail by crashing, i.e., by prematurely halting. A failure pattern F is
a function from T to 2Π, where F (t) denotes the set of processes that have crashed
through time t. Once a process crashes, it does not “recover”, i.e., ∀t : F (t) ⊆
F (t + 1). We define crashed(F ) =

⋃

t∈T F (t) and correct(F ) = Π − crashed(F ). If
p ∈ crashed(F ) we say p crashes in F and if p ∈ correct(F ) we say p is correct in
F . We consider only failure patterns F such that at least one process is correct,
i.e., correct(F ) 6= ∅.

2.2 Failure detectors

Each failure detector module outputs the set of processes that it currently suspects
to have crashed.9 A failure detector history H is a function from Π×T to 2Π. H(p, t)
is the value of the failure detector module of process p at time t. If q ∈ H(p, t), we

9In [Chandra et al. 1992] failure detectors can output values from an arbitrary range.
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say that p suspects q at time t in H. We omit references to H when it is obvious
from the context. Note that the failure detector modules of two different processes
need not agree on the list of processes that are suspected to have crashed, i.e., if
p 6= q then H(p, t) 6= H(q, t) is possible.

Informally, a failure detector D provides (possibly incorrect) information about
the failure pattern F that occurs in an execution. Formally, failure detector D is
a function that maps each failure pattern F to a set of failure detector histories
D(F ). This is the set of all failure detector histories that could occur in executions
with failure pattern F and failure detector D.10

In this paper, we do not define failure detectors in terms of specific implementa-
tions. Such implementations would have to refer to low-level network parameters,
such as the network topology, the message delays, and the accuracy of the local
clocks. To avoid this problem, we specify a failure detector in terms of two abstract
properties that it must satisfy: completeness and accuracy. This allows us to design
applications and prove their correctness relying solely on these properties.

2.3 Failure detector properties

We now state two completeness properties and four accuracy properties that a
failure detector D may satisfy.

Completeness. We consider two completeness properties:

Strong completeness. Eventually every process that crashes is permanently sus-
pected by every correct process. Formally, D satisfies strong completeness if:

∀F,∀H ∈ D(F ),∃t ∈ T ,∀p ∈ crashed(F ),∀q ∈ correct(F ),∀t′ ≥ t : p ∈ H(q, t′)

Weak completeness. Eventually every process that crashes is permanently sus-
pected by some correct process. Formally, D satisfies weak completeness if:

∀F,∀H ∈ D(F ),∃t ∈ T ,∀p ∈ crashed(F ),∃q ∈ correct(F ),∀t′ ≥ t : p ∈ H(q, t′)

However, completeness by itself is not a useful property. To see this, consider
a failure detector which causes every process to permanently suspect every other
process in the system. Such a failure detector trivially satisfies strong completeness
but is clearly useless since it provides no information about failures. To be useful, a
failure detector must also satisfy some accuracy property that restricts the mistakes
that it can make. We now consider such properties.

Accuracy. Consider the following two accuracy properties:

Strong accuracy. No process is suspected before it crashes. Formally, D satisfies
strong accuracy if:

∀F,∀H ∈ D(F ),∀t ∈ T ,∀p, q ∈ Π− F (t) : p 6∈ H(q, t)

Since it is difficult (if not impossible) to achieve strong accuracy in many practical
systems, we also define:

10In general, there are many executions with the same failure pattern F (e.g, these executions
may differ by the pattern of their message exchange). For each such execution, D may have a

different failure detector history.
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Weak accuracy. Some correct process is never suspected. Formally, D satisfies
weak accuracy if:

∀F,∀H ∈ D(F ),∃p ∈ correct(F ),∀t ∈ T ,∀q ∈ Π− F (t) : p 6∈ H(q, t)

Even weak accuracy guarantees that at least one correct process is never suspected.
Since this type of accuracy may be difficult to achieve, we consider failure detec-
tors that may suspect every process at one time or another. Informally, we only
require that strong accuracy or weak accuracy are eventually satisfied. The re-
sulting properties are called eventual strong accuracy and eventual weak accuracy,
respectively.

For example, eventual strong accuracy requires that there is a time after which
strong accuracy holds. Formally, D satisfies eventual strong accuracy if:

∀F,∀H ∈ D(F ),∃t ∈ T ,∀t′ ≥ t,∀p, q ∈ Π− F (t′) : p 6∈ H(q, t′)

An observation is now in order. Since all faulty processes will crash after some
finite time, we have:

∀F,∃t ∈ T ,∀t′ ≥ t : Π− F (t′) = correct(F )

Thus, an equivalent and simpler formulation of eventual strong accuracy is:

Eventual strong accuracy. There is a time after which correct processes are not
suspected by any correct process. Formally, D satisfies eventual strong accuracy if:

∀F,∀H ∈ D(F ),∃t ∈ T ,∀t′ ≥ t,∀p, q ∈ correct(F ) : p 6∈ H(q, t′)

Similarly, we specify eventual weak accuracy as follows:

Eventual weak accuracy. There is a time after which some correct process is never
suspected by any correct process. Formally, D satisfies eventual weak accuracy if:

∀F,∀H ∈ D(F ),∃t ∈ T ,∃p ∈ correct(F ),∀t′ ≥ t,∀q ∈ correct(F ) : p 6∈ H(q, t′)

We will refer to eventual strong accuracy and eventual weak accuracy as eventual
accuracy properties, and strong accuracy and weak accuracy as perpetual accuracy
properties.

2.4 Failure detector classes

A failure detector is said to be Perfect if it satisfies strong completeness and strong
accuracy. The set of all such failure detectors, called the class of Perfect failure
detectors, is denoted by P . Similar definitions arise for each pair of completeness
and accuracy properties. There are eight such pairs, obtained by selecting one of
the two completeness properties and one of the four accuracy properties introduced
in the previous section. The resulting definitions and corresponding notation are
given in Figure 1.

2.5 Algorithms and runs

In this paper, we focus on algorithms that use unreliable failure detectors. To
describe such algorithms, we only need informal definitions of algorithms and runs,
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Accuracy

Completeness Strong Weak Eventual Strong Eventual Weak

Strong Perfect Strong Eventually Perfect Eventually Strong

P S
�
P

�
S

Weak Weak Eventually Weak

Q W
�
Q

�
W

Fig. 1. Eight classes of failure detectors defined in terms of accuracy and completeness.

based on the formal definitions given in [Chandra et al. 1992].11

An algorithm A is a collection of n deterministic automata, one for each process
in the system. Computation proceeds in steps of A. In each step, a process (1)
may receive a message that was sent to it, (2) queries its failure detector module,
(3) undergoes a state transition, and (4) may send a message to a single process.12

Since we model asynchronous systems, messages may experience arbitrary (but
finite) delays. Furthermore, there is no bound on relative process speeds.

A run of algorithm A using a failure detector D is a tuple R = 〈F ,HD, I, S, T 〉
where F is a failure pattern, HD ∈ D(F ) is a history of failure detectorD for failure
pattern F , I is an initial configuration of A, S is an infinite sequence of steps of A,
and T is a list of increasing time values indicating when each step in S occurred.
A run must satisfy certain well-formedness and fairness properties. In particular,
(1) a process cannot take a step after it crashes, (2) when a process takes a step
and queries its failure detector module, it gets the current value output by its local
failure detector module, and (3) every process that is correct in F takes an infinite
number of steps in S and eventually receives every message sent to it.

Informally, a problem P is defined by a set of properties that runs must satisfy.
An algorithm A solves a problem P using a failure detector D if all the runs of A
using D satisfy the properties required by P . Let C be a class of failure detectors.
Algorithm A solves problem P using C if for all D ∈ C, A solves P using D. Finally,
we say that problem P can be solved using C if for all failure detectors D ∈ C, there
is an algorithm A that solves P using D.

We use the following notation. Let v be a variable in algorithm A. We denote by
vp process p’s copy of v. The history of v in run R is denoted by vR, i.e., vR(p, t)
is the value of vp at time t in run R. We denote by Dp process p’s local failure
detector module. Thus, the value of Dp at time t in run R = 〈F ,HD, I, S, T 〉 is
HD(p, t).

2.6 Reducibility

We now define what it means for an algorithm TD→D′ to transform a failure de-
tector D into another failure detector D′ (TD→D′ is called a reduction algorithm).
Algorithm TD→D′ uses D to maintain a variable outputp at every process p. This
variable, which is part of the local state of p, emulates the output of D′ at p. Algo-

11Formal definitions are necessary in [Chandra et al. 1992] to prove a subtle lower bound.
12[Chandra et al. 1992] assume that each step is atomic, i.e., indivisible with respect to fail-
ures. Furthermore, each process can send a message to all processes during such a step. These

assumptions were made to strengthen the lower bound result of [Chandra et al. 1992].
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D

D′ emulated

Algorithm A uses D′

TD→D′

Fig. 2. Transforming D into D′.

rithm TD→D′ transforms D into D′ if and only if for every run R = 〈F ,HD, I, S, T 〉
of TD→D′ using D, outputR ∈ D′(F ). Note that TD→D′ need not emulate all the
failure detector histories of D′; what we do require is that all the failure detector
histories it emulates be histories of D′.

Given a reduction algorithm TD→D′ , any problem that can be solved using failure
detector D′, can be solved using D instead. To see this, suppose a given algorithm
A requires failure detector D′, but only D is available. We can still execute A as
follows. Concurrently with A, processes run TD→D′ to transform D into D′. We
modify algorithm A at process p as follows: whenever A requires that p queries its
failure detector module, p reads the current value of outputp (which is concurrently
maintained by TD→D′ ) instead. This is illustrated in Figure 2.

Intuitively, since TD→D′ is able to use D to emulate D′, D must provide at least as
much information about process failures as D′ does. Thus, if there is an algorithm
TD→D′ that transforms D into D′, we write D � D′ and say that D′ is reducible
to D; we also say that D′ is weaker than D. Clearly, � is a transitive relation. If
D � D′ and D′ � D, we write D ∼= D′ and say that D and D′ are equivalent.

Similarly, given two classes of failure detectors C and C ′, if for each failure detector
D ∈ C there is a failure detector D′ ∈ C′ such that D � D′, we write C � C′ and
say that C′ is weaker than C (note that if C � C ′, then if a problem is solvable
using C ′, it is also solvable using C). From this definition, � is clearly transitive.
If C � C′ and C′ � C, we write C ∼= C′ and say that C and C′ are equivalent.

Consider the trivial reduction algorithm in which each process p periodically
writes the current value output by its local failure detector module into outputp.
From this trivial reduction the following relations between classes of failure detec-
tors are immediate:

Observation 1. P � Q, S � W ,
�
P �

�
Q,

�
S �

�
W .
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Every process p executes the following:

outputp ← ∅

cobegin

|| Task 1: repeat forever

{p queries its local failure detector module Dp}
suspectsp ← Dp

send (p, suspectsp) to all

|| Task 2: when receive (q, suspectsq) for some q

outputp ← (outputp ∪ suspectsq)− {q} {outputp emulates D′p}
coend

Fig. 3. TD→D′ : From Weak Completeness to Strong Completeness.

3. FROM WEAK COMPLETENESS TO STRONG COMPLETENESS

In Figure 3, we give a reduction algorithm TD→D′ that transforms any given failure
detector D that satisfies weak completeness, into a failure detector D′ that satisfies
strong completeness. Furthermore, if D satisfies one of the four accuracy proper-
ties that we defined in Section 2.3 then D′ also does so. In other words, TD→D′

strengthens completeness while preserving accuracy.
This result allows us to focus on the four classes of failure detectors defined in the

first row of Figure 1, i.e., those with strong completeness. This is because, TD→D′

(together with Observation 1) shows that every failure detector class in the second
row of Figure 1 is actually equivalent to the class above it in that figure.

Informally, TD→D′ works as follows. Every process p periodically sends (p, suspectsp)
— where suspectsp denotes the set of processes that p suspects according to its local
failure detector module Dp — to every process. When p receives a message of the
form (q, suspectsq), it adds suspectsq to outputp and removes q from outputp (recall
that outputp is the variable emulating the output of the failure detector module
D′p).

In our algorithms, we use the notation “send m to all” as a short-hand for “for
all q ∈ Π: send m to q.” If a process p crashes while executing this “for loop”, it is
possible that some processes receive the message m while others do not.

Let R = 〈F ,HD , I, S, T 〉 be an arbitrary run of TD→D′ using failure detector D.
In the following, the run R and its failure pattern F are fixed. Thus, when we say
that a process crashes we mean that it crashes in F . Similarly, when we say that
a process is correct, we mean that it is correct in F . We will show that outputR

satisfies the following properties:

P1 (Transforming weak completeness into strong completeness). Let p be any pro-
cess that crashes. If eventually some correct process permanently suspects p in HD,
then eventually all correct processes permanently suspect p in outputR. More for-
mally:

∀p ∈ crashed(F ) :
∃t ∈ T ,∃q ∈ correct(F ),∀t′ ≥ t : p ∈ HD(q, t′)

⇒ ∃t ∈ T ,∀q ∈ correct(F ),∀t′ ≥ t : p ∈ outputR(q, t′)
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P2 (Preserving perpetual accuracy). Let p be any process. If no process suspects
p in HD before time t, then no process suspects p in outputR before time t. More
formally:

∀p ∈ Π,∀t ∈ T :
∀t′ < t,∀q ∈ Π− F (t′) : p 6∈ HD(q, t′)

⇒ ∀t′ < t,∀q ∈ Π− F (t′) : p 6∈ outputR(q, t′)

P3 (Preserving eventual accuracy). Let p be any correct process. If there is a
time after which no correct process suspects p in HD, then there is a time after
which no correct process suspects p in outputR. More formally:

∀p ∈ correct(F ) :
∃t ∈ T ,∀q ∈ correct(F ),∀t′ ≥ t : p 6∈ HD(q, t′)

⇒ ∃t ∈ T ,∀q ∈ correct(F ),∀t′ ≥ t : p 6∈ outputR(q, t′)

Lemma 1. TD→D′ satisfies P1.

Proof. Let p be any process that crashes. Suppose that there is a time t after
which some correct process q permanently suspects p in HD . We must show that
there is a time after which every correct process suspects p in outputR.

Since p crashes, there is a time t′ after which no process receives a message from
p. Consider the execution of Task 1 by process q after time tp = max(t, t′). Process
q sends a message of the type (q, suspectsq) with p ∈ suspectsq to all processes.
Eventually, every correct process receives (q, suspectsq) and adds p to output (in
Task 2). Since no correct process receives any messages from p after time t′ and
tp ≥ t′, no correct process removes p from output after time tp. Thus, there is a
time after which every correct process permanently suspects p in outputR.

Lemma 2. TD→D′ satisfies P2.

Proof. Let p be any process. Suppose there is a time t before which no process
suspects p in HD. No process sends a message of the type (−, suspects) with p ∈
suspects before time t. Thus, no process q adds p to outputq before time t.

Lemma 3. TD→D′ satisfies P3.

Proof. Let p be any correct process. Suppose that there is a time t after which
no correct process suspects p in HD. Thus, all processes that suspect p after time
t eventually crash. Thus, there is a time t′ after which no correct process receives
a message of the type (−, suspects) with p ∈ suspects.

Let q be any correct process. We must show that there is a time after which q
does not suspect p in outputR. Consider the execution of Task 1 by process p after
time t′. Process p sends a message m = (p, suspectsp) to q. When q receives m, it
removes p from outputq (see Task 2). Since q does not receive any messages of the
type (−, suspects) with p ∈ suspects after time t′, q does not add p to outputq after

time t′. Thus, there is a time after which q does not suspect p in outputR.

Theorem 1. Q � P, W � S,
�
Q �

�
P, and

�
W �

�
S.

Proof. Let D be any failure detector in Q, W ,
�
Q, or

�
W . We show that

TD→D′ transforms D into a failure detector D′ in P , S,
�
P , or

�
S, respectively.

Since D satisfies weak completeness, by Lemma 1, D′ satisfies strong completeness.
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Every process p executes the following:

To execute R-broadcast(m):
send m to all (including p)

R-deliver(m) occurs as follows:
when receive m for the first time

if sender(m) 6= p then send m to all
R-deliver(m)

Fig. 4. Reliable Broadcast by message diffusion.

We now show that D and D′ have the same accuracy property. If D is in Q or W ,
this follows from Lemma 2. If D is in

�
Q or

�
W , this follows from Lemma 3.

By Theorem 1 and Observation 1, we have:

Corollary 1. P ∼= Q, S ∼= W,
�
P ∼=

�
Q, and

�
S ∼=

�
W.

The relations given in Corollary 1 are sufficient for the purposes of this paper.
A complete enumeration of the relations between the eight failure detectors classes
defined in Figure 1 is given in Section 8.

4. Reliable Broadcast

We now define Reliable Broadcast, a communication primitive for asynchronous
systems that we use in our algorithms.13 Informally, Reliable Broadcast guarantees
that (1) all correct processes deliver the same set of messages, (2) all messages
broadcast by correct processes are delivered, and (3) no spurious messages are
ever delivered. Formally, Reliable Broadcast is defined in terms of two primitives,
R-broadcast(m) and R-deliver(m) where m is a message drawn from a set of possible
messages. When a process executes R-broadcast(m), we say that it R-broadcasts m,
and when a process executes R-deliver(m), we say that it R-delivers m. We assume
that every message m includes a field denoted sender(m) that contains the identity
of the sender, and a field with a sequence number; these two fields make every
message unique. Reliable Broadcast satisfies the following properties [Hadzilacos
and Toueg 1994]:

Validity. If a correct processR-broadcasts a message m, then it eventually R-delivers
m.

Agreement. If a correct process R-delivers a message m, then all correct processes
eventually R-deliver m.

Uniform integrity. For any message m, every process R-delivers m at most once,
and only if m was previously R-broadcast by sender(m).

In Figure 4, we give a simple Reliable Broadcast algorithm for asynchronous sys-
tems. Informally, when a process receives a message for the first time, it relays the
message to all processes and then R-delivers it. This algorithm satisfies validity,

13This is a crash-failure version of the asynchronous broadcast primitive defined in [Bracha and

Toueg 1985] for “Byzantine” failures.
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agreement and uniform integrity in asynchronous systems with up to n − 1 crash
failures. The proof is obvious and therefore omitted.

5. THE CONSENSUS PROBLEM

In the Consensus problem, all correct processes propose a value and must reach a
unanimous and irrevocable decision on some value that is related to the proposed
values [Fischer 1983]. We define the Consensus problem in terms of two primitives,
propose(v) and decide(v), where v is a value drawn from a set of possible proposed
values. When a process executes propose(v), we say that it proposes v; similarly,
when a process executes decide(v), we say that it decides v. The Consensus problem
is specified as follows:

Termination. Every correct process eventually decides some value.

Uniform integrity. Every process decides at most once.

Agreement. No two correct processes decide differently.

Uniform validity. If a process decides v, then v was proposed by some process.14

It is well-known that Consensus cannot be solved in asynchronous systems that are
subject to even a single crash failure [Fischer et al. 1985; Dolev et al. 1987].

6. SOLVING CONSENSUS USING UNRELIABLE FAILURE DETECTORS

We now show how to solve Consensus using each one of the eight classes of failure
detectors defined in Figure 1. By Corollary 1, we only need to show how to solve
Consensus using each one of the four classes of failure detectors that satisfy strong
completeness, namely, P , S,

�
P , and

�
S.

In Section 6.1, we present an algorithm that solves Consensus using S. Since
P � S, this algorithm also solves Consensus using P . In Section 6.2, we give a
Consensus algorithm that uses

�
S. Since

�
P �

�
S, this algorithm also solves

Consensus using
�
P . Our Consensus algorithms actually solve a stronger form of

Consensus than the one specified in Section 5: They ensure that no two processes,
whether correct or faulty, decide differently — a property called uniform agreement
[Neiger and Toueg 1990].

The Consensus algorithm that uses S tolerates any number of failures. In con-
trast, the one that uses

�
S requires a majority of correct processes. We show that

to solve Consensus this requirement is necessary even if one uses
�
P , a class of

failure detectors that is stronger than
�
S. Thus, our algorithm for solving Con-

sensus using
�
S (or

�
P) is optimal with respect to the number of failures that it

tolerates.

6.1 Solving Consensus using S

The algorithm in Figure 5 solves Consensus using any Strong failure detectorD ∈ S.
In other words, it works with any failure detector D that satisfies strong complete-
ness and weak accuracy. This algorithm tolerates up to n − 1 faulty processes (in
asynchronous systems with n processes).

14The validity property captures the relation between the decision value and the proposed values.

Changing this property results in other types of Consensus [Fischer 1983].
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Every process p executes the following:

procedure propose(vp)
Vp ← 〈⊥,⊥, . . . ,⊥〉 {p’s estimate of the proposed values}
Vp[p]← vp

∆p ← Vp

Phase 1: {asynchronous rounds rp, 1 ≤ rp ≤ n− 1}
for rp ← 1 to n− 1

send (rp , ∆p, p) to all
wait until [∀q : received (rp , ∆q , q) or q ∈ Dp ] {query the failure detector}
msgsp[rp]← {(rp, ∆q , q) | received (rp, ∆q , q)}
∆p ← 〈⊥,⊥, . . . ,⊥〉
for k ← 1 to n

if Vp[k] = ⊥ and ∃(rp , ∆q , q) ∈ msgsp[rp ] with ∆q [k] 6= ⊥ then

Vp [k]← ∆q [k]

∆p [k]← ∆q [k]

Phase 2: send Vp to all

wait until [∀q : received Vq or q ∈ Dp] {query the failure detector}
lastmsgsp← {Vq | received Vq}
for k ← 1 to n

if ∃Vq ∈ lastmsgsp with Vq [k] = ⊥ then Vp[k]← ⊥

Phase 3: decide( first non-⊥ component of Vp)

Fig. 5. Solving Consensus using any D ∈ S.

The algorithm runs through 3 phases. In Phase 1, processes execute n− 1 asyn-
chronous rounds (rp denotes the current round number of process p) during which
they broadcast and relay their proposed values. Each process p waits until it re-
ceives a round r message from every process that is not in Dp, before proceeding
to round r + 1. Note that while p is waiting for a message from q in round r, it is
possible that q is added to Dp. If this occurs, p stops waiting for q’s message and
proceeds to round r + 1.

By the end of Phase 2, correct processes agree on a vector based on the proposed
values of all processes. The ith element of this vector either contains the proposed
value of process pi or ⊥. We will show that this vector contains the proposed value
of at least one process. In Phase 3, correct processes decide the first non-trivial
component of this vector.

Let R = 〈F ,HD, I, S, T 〉 be any run of the algorithm in Figure 5 using D ∈ S in
which all correct processes propose a value. We have to show that the termination,
uniform validity, agreement and uniform integrity properties of Consensus hold.

Note that Vp[q] is p’s current estimate of q’s proposed value. Furthermore,
∆p[q] = vq at the end of round r if and only if p receives vq, the value proposed by
q, for the first time in round r.

Lemma 4. For all p and q, and in all phases, Vp[q] is either vq or ⊥.

Proof. Obvious from the algorithm.

Lemma 5. Every correct process eventually reaches Phase 3.
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Proof (sketch). The only way a correct process p can be prevented from reach-
ing Phase 3 is by blocking forever at one of the two wait statements (in Phase 1
and 2, respectively). This can happen only if p is waiting forever for a message
from a process q and q never joins Dp. There are two cases to consider:

(1) q crashes. Since D satisfies strong completeness, there is a time after which
q ∈ Dp.

(2) q does not crash. In this case, we can show (by an easy but tedious induction
on the round number) that q eventually sends the message p is waiting for.

In both cases p is not blocked forever and reaches Phase 3.

Since D satisfies weak accuracy there is a correct process c that is never suspected
by any process, i.e., ∀t ∈ T ,∀p ∈ Π − F (t) : c /∈ HD(p, t). Let Π1 denote the set
of processes that complete all n − 1 rounds of Phase 1, and Π2 denote the set of
processes that complete Phase 2. We say Vp ≤ Vq if and only if for all k ∈ Π, Vp[k]
is either Vq[k] or ⊥.

Lemma 6. In every round r, 1 ≤ r ≤ n−1, all processes p ∈ Π1 receive (r,∆c, c)
from process c, i.e., (r,∆c, c) is in msgsp[r].

Proof. Since p ∈ Π1, p completes all n − 1 rounds of Phase 1. At each round
r, since c 6∈ Dp, p waits for and receives the message (r,∆c, c) from c.

Lemma 7. For all p ∈ Π1, Vc ≤ Vp at the end of Phase 1.

Proof. Suppose for some process q, Vc[q] 6= ⊥ at the end of Phase 1. From
Lemma 4, Vc[q] = vq. Consider any p ∈ Π1. We must show that Vp[q] = vq at the
end of Phase 1. This is obvious if p = c, thus we consider the case where p 6= c.

Let r be the first round in which c received vq (if c = q, we define r to be 0).
From the algorithm, it is clear that ∆c[q] = vq at the end of round r. There are
two cases to consider:

(1) r ≤ n − 2. In round r + 1 ≤ n − 1, c relays vq by sending the message
(r + 1,∆c, c) with ∆c[q] = vq to all. From Lemma 6, p receives (r + 1,∆c, c) in
round r + 1. From the algorithm, it is clear that p sets Vp[q] to vq by the end
of round r + 1.

(2) r = n− 1. In this case, c received vq for the first time in round n− 1. Since
each process relays vq (in its vector ∆) at most once, it is easy to see that vq

was relayed by all n−1 processes in Π−{c}, including p, before being received
by c. Since p sets Vp[q] = vq before relaying vq , it follows that Vp[q] = vq at the
end of Phase 1.

Lemma 8. For all p ∈ Π2, Vc = Vp at the end of Phase 2.

Proof. Consider any p ∈ Π2 and q ∈ Π. We have to show that Vp[q] = Vc[q] at
the end of Phase 2. There are two cases to consider:

(1) Vc[q] = vq at the end of Phase 1. From Lemma 7, for all processes p′ ∈ Π1

(including p and c), Vp′ [q] = vq at the end of Phase 1. Thus, for all the vectors
V sent in Phase 2, V [q] = vq . Hence, both Vp[q] and Vc[q] remain equal to vq

throughout Phase 2.
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(2) Vc[q] = ⊥ at the end of Phase 1. Since c 6∈ Dp, p waits for and receives Vc

in Phase 2. Since Vc[q] = ⊥, p sets Vp[q]← ⊥ at the end of Phase 2.

Lemma 9. (Uniform agreement) No two processes decide differently.

Proof. From Lemma 8, all processes that reach Phase 3 have the same vector
V . Thus, all processes that decide, decide the same value.

Lemma 10. For all p ∈ Π2, Vp[c] = vc at the end of Phase 2.

Proof. From the algorithm, Vc[c] = vc at the end of Phase 1. From Lemma 7,
for all q ∈ Π1, Vq [c] = vc at the end of Phase 1. Thus, no process sends V with
V [c] = ⊥ in Phase 2. From the algorithm, it is clear that for all p ∈ Π2, Vp[c] = vc

at the end of Phase 2.

Theorem 2. The algorithm in Figure 5 solves Consensus using S in asyn-
chronous systems.

Proof. From the algorithm in Figure 5, it is clear that no process decides more
than once, and this satisfies the uniform integrity requirement of Consensus. By
Lemma 9, the (uniform) agreement property of Consensus holds. From Lemma
5, every correct process eventually reaches Phase 3. From Lemma 10, the vector
Vp of every correct process has at least one non-⊥ component in Phase 3 (namely,
Vp[c] = vc). From the algorithm, every process p that reaches Phase 3 decides on
the first non-⊥ component of Vp. Thus, every correct process decides some non-⊥
value in Phase 3—and this satisfies termination of Consensus. From Lemma 4, this
non-⊥ decision value is the proposed value of some process. Thus, uniform validity
of Consensus is also satisfied.

By Theorems 1 and 2, we have:

Corollary 2. Consensus is solvable using W in asynchronous systems.

6.2 Solving Consensus using
�
S

In the previous section, we showed how to solve Consensus using S, a class of
failure detectors that satisfy weak accuracy: at least one correct process is never
suspected. That solution tolerates any number of process failures. If we assume
that the maximum number of faulty processes is less than half then we can solve
Consensus using

�
S, a class of failure detectors that satisfy only eventual weak

accuracy. With such failure detectors, all processes may be erroneously added to
the lists of suspects at one time or another. However, there is a correct process and
a time after which that process is not suspected to have crashed. (Note that at any
given time t, processes cannot determine whether any specific process is correct, or
whether some correct process will never be suspected after time t.)

Let f denote the maximum number of processes that may crash.15 Consider
asynchronous systems with f < dn/2e, i.e., where at least d(n + 1)/2e processes
are correct. In such systems, the algorithm in Figure 6 solves Consensus using any
Eventual Strong failure detector D ∈

�
S. In other words, it works with any failure

detector D that satisfies strong completeness and eventual weak accuracy.

15In the literature, t is often used instead of f , the notation adopted here. In this paper, we

reserve t to denote real-time.
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This algorithm uses the rotating coordinator paradigm [Reischuk 1982; Chang
and Maxemchuk 1984; Dwork et al. 1988; Berman et al. 1989; Chandra and Toueg
1990], and it proceeds in asynchronous “rounds”. We assume that all processes have
a priori knowledge that during round r, the coordinator is process c = (r mod n)+1.
All messages are either to or from the “current” coordinator. Every time a process
becomes a coordinator, it tries to determine a consistent decision value. If the
current coordinator is correct and is not suspected by any surviving process, then
it will succeed, and it will R-broadcast this decision value.

The algorithm in Figure 6 goes through three asynchronous epochs, each of which
may span several asynchronous rounds. In the first epoch, several decision values
are possible. In the second epoch, a value gets locked: no other decision value is
possible. In the third epoch, processes decide the locked value.16

Each round of this Consensus algorithm is divided into four asynchronous phases.
In Phase 1, every process sends its current estimate of the decision value times-
tamped with the round number in which it adopted this estimate, to the current
coordinator, c. In Phase 2, c gathers d(n + 1)/2e such estimates, selects one with
the largest timestamp, and sends it to all the processes as their new estimate,
estimatec. In Phase 3, for each process p there are two possibilities:

(1) p receives estimatec from c and sends an ack to c to indicate that it adopted
estimatec as its own estimate; or

(2) upon consulting its failure detector module Dp, p suspects that c crashed, and
sends a nack to c.

In Phase 4, c waits for d(n + 1)/2e replies (acks or nacks). If all replies are acks,
then c knows that a majority of processes changed their estimates to estimatec,
and thus estimatec is locked. Consequently, c R-broadcasts a request to decide
estimatec. At any time, if a process R-delivers such a request, it decides accordingly.

This algorithm relies on the assumption that f < dn/2e, i.e., that at least
d(n + 1)/2e processes are correct. Note that processes do not have to know the
value of f . But they do need to have a priori knowledge of the list of (potential)
coordinators. Let R be any run of the algorithm in Figure 6 using D ∈

�
S in

which all correct processes propose a value. We have to show that the termination,
uniform validity, agreement and uniform integrity properties of Consensus hold.

Lemma 11. (Uniform agreement) No two processes decide differently.

Proof. If no process ever decides, the lemma is trivially true. If any process
decides, it must have previously R-delivered a message of the type (−,−,−, decide).
By the uniform integrity property of Reliable Broadcast and the algorithm, a coor-
dinator previously R-broadcast this message. This coordinator must have received
d(n + 1)/2emessages of the type (−,−, ack) in Phase 4. Let r be the smallest round
number in which d(n + 1)/2e messages of the type (−, r, ack) are sent to a coordi-
nator in Phase 3. Let c denote the coordinator of round r, i.e., c = (r mod n) + 1.
Let estimatec denote c’s estimate at the end of Phase 2 of round r. We claim that

16Many Consensus algorithms in the literature have the property that a value gets locked before

processes decide, e.g. [Reischuk 1982; Dwork et al. 1988].
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Every process p executes the following:

procedure propose(vp)
estimatep ← vp {estimatep is p’s estimate of the decision value}
statep ← undecided
rp ← 0 {rp is p’s current round number}
tsp ← 0 {tsp is the last round in which p updated estimatep, initially 0}

{Rotate through coordinators until decision is reached}

while statep = undecided
rp ← rp + 1

cp ← (rp mod n) + 1 {cp is the current coordinator}

Phase 1: {All processes p send estimatep to the current coordinator}
send (p, rp , estimatep, tsp) to cp

Phase 2: {The current coordinator gathers d
(n+1)

2
e estimates and proposes a new estimate}

if p = cp then

wait until [for d (n+1)
2
e processes q : received (q, rp, estimateq, tsq) from q]

msgsp[rp]← {(q, rp, estimateq, tsq) | p received (q, rp, estimateq, tsq) from q}
t← largest tsq such that (q, rp, estimateq, tsq) ∈ msgsp[rp ]
estimatep ← select one estimateq such that (q, rp, estimateq, t) ∈ msgsp[rp]

send (p, rp, estimatep) to all

Phase 3: {All processes wait for the new estimate proposed by the current coordinator}
wait until [received (cp , rp, estimatecp) from cp or cp ∈ Dp ]{Query the failure detector}
if [received (cp , rp, estimatecp) from cp] then {p received estimatecp from cp}

estimatep ← estimatecp

tsp ← rp

send (p, rp, ack) to cp

else send (p, rp, nack) to cp {p suspects that cp crashed}

Phase 4:

{

The current coordinator waits for d (n+1)
2
e replies. If they indicate that d (n+1)

2
e

processes adopted its estimate, the coordinator R-broadcasts a decide message

}

if p = cp then

wait until [for d
(n+1)

2
e processes q : received (q, rp, ack) or (q, rp, nack)]

if [for d
(n+1)

2
e processes q : received (q, rp , ack)] then

R-broadcast(p, rp, estimatep, decide)

{If p R-delivers a decide message, p decides accordingly}

when R-deliver(q, rq , estimateq, decide)
if statep = undecided then

decide(estimateq)

statep ← decided

Fig. 6. Solving Consensus using any D ∈
�
S .
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for all rounds r′ ≥ r, if a coordinator c′ sends estimatec′ in Phase 2 of round r′,
then estimatec′ = estimatec.

The proof is by induction on the round number. The claim trivially holds for
r′ = r. Now assume that the claim holds for all r′, r ≤ r′ < k. Let ck be
the coordinator of round k, i.e., ck = (k mod n) + 1. We will show that the
claim holds for r′ = k, i.e., if ck sends estimateck

in Phase 2 of round k, then
estimateck

= estimatec.
From the algorithm it is clear that if ck sends estimateck

in Phase 2 of round
k then it must have received estimates from at least d(n + 1)/2e processes. Thus,
there is some process p such that (1) p sent a (p, r, ack) message to c in Phase 3 of
round r, and (2) (p, k, estimatep, tsp) is in msgsck

[k] in Phase 2 of round k. Since
p sent (p, r, ack) to c in Phase 3 of round r, tsp = r at the end of Phase 3 of round
r. Since tsp is non-decreasing, tsp ≥ r in Phase 1 of round k. Thus in Phase 2 of
round k, (p, k, estimatep, tsp) is in msgsck

[k] with tsp ≥ r. It is easy to see that
there is no message (q, k, estimateq, tsq) in msgsck

[k] for which tsq ≥ k. Let t be
the largest tsq such that (q, k, estimateq, tsq) is in msgsck

[k]. Thus r ≤ t < k.
In Phase 2 of round k, ck executes estimateck

← estimateq where
(q, k, estimateq, t) is in msgsck

[k]. From Figure 6, it is clear that q adopted
estimateq as its estimate in Phase 3 of round t. Thus, the coordinator of round t
sent estimateq to q in Phase 2 of round t. Since r ≤ t < k, by the induction hy-
pothesis, estimateq = estimatec. Thus, ck sets estimateck

← estimatec in Phase
2 of round k. This concludes the proof of the claim.

We now show that if a process decides a value, then it decides estimatec. Sup-
pose that some process p R-delivers (q, rq, estimateq , decide), and thus decides
estimateq. By the uniform integrity property of Reliable Broadcast and the al-
gorithm, process q must have R-broadcast (q, rq , estimateq, decide) in Phase 4 of
round rq. From Figure 6, q must have received d(n + 1)/2e messages of the type
(−, rq , ack) in Phase 4 of round rq. By the definition of r, r ≤ rq. From the above
claim, estimateq = estimatec.

Lemma 12. (Termination) Every correct process eventually decides some value.

Proof. There are two possible cases:

(1) Some correct process decides. It must have R-delivered some message of the
type (−,−,−, decide). By the agreement property of Reliable Broadcast, all
correct processes eventually R-deliver this message and decide.

(2) No correct process decides. We claim that no correct process remains blocked
forever at one of the wait statements. The proof is by contradiction. Let r be
the smallest round number in which some correct process blocks forever at one
of the wait statements. Thus, all correct processes reach the end of Phase 1 of
round r: they all send a message of the type (−, r, estimate,−) to the current
coordinator c = (r mod n)+1. Since a majority of the processes are correct, at
least d(n + 1)/2e such messages are sent to c. There are two cases to consider:

(a) Eventually, c receives those messages and replies by sending
(c, r, estimatec). Thus, c does not block forever at the wait statement
in Phase 2.

(b) c crashes.
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In the first case, every correct process eventually receives (c, r, estimatec). In
the second case, since D satisfies strong completeness, for every correct process
p there is a time after which c is permanently suspected by p, i.e., c ∈ Dp. Thus
in either case, no correct process blocks at the second wait statement (Phase 3).
So every correct process sends a message of the type (−, r, ack) or (−, r, nack)
to c in Phase 3. Since there are at least d(n + 1)/2e correct processes, c cannot
block at the wait statement of Phase 4. This shows that all correct processes
complete round r—a contradiction that completes the proof of our claim.
Since D satisfies eventual weak accuracy, there is a correct process q and a time
t such that no correct process suspects q after t. Let t′ ≥ t be a time such that
all faulty processes crash. Note that after time t′ no process suspects q. From
this and the above claim, there must be a round r such that:
(a) All correct processes reach round r after time t′ (when no process suspects

q).
(b) q is the coordinator of round r (i.e., q = (r mod n) + 1).
In Phase 1 of round r, all correct processes send their estimates to q. In
Phase 2, q receives d(n + 1)/2e such estimates, and sends (q, r, estimateq) to
all processes. In Phase 3, since q is not suspected by any correct process after
time t, every correct process waits for q’s estimate, eventually receives it, and
replies with an ack to q. Furthermore, no process sends a nack to q (that can
only happen when a process suspects q). Thus in Phase 4, q receives d(n + 1)/2e
messages of the type (−, r, ack) (and no messages of the type (−, r, nack)), and q
R-broadcasts (q, r, estimateq, decide). By the validity and agreement properties
of Reliable Broadcast, eventually all correct processes R-deliver q’s message and
decide—a contradiction. Thus case 2 is impossible, and this concludes the proof
of the lemma.

Theorem 3. The algorithm in Figure 6 solves Consensus using
�
S in asyn-

chronous systems with f < dn
2
e.

Proof. Lemma 11 and Lemma 12 show that the algorithm in Figure 6 satisfies
the (uniform) agreement and termination properties of Consensus, respectively.
From the algorithm, it is clear that no process decides more than once, and hence
the uniform integrity property holds. From the algorithm it is also clear that all the
estimates that a coordinator receives in Phase 2 are proposed values. Therefore,
the decision value that a coordinator selects from these estimates must be the value
proposed by some process. Thus, uniform validity of Consensus is also satisfied.

By Theorems 1 and 3, we have:

Corollary 3. Consensus is solvable using
�
W in asynchronous systems with

f < dn
2
e.

Thus, Consensus can be solved in asynchronous systems using any failure detector
in

�
W , the weakest class of failure detectors considered in this paper. This leads to

the following question: What is the weakest failure detector for solving Consensus?
The answer to this question, given in a companion paper [Chandra et al. 1992], is
summarised below.

Let
�
W0 be the “weakest” failure detector in

�
W . Roughly speaking,

�
W0

is the failure detector that exhibits all the failure detector behaviours allowed by
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the properties that define
�
W . More precisely,

�
W0 consists of all the failure

detector histories that satisfy weak completeness and eventual weak accuracy (for
a formal definition see [Chandra et al. 1992]). [Chandra et al. 1992] show that

�
W0

is the weakest failure detector for solving Consensus in asynchronous systems with
a majority of correct processes.

Theorem 4. [Chandra et al. 1992] If a failure detector D can be used to solve
Consensus in an asynchronous system, then D �

�
W0 in that system.

By Corollary 3 and Theorem 4, we have:

Corollary 4.
�
W0 is the weakest failure detector for solving Consensus in

asynchronous systems with f < dn
2
e.

6.3 A lower bound on fault-tolerance

In Section 6.1, we showed that failure detectors with perpetual accuracy (i.e., in
P , Q, S, or W) can be used to solve Consensus in asynchronous systems with
any number of failures. In contrast, with failure detectors with eventual accuracy
(i.e., in

�
P ,

�
Q,

�
S, or

�
W), our Consensus algorithms require a majority of the

processes to be correct. It turns out that this requirement is necessary: Using
�
P

to solve Consensus requires a majority of correct processes. Since
�
P �

�
S, the

algorithm in Figure 6 is optimal with respect to fault-tolerance.
The proof of this result (Theorem 5) uses standard “partitioning” techniques

(e.g., [Ben-Or 1983; Bracha and Toueg 1985]). It is also a corollary of Theorem 4.3
in [Dwork et al. 1988] together with Theorem 9 in Section 9.1.

Theorem 5. Consensus cannot be solved using
�
P in asynchronous systems

with f ≥ dn
2
e.

Proof. We give a failure detector D ∈
�
P such that no algorithm can solve

Consensus using D in asynchronous systems with f ≥ d n
2
e. Informally D is the

weakest Eventually Perfect failure detector: it consists of all failure detector histo-
ries that satisfy strong completeness and eventual strong accuracy. More precisely,
for every failure pattern F , D(F ) consists of all failure detector histories H such
that ∃t ∈ T ,∀t′ ≥ t,∀p ∈ correct(F ) : q ∈ crashed(F ) ⇐⇒ q ∈ H(p, t′).

The proof is by contradiction. Suppose algorithm A solves Consensus using D
in asynchronous systems with f ≥ dn

2
e. Partition the processes into two sets Π0

and Π1 such that Π0 contains dn
2
e processes, and Π1 contains the remaining bn

2
c

processes. Consider the following two runs of A using D:

Run R0 = 〈F 0,H0, I0, S0, T 0〉. All processes propose 0. All processes in Π0 are
correct in F0, while those in Π1 crash in F0 at the beginning of the run, i.e., ∀t ∈
T : F0(t) = Π1 (this is possible since f ≥ dn

2
e). Every process in Π0 permanently

suspects every process in Π1, i.e., ∀t ∈ T , ∀p ∈ Π0 : H0(p, t) = Π1. Clearly,
H0 ∈ D(F0) as required.

Run R1 = 〈F 1,H1, I1, S1, T 1〉. All processes propose 1. All processes in Π1 are
correct in F1, while those in Π0 crash in F1 at the beginning of the run, i.e.,
∀t ∈ T : F1(t) = Π0. Every process in Π1 permanently suspects every process in
Π0, i.e., ∀t ∈ T , ∀p ∈ Π1 : H1(p, t) = Π0. Clearly, H1 ∈ D(F1) as required.
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Since R0 and R1 are runs of A using D, these runs satisfy the specification of

Consensus — in particular, all correct processes decide 0 in R0, and 1 in R1. Let
q0 ∈ Π0, q1 ∈ Π1, t0 be the time at which q0 decides 0 in R0, and t1 be the time
at which q1 decides 1 in R1. We now construct a run RA = 〈F A,HA, IA , SA, T A〉
of algorithm A using D such that RA violates the specification of Consensus — a
contradiction.

In RA all processes in Π0 propose 0 and all processes in Π1 propose 1. No process
crashes in FA, i.e., ∀t ∈ T : FA(t) = ∅. All messages from processes in Π0 to those
in Π1 and vice-versa, are delayed until time max(t0, t1). Until time max(t0, t1),
every process in Π0 suspects every process in Π1, and every process in Π1 suspects
every process in Π0. After time max(t0, t1), no process suspects any other process.
More precisely:

∀t ≤ max(t0, t1) :
∀p ∈ Π0 : HA(p, t) = Π1

∀p ∈ Π1 : HA(p, t) = Π0

∀t > max(t0, t1),∀p ∈ Π : HA(p, t) = ∅

Note that HA ∈ D(FA) as required.
Until time max(t0, t1), RA is indistinguishable from R0 for processes in Π0, and

RA is indistinguishable from R1 for processes in Π1. Thus in RA, q0 decides 0 at
time t0, while q1 decides 1 at time t1. This violates the agreement property of
Consensus.

In the appendix, we refine the result of Theorem 5: We first define an infinite
hierarchy of failure detector classes ordered by the maximum number of mistakes
that failure detectors can make, and then we show exactly where in this hierarchy
the majority requirement becomes necessary for solving Consensus (this hierarchy
contains all the eight failure detector classes defined in Figure 1).

7. ON ATOMIC BROADCAST

We now consider Atomic Broadcast, another fundamental problem in fault tolerant
distributed computing, and show that our results on Consensus also apply to Atomic
Broadcast. Informally, Atomic Broadcast requires that all correct processes deliver
the same messages in the same order. Formally, Atomic Broadcast is a Reliable
Broadcast that satisfies:

Total order. If two correct processes p and q deliver two messages m and m′,
then p delivers m before m′ if and only if q delivers m before m′.

The total order and agreement properties of Atomic Broadcast ensure that all
correct processes deliver the same sequence of messages. Atomic Broadcast is a
powerful communication paradigm for fault-tolerant distributed computing [Chang
and Maxemchuk 1984; Cristian et al. 1985; Birman and Joseph 1987; Pittelli and
Garcia-Molina 1989; Budhiraja et al. 1990; Gopal et al. 1990; Schneider 1990].

We now show that Consensus and Atomic Broadcast are equivalent in asyn-
chronous systems with crash failures. This is shown by reducing each to the other.17

17They are actually equivalent even in asynchronous systems with arbitrary failures. However,

the reduction is more complex and is omitted here.
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In other words, a solution for one automatically yields a solution for the other. Both
reductions apply to any asynchronous system (in particular, they do not require
the assumption of a failure detector). This equivalence has important consequences
regarding the solvability of Atomic Broadcast in asynchronous systems:

(1) Atomic Broadcast cannot be solved by a deterministic algorithm in asyn-
chronous systems, even if we assume that at most one process may fail, and
it may only fail by crashing. This is because Consensus has no deterministic
solution in such systems [Fischer et al. 1985].

(2) Atomic Broadcast can be solved using randomisation or unreliable failure detec-
tors in asynchronous systems. This is because Consensus is solvable using these
techniques in such systems (for a survey of randomised Consensus algorithms,
see [Chor and Dwork 1989]).

Consensus can be easily reduced to Atomic Broadcast as follows [Dolev et al. 1987].
To propose a value, a process atomically broadcasts it. To decide a value, a process
picks the value of the first message that it atomically delivers.18 By total order
of Atomic Broadcast, all correct processes deliver the same first message. Hence
they choose the same value and agreement of Consensus is satisfied. The other
properties of Consensus are also easy to verify. In the next section, we reduce
Atomic Broadcast to Consensus.

7.1 Reducing Atomic Broadcast to Consensus

In Figure 7, we show how to transform any Consensus algorithm into an Atomic
Broadcast algorithm in asynchronous systems. The resulting Atomic Broadcast
algorithm tolerates as many faulty processes as the given Consensus algorithm.

Our Atomic Broadcast algorithm uses repeated (possibly concurrent, but com-
pletely independent) executions of Consensus. Intuitively, the kth execution of
Consensus is used to decide on the kth batch of messages to be atomically deliv-
ered. Processes disambiguate between these executions by tagging all the messages
pertaining to the kth execution of Consensus with the counter k. Tagging each
message with this counter constitutes a minor modification to any given Consensus
algorithm. The propose and decide primitives corresponding to the kth execution
of Consensus are denoted by propose(k,−) and decide(k,−).

Our Atomic Broadcast algorithm also uses the R-broadcast(m) and R-deliver(m)
primitives of Reliable Broadcast. To avoid possible ambiguities between Atomic
Broadcast and Reliable Broadcast, we say that a process A-broadcasts or A-delivers
to refer to a broadcast or a delivery associated with Atomic Broadcast; and R-broadcasts
or R-delivers to refer to a broadcast or delivery associated with Reliable Broadcast.

The Atomic Broadcast algorithm described in Figure 7 consists of three tasks,
Task 1, Task 2, and Task 3, such that: (1) any task that is enabled is eventually
executed, and (2) Task i can execute concurrently with Task j provided i 6= j.

When a process wishes to A-broadcast a message m, it R-broadcasts m (Task
1). When a process p R-delivers m, it adds m to the set R deliveredp (Task 2).
When p A-delivers a message m, it adds m to the set A deliveredp (Task 3). Thus,
R deliveredp − A deliveredp, denoted A undeliveredp, is the set of messages that

18Note that this reduction does not require the assumption of a failure detector.
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Every process p executes the following:

Initialisation:

R delivered← ∅
A delivered← ∅
k ← 0

To execute A-broadcast(m): { Task 1 }

R-broadcast(m)

A-deliver(−) occurs as follows:

when R-deliver(m) { Task 2 }
R delivered← R delivered ∪ {m}

when R delivered−A delivered 6= ∅ { Task 3 }
k← k + 1

A undelivered← R delivered−A delivered
propose(k, A undelivered)
wait until decide(k, msgSetk)

A deliverk ← msgSetk −A delivered
atomically deliver all messages in A deliverk in some deterministic order
A delivered← A delivered ∪A deliverk

Fig. 7. Using Consensus to solve Atomic Broadcast.

p R-delivered but did not yet A-deliver. Intuitively, these are the messages that
were submitted for Atomic Broadcast but are not yet A-delivered, according to p.

In Task 3, process p periodically checks whether A undeliveredp contains mes-
sages. If so, p enters its next execution of Consensus, say the kth one, by proposing
A undeliveredp as the next batch of messages to be A-delivered. Process p then
waits for the kth Consensus decision, denoted msgSetk. Finally, p A-delivers all
the messages in msgSetk except those it already A-delivered. More precisely, p
A-delivers all the messages in the set A deliverk

p = msgSetk−A deliveredp, and it
does so in some deterministic order that was agreed a priori by all processes, e.g.,
in lexicographical order.

Lemma 13. For any two correct processes p and q, and any message m, if m ∈
R deliveredp then eventually m ∈ R deliveredq.

Proof. If m ∈ R deliveredp then p R-delivered m (in Task 2). Since p is correct,
by the agreement property of Reliable Broadcast q eventually R-delivers m, and
inserts m into R deliveredq.

Lemma 14. For any two correct processes p and q, and all k ≥ 1:

(1) If p executes propose(k,−), then q eventually executes propose(k,−).

(2) If p A-delivers messages in A deliverk
p, then q eventually A-delivers mes-

sages in A deliverk
q , and A deliverk

p = A deliverk
q .
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Proof. The proof is by simultaneous induction on (1) and (2). For k = 1, we
first show that if p executes propose(1,−), then q eventually executes propose(1,−).
When p executes propose(1,−), R deliveredp must contain some message m. By
Lemma 13, m is eventually in R deliveredq. Since A deliveredq is initially empty,
eventually R deliveredq − A deliveredq 6= ∅. Thus, q eventually executes Task 3
and propose(1,−).

We now show that if p A-delivers messages in A deliver1

p, then q eventually
A-delivers messages in A deliver1

q , and A deliver1

p = A deliver1

q . From the algo-
rithm, if p A-delivers messages in A deliver1

p, it previously executed propose(1,−).
From part (1) of the lemma, all correct processes eventually execute propose(1,−).
By termination and uniform integrity of Consensus, every correct process eventu-
ally executes decide(1,−) and it does so exactly once. By agreement of Consensus,
all correct processes eventually execute decide(1,msgSet1) with the same msgSet1.
Since A deliveredp and A deliveredq are initially empty, and msgSet1p = msgSet1q,
we have A deliver1

p = A deliver1

q .
Now assume that the lemma holds for all k, 1 ≤ k < l. We first show that

if p executes propose(l,−), then q eventually executes propose(l,−). When p ex-
ecutes propose(l,−), R deliveredp must contain some message m that is not in

A deliveredp. Thus, m is not in
⋃l−1

k=1
A deliverk

p. By the induction hypothesis,

A deliverk
p = A deliverk

q for all 1 ≤ k ≤ l − 1. So m is not in
⋃l−1

k=1
A deliverk

q .
Since m is in R deliveredp, by Lemma 13, m is eventually in R deliveredq. Thus,
there is a time after q A-delivers A deliverl−1

q such that there is a message in
R deliveredq −A deliveredq. So q eventually executes Task 3 and propose(l,−).

We now show that if p A-delivers messages in A deliverl
p, then q A-delivers mes-

sages in A deliverl
q, and A deliverl

p = A deliverl
q. Since p A-delivers messages in

A deliverl
p, it must have executed propose(l,−). By part (1) of this lemma, all

correct processes eventually execute propose(l,−). By termination and uniform
integrity of Consensus, every correct process eventually executes decide(l,−) and
it does so exactly once. By agreement of Consensus, all correct processes eventu-
ally execute decide(l,msgSetl) with the same msgSetl. Note that A deliverl

p =

msgSetlp −
⋃l−1

k=1
A deliverk

p, and A deliverl
q = msgSetlq −

⋃l−1

k=1
A deliverk

q . By

the induction hypothesis, A deliverk
p = A deliverk

q for all 1 ≤ k ≤ l − 1. Since

msgSetlp = msgSetlq, A deliverl
p = A deliverl

q.

Lemma 15. The algorithm in Figure 7 satisfies the agreement and total order
properties of A-broadcast.

Proof. Immediate from Lemma 14, and the fact that correct processes A-deliver
messages in each batch in the same deterministic order.

Lemma 16. (Validity) If a correct process A-broadcasts m, then it eventually
A-delivers m.

Proof. The proof is by contradiction. Suppose a correct process p A-broadcasts
m but never A-delivers m. By Lemma 15, no correct process A-delivers m.

By Task 1 of Figure 7, p R-broadcasts m. By the validity and agreement prop-
erties of Reliable Broadcast, every correct process q eventually R-delivers m, and
inserts m in R deliveredq (Task 2). Since correct processes never A-deliver m, they
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never insert m in A delivered. Thus, for every correct process q, there is a time
after which m is permanently in R deliveredq − A deliveredq. From Figure 7 and
Lemma 14, there is a k1, such that for all l ≥ k1, all correct processes execute
propose(l,−), and they do so with sets that always include m.

Since all faulty processes eventually crash, there is a k2 such that no faulty
process executes propose(l,−) with l ≥ k2. Let k = max(k1, k2). Since all correct
processes execute propose(k,−), by termination and agreement of Consensus, all
correct processes execute decide(k,msgSetk) with the same msgSetk. By uniform
validity of Consensus, some process q executed propose(k,msgSetk). From our
definition of k, q is correct and msgSetk contains m. Thus all correct processes,
including p, A-deliver m—a contradiction that concludes the proof.

Lemma 17. (Uniform integrity) For any message m, each process A-delivers m
at most once, and only if m was previously A-broadcast by sender(m).

Proof. Suppose a process p A-delivers m. After p A-delivers m, it inserts m in
A deliveredp. From the algorithm, it is clear that p cannot A-deliver m again.

From the algorithm, p executed decide(k,msgSetk) for some k and some msgSetk

that contains m. By uniform validity of Consensus, some process q must have
executed propose(k,msgSetk). So q previously R-delivered all the messages in
msgSetk, including m. By the uniform integrity property of Reliable Broadcast,
process sender(m) R-broadcast m. So, sender(m) A-broadcast m.

Theorem 6. Consider any system (synchronous or asynchronous) subject to
crash failures and where Reliable Broadcast can be implemented. The algorithm
in Figure 7 transforms any algorithm for Consensus into an Atomic Broadcast al-
gorithm.

Proof. Immediate from Lemmata 15, 16, and 17.

Since Reliable Broadcast can be implemented in asynchronous systems with crash
failures (Section 4), the above theorem shows that Atomic Broadcast is reducible to
Consensus in such systems. As we showed earlier, the converse is also true. Thus:19

Corollary 5. Consensus and Atomic Broadcast are equivalent in asynchronous
systems.

This equivalence immediately implies that our results regarding Consensus (in par-
ticular Corollaries 2 and 4, and Theorem 5) also hold for Atomic Broadcast:

Corollary 6. Atomic Broadcast is solvable using W in asynchronous systems
with f < n, and using

�
W in asynchronous systems with f < d n

2
e.

Corollary 7.
�
W0 is the weakest failure detector for solving Atomic Broadcast

in asynchronous systems with f < dn
2
e.

Corollary 8. Atomic Broadcast cannot be solved using
�
P in asynchronous

systems with f ≥ dn
2
e.

Furthermore, Theorem 6 shows that by “plugging in” any randomised Consen-
sus algorithm (such as the ones in [Chor and Dwork 1989]) into the algorithm of

19All the results stated henceforth in this section are for systems with crash failures.
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Figure 7, we automatically get a randomised algorithm for Atomic Broadcast in
asynchronous systems.

Corollary 9. Atomic Broadcast can be solved by randomised algorithms in
asynchronous systems with f < dn

2
e.

8. COMPARING FAILURE DETECTOR CLASSES

We already saw some relations between the eight failure detector classes that we
defined in this paper (Figure 1). In particular, in Section 3 (Corollary 1), we
determined that P ∼= Q, S ∼= W ,

�
P ∼=

�
Q, and

�
S ∼=

�
W . This result allowed

us to focus on four classes of failure detectors, namely P , S,
�
P , and

�
S, rather

than all eight. It is natural to ask whether these four classes (which require Strong
Completeness and span the four different types of accuracy) are really distinct or
whether some pairs are actually equivalent. More generally, how are P , S,

�
P , and

�
S related under the � relation? This section answers these questions.20

Clearly, P � S,
�
P �

�
S, P �

�
P , S �

�
S, and P �

�
S. Are these relations

“strict”? For example, it is conceivable that S � P . If this was true, P would be
equivalent to S (and the relation P � S would not be strict). Also, how are S and

�
P related? Is S �

�
P or

�
P � S?

To answer these questions, we begin with some simple definitions. Let C and C ′

be two classes of failure detectors. If C � C ′, and C is not equivalent to C′, we say
that C′ is strictly weaker than C, and write C � C ′. The following holds:

Theorem 7. P � S,
�
P �

�
S, P �

�
P, S �

�
S, and P �

�
S. Further-

more, S and
�
P are incomparable, i.e., neither S �

�
P nor

�
P � S.

The above theorem and Corollary 1 completely characterise the relationship be-
tween the eight failure detector classes (defined in Figure 1) under the reducibility
relation. Figure 8 illustrates these relations as follows: there is an undirected edge
between equivalent failure detector classes, and there is a directed edge from failure
detector class C to class C ′ if C ′ is strictly weaker than C.

Even though
�
S is strictly weaker than P , S, and

�
P , it is “strong enough” to

solve Consensus and Atomic Broadcast, two powerful paradigms of fault-tolerant
computing. This raises an interesting question: Are there any “natural” problems
that require classes of failure detectors that are stronger than

�
S?

To answer this question, consider the problem of Terminating Reliable Broadcast,
abbreviated here as TRB [Hadzilacos and Toueg 1994]. With TRB there is a
distinguished process, the sender s, that is supposed to broadcast a single message
from a set M of possible messages. TRB is similar to Reliable Broadcast, except
that it requires that every correct process always deliver a message — even if the
sender s is faulty and, say, crashes before broadcasting. For this requirement to be
satisfiable, processes must be allowed to deliver a message that was not actually
broadcast. Thus, TRB allows the delivery of a special message Fs /∈ M which
states that the sender s is faulty (by convention, sender(Fs) = s).

With TRB for sender s, s can broadcast any message m ∈ M, processes can
deliver any message m ∈M∪ {Fs}, and the following hold:

20The results presented here are not central to this paper, hence the proofs are omitted.
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C′: C is equivalent to C′

�
P

�
Q

�
W

�
S

Q

P

W

S

C C′: C′ is strictly weaker than C

C

Fig. 8. Comparing the eight failure detector classes by reducibility.

Termination. Every correct process eventually delivers exactly one message.

Validity. If s is correct and broadcasts a message m, then it eventually delivers
m.

Agreement. If a correct process delivers a message m, then all correct processes
eventually deliver m.

Integrity. If a correct process delivers a message m then sender(m) = s. Fur-
thermore, if m 6= Fs then m was previously broadcast by s.

The reader should verify that the specification of TRB for sender s implies that a
correct process delivers the special message Fs only if s is indeed faulty.

TRB is a well-known and studied problem, usually known under the name of the
Byzantine Generals’ Problem [Pease et al. 1980; Lamport et al. 1982].21 It turns out
that in order to solve TRB in asynchronous systems one needs to use the strongest
class of failure detectors that we defined in this paper. Specifically:

Theorem 8.

(1) TRB can be solved using P in asynchronous systems with any number of
crashes.

(2) TRB cannot be solved using either S,
�
P, or

�
S in asynchronous systems.

This impossibility result holds even under the assumption that at most one crash
may occur.

21We refrain from using this name because it is often associated with Byzantine failures, while

we consider only crash failures here.
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Asynchronous systems

Asynchronous systems using
�
W

Asynchronous systems using P

Broadcast

Synchronous systems

Set of problems solvable in:
clock synchronisation

TRB

non-blocking atomic commit

Atomic Broadcast

Consensus

Reliable

Fig. 9. Problem solvability in different distributed computing models.

In fact, P is the weakest failure detector class that can be used to solve repeated
instances of TRB (multiple instances for each process as the distinguished sender).

TRB is not the only “natural” problem that can be solved using P but cannot
be solved using

�
W . Other examples include the non-blocking atomic commitment

problem [Chandra and Larrea 1994; Guerraoui 1995], and a form of leader election
[Sabel and Marzullo 1995]. Figure 9 summarises these results.

9. RELATED WORK

9.1 Partial synchrony

Fischer, Lynch and Paterson showed that Consensus cannot be solved in an asyn-
chronous system subject to crash failures [Fischer et al. 1985]. The fundamental
reason why Consensus cannot be solved in completely asynchronous systems is the
fact that, in such systems, it is impossible to reliably distinguish a process that has
crashed from one that is merely very slow. In other words, Consensus is unsolvable
because accurate failure detection is impossible. On the other hand, it is well-known
that Consensus is solvable (deterministically) in completely synchronous systems —
that is, systems where clocks are perfectly synchronised, all processes take steps at
the same rate and each message arrives at its destination a fixed and known amount
of time after it is sent. In such a system we can use timeouts to implement a “per-
fect” failure detector — i.e., one in which no process is ever wrongly suspected, and
every faulty process is eventually suspected. Thus, the ability to solve Consensus
in a given system is intimately related to the failure detection capabilities of that
system. This realisation led us to augment the asynchronous model of computation
with unreliable failure detectors as described in this paper.

A different tack on circumventing the unsolvability of Consensus is pursued in
[Dolev et al. 1987] and [Dwork et al. 1988]. The approach of those papers is based
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on the observation that between the completely synchronous and completely asyn-
chronous models of distributed systems there lie a variety of intermediate “partially
synchronous” models.

In particular, [Dolev et al. 1987] define a space of 32 models by considering five key
parameters, each of which admits a “favourable” and an “unfavourable” setting. For
instance, one of the parameters is whether the maximum message delay is bounded
and known (favourable setting) or unbounded (unfavourable setting). Each of the
32 models corresponds to a particular setting of the 5 parameters. [Dolev et al. 1987]
identify four “minimal” models in which Consensus is solvable. These are minimal
in the sense that the weakening of any parameter from favourable to unfavourable
would yield a model of partial synchrony where Consensus is unsolvable. Thus,
within the space of the models considered, [Dolev et al. 1987] delineate precisely
the boundary between solvability and unsolvability of Consensus, and provides an
answer to the question “What is the least amount of synchrony sufficient to solve
Consensus?”.

[Dwork et al. 1988] consider two models of partial synchrony. Roughly speaking,
the first model (denoted M1 here) stipulates that in every execution there are
bounds on relative process speeds and on message transmission times, but these
bounds are not known. In the second model (denotedM2) these bounds are known,
but they hold only after some unknown time (called GST for Global Stabilisation
Time). In each one of these two models (with crash failures), it is easy to implement
an Eventually Perfect failure detector D ∈

�
P . In fact, we can implement such a

failure detector in a weaker model of partial synchrony (denotedM3): one in which
bounds exist but they are not known and they hold only after some unknown time
GST.22 Since

�
P �

�
W, by Corollaries 3 and 6, this implementation immediately

gives Consensus and Atomic Broadcast solutions for M3 and, a fortiori, for M1

andM2.
The implementation of D ∈

�
P forM3, which uses an idea found in [Dwork et al.

1988], works as follows (see Figure 10). To measure elapsed time, each process p
maintains a local clock, say by counting the number of steps that it takes. Each
process p periodically sends a “p-is-alive” message to all the processes. If p does
not receive a “q-is-alive” message from some process q for ∆p(q) time units on its
clock, p adds q to its list of suspects. If p receives “q-is-alive” from some process q
that it currently suspects, p knows that its previous time-out on q was premature.
In this case, p removes q from its list of suspects and increases its time-out period
∆p(q).

Theorem 9. Consider a partially synchronous system S that conforms to M3,
i.e., for every run of S there is a Global Stabilisation Time (GST) after which some
bounds on relative process speeds and message transmission times hold (the values
of GST and these bounds are not known). The algorithm in Figure 10 implements
an Eventually Perfect failure detector D ∈

�
P in S.

Proof (sketch). We first show that strong completeness holds, i.e., eventually
every process that crashes is permanently suspected by every correct process. Sup-
pose a process q crashes. Clearly, q eventually stops sending “q-is-alive” messages,

22Note that every system that conforms to M1 orM2 also conforms to M3.
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Every process p executes the following:

outputp ← ∅
for all q ∈ Π {∆p(q) denotes the duration of p’s time-out interval for q}

∆p(q)← default time-out interval

cobegin

|| Task 1: repeat periodically

send “p-is-alive” to all

|| Task 2: repeat periodically

for all q ∈ Π
if q /∈ outputp and

p did not receive “q-is-alive” during the last ∆p(q) ticks of p’s clock
outputp ← outputp ∪ {q} {p times-out on q: it now suspects q has crashed}

|| Task 3: when receive “q-is-alive” for some q

if q ∈ outputp {p knows that it prematurely timed-out on q}
outputp ← outputp − {q} {1. p repents on q, and}

∆p(q)← ∆p(q) + 1 {2. p increases its time-out period for q}
coend

Fig. 10. A time-out based implementation of D ∈
�
P in models of partial synchrony.

and there is a time after which no correct process receives such a message. Thus,
there is a time t′ after which: (1) all correct processes time-out on q (Task 2), and
(2) they do not receive any message from q after this time-out. From the algorithm,
it is clear that after time t′, all correct processes will permanently suspect q. Thus,
strong completeness is satisfied.

We now show that eventual strong accuracy is satisfied. That is, for any correct
processes p and q, there is a time after which p will not suspect q. There are two
possible cases:

(1) Process p times-out on q finitely often (in Task 2). Since q is correct and
keeps sending “q-is-alive” messages forever, eventually p receives one such mes-
sage after its last time-out on q. At this point, q is permanently removed from
p’s list of suspects (Task 3).

(2) Process p times-out on q infinitely often (in Task 2). Note that p times-out
on q (and so p adds q to outputp) only if q is not already in outputp. Thus, q is
added to and removed from outputp infinitely often. Process q is removed from
outputp only in Task 3, and every time this occurs p’s time-out period ∆p(q)
is increased. Since this occurs infinitely often, ∆p(q) grows unbounded. Thus,
eventually (1) the bounds on relative process speeds and message transmission
times hold, and (2) ∆p(q) is larger than the correct time-out based on these
bounds. After this point, p cannot time-out on q any more—a contradiction
to our assumption that p times-out on q infinitely often. Thus Case 2 cannot
occur.

In this paper we have not considered communication failures. In the second model
of partial synchrony of [Dwork et al. 1988], where bounds are known but hold only
after GST, messages sent before GST can be lost. We now re-defineM2 andM3
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analogously — messages that are sent before GST can be lost — and examine how
this affects our results so far.23 The failure detector algorithm in Figure 10 still
implements an Eventually Perfect failure detector D ∈

�
P in M3, despite initial

message losses now allowed by this model. On the other hand, these initial message
losses invalidate the Consensus algorithm in Figure 6. It is easy to modify this
algorithm, however, so that it does work in M3: One can adopt the techniques
used in [Dwork et al. 1988] to mask the loss of messages that are sent before GST.

Failure detectors can be viewed as a more abstract and modular way of incor-
porating partial synchrony assumptions into the model of computation. Instead of
focusing on the operational features of partial synchrony (such as the parameters
that define M1, M2, and M3, or the five parameters considered in [Dolev et al.
1987]), we can consider the axiomatic properties that failure detectors must have
in order to solve Consensus. The problem of implementing a certain type of failure
detector in a specific model of partial synchrony becomes a separate issue; this
separation affords greater modularity.

Studying failure detectors rather than various models of partial synchrony has
other advantages as well. By showing that Consensus is solvable using a certain
type of failure detector we show that Consensus is solvable in all systems in which
this type of failure detector can be implemented. An algorithm that relies on
the axiomatic properties of a failure detector is more general, more modular, and
simpler to understand than one that relies directly on specific operational features
of partial synchrony (that can be used to implement this failure detector).

From this more abstract point of view, the question “What is the least amount
of synchrony sufficient to solve Consensus?” translates to “What is the weakest
failure detector sufficient to solve Consensus?”. In contrast to [Dolev et al. 1987],
which identified a set of minimal models of partial synchrony in which Consensus
is solvable, [Chandra et al. 1992] exhibit a single minimum failure detector,

�
W0,

that can be used to solve Consensus. The technical device that makes this possible
is the notion of reduction between failure detectors.

9.2 Unreliable failure detection in shared memory systems

Loui and Abu-Amara showed that in asynchronous shared memory systems with
atomic read/write registers, Consensus cannot be solved even if at most one process
may crash [Loui and Abu-Amara 1987].24 This raises the following question: can
we use unreliable failure detectors to circumvent this impossibility result?

Lo and Hadzilacos [Lo and Hadzilacos 1994] showed that this is indeed possible:
They gave an algorithm that solves Consensus using

�
W (in shared memory sys-

tems with registers). This algorithm tolerates any number of faulty processes —
in contrast to our result showing that in message-passing systems

�
W can be used

to solve Consensus only if there is a majority of correct processes. Recently, Neiger
extended the work of Lo and Hadzilacos by studying the conditions under which
unreliable failure detectors boost the Consensus power of shared objects [Neiger

23Note that modelM3 is now strictly weaker than modelsM1 andM2 : there exist systems that

conform toM3 but not toM1 or M2.
24The proof in [Loui and Abu-Amara 1987] is similar to the proof that Consensus is impossible
in message-passing systems when send and receive are not part of the same atomic step [Dolev

et al. 1987].
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1995].

9.3 The Isis toolkit

With our approach, even if a correct process p is repeatedly suspected to have
crashed by the other processes, it is still required to behave like every other correct
process in the system. For example, with Atomic Broadcast, p is still required to
A-deliver the same messages, in the same order, as all the other correct processes.
Furthermore, p is not prevented from A-broadcasting messages, and these messages
must eventually be A-delivered by all correct processes (including those processes
whose local failure detector modules permanently suspect p to have crashed). In
summary, application programs that use unreliable failure detection are aware that
the information they get from the failure detector may be incorrect: they only
take this information as an imperfect “hint” about which processes have really
crashed. Furthermore, processes are never “discriminated against” if they are falsely
suspected to have crashed.

Isis takes an alternative approach based on the assumption that failure detectors
rarely make mistakes [Ricciardi and Birman 1991]. In those cases in which a correct
process p is falsely suspected by the failure detector, p is effectively forced “to
crash” (via a group membership protocol that removes p from all the groups that it
belongs to). An application using such a failure detector cannot distinguish between
a faulty process that really crashed, and a correct one that was forced to do so.
Essentially, the Isis failure detector forces the system to conform to its view. From
the application’s point of view, this failure detector looks “perfect”: it never makes
visible mistakes.

For the Isis approach to work, the low-level time-outs used to detect crashes
must be set very conservatively: Premature time-outs are costly (each results in
the removal of a process), and too many of them can lead to system shutdown.25 In
contrast, with our approach, premature time-outs (e.g., failure detector mistakes)
are not so deleterious: they can only delay an application. In other words, pre-
mature time-outs can affect the liveness but not the safety of an application. For
example, consider the Atomic Broadcast algorithm that uses

�
W . If the given

failure detector “malfunctions”, some messages may be delayed, but no message is
ever delivered out of order, and no correct process is forced to crash. If the fail-
ure detector stops malfunctioning, outstanding messages are eventually delivered.
Thus, we can set time-out periods more aggressively than a system like Isis: in
practice, we would set our failure detector time-out periods closer to the average
case, while systems like Isis must set time-outs closer to the worst-case.

9.4 Other work

Several works in fault-tolerant computing used time-outs primarily or exclusively
for the purpose of failure detection. An example of this approach is given by an
algorithm in [Attiya et al. 1991], which, as pointed out by the authors, “can be
viewed as an asynchronous algorithm that uses a fault detection (e.g., timeout)
mechanism.”

Recent work shows that the Group Membership problem cannot be solved in

25For example, the time-out period in the current version of Isis is greater than 10 seconds.



36 ·
asynchronous systems with crash failures, even if one adopts the Isis approach of
crashing processes that are suspected to be faulty but are actually correct [Chandra
et al. 1995]. As with Consensus and Atomic Broadcast, this impossibility result can
be circumvented by the addition of unreliable failure detectors.
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APPENDIX

A hierarchy of failure detector classes and bounds on fault-tolerance

In the preceding sections, we introduced the concept of unreliable failure detectors
that could make mistakes, and showed how to use them to solve Consensus despite
such mistakes. Informally, a mistake occurs when a correct process is erroneously
added to the list of processes that are suspected to have crashed. In this appendix,
we formalise this concept and study a related property that we call repentance.
Informally, if a process p learns that its failure detector module Dp made a mistake,
repentance requiresDp to take corrective action. Based on mistakes and repentance,
we define a hierarchy of failure detector classes that will be used to unify some of
our results, and to refine the lower bound on fault-tolerance given in Section 6.3.
This infinite hierarchy consists of a continuum of repentant failure detectors ordered
by the maximum number of mistakes that each one can make.

Mistakes and Repentance

We now define a mistake. Let R = 〈F ,H, I, S, T 〉 be any run using a failure detector
D. D makes a mistake in R at time t at process p about process q if at time t, p
begins to suspect that q has crashed even though q /∈ F (t). Formally:

[q /∈ F (t), q ∈ H(p, t)] and [q /∈ H(p, t− 1)]

Such a mistake is denoted by the tuple 〈R, p, q, t〉. The set of mistakes made by D
in R is denoted by M(R).

Note that only the erroneous addition of q into Dp is counted as a mistake at p.
The continuous retention of q into Dp does not count as additional mistakes. Thus,
a failure detector can make multiple mistakes at a process p about another process
q only by repeatedly adding and then removing q from the set Dp. In practice,
mistakes are caused by premature time-outs.

We define the following four types of accuracy properties for a failure detector D
based on the mistakes made by D:

Strongly k−mistaken. D makes at most k mistakes. Formally, D is strongly
k−mistaken if:

∀R using D : |M(R)| ≤ k
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Weakly k−mistaken. There is a correct process p such that D makes at most k
mistakes about p. Formally, D is weakly k−mistaken if:

∀R = 〈F ,H, I, S, T 〉 using D,∃p ∈ correct(F ) :
|{〈R, q, p, t〉 : 〈R, q, p, t〉 ∈M(R)}| ≤ k

Strongly finitely mistaken. D makes a finite number of mistakes. Formally, D is
strongly finitely mistaken if:

∀R using D : M(R) is finite.

In this case, it is clear that there is a time t after which D stops making mistakes
(it may, however, continue to give incorrect information).

Weakly finitely mistaken. There is a correct process p such that D makes a finite
number of mistakes about p. Formally, D is weakly finitely mistaken if:

∀R = 〈F ,H, I, S, T 〉 using D,∃p ∈ correct(F ) :
{〈R, q, p, t〉 : 〈R, q, p, t〉 ∈M(R)} is finite.

In this case, there is a time t after which D stops making mistakes about p (it may,
however, continue to give incorrect information even about p).

For most values of k, the properties mentioned above are not powerful enough
to be useful. For example, suppose every process permanently suspects every other
process. In this case, the failure detector makes at most n(n − 1) mistakes, but it
is clearly useless since it does not provide any information.

The core of this problem is that such failure detectors are not forced to reverse
a mistake, even when a mistake becomes “obvious” (say, after a process q replies
to an inquiry that was sent to q after q was suspected to have crashed). However,
we can impose a natural requirement to circumvent this problem. Consider the
following scenario. The failure detector module at process p erroneously adds q
to Dp at time t. Subsequently, p sends a message to q and receives a reply. This
reply is a proof that q had not crashed at time t. Thus, p knows that its failure
detector module made a mistake about q. It is reasonable to require that, given
such irrefutable evidence of a mistake, the failure detector module at p takes the
corrective action of removing q from Dp. In general, we can require the following
property:

Repentance. If a correct process p eventually knows that q /∈ F (t), then at some
time after t, q /∈ Dp. Formally, D is repentant if:

∀R = 〈F ,H, I, S, T 〉 using D,∀t,∀p, q ∈ Π :
[∃t′ : (R, t′) |= Kp(q /∈ F (t))]⇒ [∃t′′ ≥ t : q 6∈ H(p, t′′)]

The knowledge theoretic operator Kp can be defined formally [Halpern and Moses
1990]. Informally, (R, t) |= φ iff in run R at time t, predicate φ holds. We say
(R, t) ∼p (R′, t′) iff the run R at time t and the run R′ at time t′ are indistinguish-
able to p. Finally, (R, t) |= Kp(φ) ⇐⇒ [∀(R′, t′) ∼p (R, t) : (R′, t′) |= φ]. For
a detailed treatment of Knowledge Theory as applied to distributed systems, the
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WF(0) ∼= S ∼= W

SF(0) ∼= P ∼= Q (strongest).....Consensus solvable for all f < n

SF(1).....Consensus solvable iff f < n

SF(2).....Consensus solvable iff f < n− 1

SF(n− f − 1)

SF(bn
2
c − 1).....Consensus solvable iff f < dn

2
e+ 2

SF(bn
2
c).....Consensus solvable iff f < dn

2
e+ 1

SF(bn
2
c+ 1)

SF(bn
2
c+ 2)

SF ∼=
�
P ∼=

�
Q

WF ∼=
�
S ∼=

�
W (weakest)

iff f < dn
2
e

Consensus solvable

WF(2)

WF(1)

for all f < n

Consensus solvable

Fig. 11. Classes of repentant failure detectors ordered by reducibility. For each class C, the

maximum number of faulty processes for which Consensus can be solved using C is given.

reader should refer to the seminal work done in [Moses et al. 1986; Halpern and
Moses 1990].

Recall that in Section 2.2 we defined a failure detector to be a function that maps
each failure pattern to a set of failure detector histories. Thus, the specification
of a failure detector depends solely on the failure pattern actually encountered. In
contrast, the definition of repentance depends on the knowledge (about mistakes)
at each process. This in turn depends on the algorithm being executed, and the
communication pattern actually encountered. Thus, repentant failure detectors
cannot be specified solely in terms of the failure pattern actually encountered.
Nevertheless, repentance is an important property that we would like many failure
detectors to satisfy.

We now informally define a hierarchy of repentant failure detectors that differ
by the maximum number of mistakes they can make. As we just noted, such
failure detectors cannot be specified solely in terms of the failure pattern actually
encountered, and thus they do not fit the formal definition of failure detectors given
in Section 2.2.

A hierarchy of repentant failure detectors

Consider the failure detectors that satisfy weak completeness, one of the four
types of accuracy that we defined in the previous section, and repentance. These
failure detectors can be grouped into four classes according to the actual accuracy
property that they satisfy:
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SF(k): the class of Strongly k-Mistaken failure detectors,

SF : the class of Strongly Finitely Mistaken failure detectors,

WF(k): the class of Weakly k-Mistaken failure detectors, and

WF : the class of Weakly Finitely Mistaken failure detectors.

Clearly, SF(0) � SF(1) � . . . SF(k) � SF(k + 1) � . . . � SF . A similar order
holds for theWFs. Consider a system of n processes of which at most f may crash.
In this system, there are at least n− f correct processes. Since any failure detector
D ∈ SF((n− f)− 1) makes fewer mistakes than the number of correct processes,
there is at least one correct process that D never suspects. Thus, D is also weakly
0-mistaken, and we conclude that SF((n− f)− 1) � WF(0). Furthermore, it is
clear that SF � WF.

These classes of repentant failure detectors can be ordered by reducibility into
an infinite hierarchy, which is illustrated in Figure 11 (an edge→ represents the �
relation). Each failure detector class defined in Section 2.4 is equivalent to some
class in this hierarchy. In particular, it is easy to show that:

Observation 2. P ∼= Q ∼= SF(0), S ∼= W ∼= WF(0),
�
P ∼=

�
Q ∼= SF , and

�
S ∼=

�
W ∼= WF.

For example, it is easy to see that the algorithm in Figure 3 transforms any failure
detector in WF into one in

�
W . Other conversions are similar or straightforward

and are therefore omitted. Note that P and
�
W are the strongest and weakest

failure detector classes in this hierarchy, respectively. From Corollaries 2 and 6,
and Observation 2 we have:

Corollary 10. Consensus and Atomic Broadcast are solvable using WF(0) in
asynchronous systems with f < n.

Similarly, from Corollaries 3 and 6, and Observation 2 we have:

Corollary 11. Consensus and Atomic Broadcast are solvable using WF in
asynchronous systems with f < dn

2
e.

Tight bounds on fault-tolerance

Since Consensus and Atomic Broadcast are equivalent in asynchronous systems with
any number of faulty processes (Corollary 5), we can focus on establishing fault-
tolerance bounds for Consensus. In Section 6, we showed that failure detectors
with perpetual accuracy (i.e., in P , Q, S, or W) can be used to solve Consensus
in asynchronous systems with any number of failures. In contrast, with failure
detectors with eventual accuracy (i.e., in

�
P ,

�
Q,

�
S, or

�
W), Consensus can

be solved if and only if a majority of the processes are correct. We now refine
this result by considering each failure detector class C in our infinite hierarchy, and
determining how many correct processes are necessary to solve Consensus using C.
The results are illustrated in Figure 11.

There are two cases depending on whether we assume that the system has a
majority of correct processes or not. If a majority of the processes are correct,
Consensus can be solved with

�
W , the weakest failure detector class in the hierar-

chy. Thus:
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Observation 3. In asynchronous systems with f < d n

2
e, Consensus can be solved

using any failure detector class in the hierarchy of Figure 11.

We now consider the solvability of Consensus in systems that do not have a
majority of correct processes. For these systems, we determine the maximum m for
which Consensus is solvable using SF(m) orWF(m). We first show that Consensus
is solvable using SF(m) if and only if m, the number of mistakes, is less than or
equal to n − f , the number of correct processes. We then show that Consensus is
solvable using WF(m) if and only if m = 0.

Theorem 10. In asynchronous systems with f ≥ dn
2
e, if m > n − f then Con-

sensus cannot be solved using SF(m) .

Proof (sketch). Consider an asynchronous system with f ≥ d n
2
e and assume

m > n − f . We show that there is a failure detector D ∈ SF(m) such that no
algorithm solves Consensus using D. We do so by describing the behaviour of a
Strongly m-Mistaken failure detector D such that for every algorithm A, there is a
run RA of A using D that violates the specification of Consensus.

Since 1 ≤ n − f ≤ bn
2
c, we can partition the processes into three sets Π0,Π1

and Πcrashed, such that Π0 and Π1 are non-empty sets containing n − f processes
each, and Πcrashed is a (possibly empty) set containing the remaining n− 2(n− f)
processes. Henceforth, we only consider runs in which all processes in Πcrashed

crash at the beginning of the run. Let q0 ∈ Π0 and q1 ∈ Π1. Consider the following
two runs of A using D:

Run R0 = 〈F 0,H0, I0, S0, T 0〉. All processes propose 0. All processes in Π0 are
correct in F0, while all the f processes in Π1∪Πcrashed crash in F0 at the beginning of
the run, i.e., ∀t ∈ T : F0(t) = Π1∪Πcrashed. Process q0 ∈ Π0 permanently suspects
every process in Π1 ∪Πcrashed, i.e., ∀t ∈ T : H0(q0, t) = Π1 ∪Πcrashed = F0(t). No
other process suspects any process, i.e., ∀t ∈ T ,∀q 6= q0 : H0(q, t) = ∅. Clearly, D
satisfies the specification of a Strongly m-Mistaken failure detector in R0.

Run R1 = 〈F 1,H1, I1, S1, T 1〉. All processes propose 1. All processes in Π1 are
correct in F1, while all the f processes in Π0∪Πcrashed crash in F1 at the beginning
of the run, i.e., ∀t ∈ T : F1(t) = Π0 ∪ Πcrashed. Process q1 ∈ Π1 permanently
suspects every process in Π0∪Πcrashed, and no other process suspects any process.
D satisfies the specification of a Strongly m-Mistaken failure detector in R1.

If R0 or R1 violates the specification of Consensus, A does not solve Consensus
using D, as we wanted to show. Now assume that both R0 and R1 satisfy the
specification of Consensus. In this case, all correct processes decide 0 in R0 and 1
in R1. Let t0 be the time at which q0 decides 0 in R0, and let t1 be the time at
which q1 decides 1 in R1. We now describe the behaviour of D and a run RA =
〈F A,HA, IA, SA, T A〉 of A using D that violates the specification of Consensus.

In RA all processes in Π0 propose 0 and all processes in Π1 ∪Πcrashed propose 1.
All processes in Πcrashed crash in FA at the beginning of the run. All messages from
processes in Π0 to those in Π1 and vice-versa, are delayed until time t0 + t1. Until
time t0, (i) D behaves as in R0, and (ii) all the processes in Π1 are “very slow”:
they do not take any steps. Thus, until time t0, no process in Π0 can distinguish
between R0 and RA, and all processes in Π0 execute exactly as in R0. In particular,
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q0 decides 0 at time t0 in RA (as it did in R0). Note that by time t0, D made n− f
mistakes in RA: q0 erroneously suspected that all processes in Π1 crashed (while
they were only slow). From time t0, the behaviour of D and run RA continue as
follows:

(1) At time t0, all processes in Π0, except q0, crash in FA.

(2) From time t0 to time t0 + t1, q1 suspects all processes in Π0 ∪Πcrashed, i.e.,
∀t, t0 ≤ t ≤ t0 + t1 : HA(q1, t) = Π0 ∪ Πcrashed, and no other process suspects
any process. By suspecting all the processes in Π0, including q0, D makes one
mistake at process q1 (about q0). Thus, by time t0 + t1, D has made a total of
(n− f) + 1 mistakes in RA. Since m > n− f , D has made at most m mistakes
in RA until time t0 + t1.

(3) At time t0, processes in Π1 “wake up.” From time t0 to time t0 + t1 they
execute exactly as they did in R1 from time 0 to time t1 (they cannot perceive
this real-time shift of t0). Thus, at time t0 + t1 in run RA, q1 decides 1 (as it
did at time t1 in R1). Since q0 previously decided 0, RA violates the agreement
property of Consensus.

(4) From time t0+t1 onwards, no more processes crash and every correct process
suspects exactly all the processes that have crashed. Thus, D satisfies weak
completeness, repentance, and makes no further mistakes.

By (2) and (4), D satisfies the specification of a Strongly m-Mistaken failure detec-
tor, i.e., D ∈ SF(m). From (3), A does not solve Consensus using D.

We now show that the above lower bound is tight:

Theorem 11. In asynchronous systems with m ≤ n−f , Consensus can be solved
using SF(m).

Proof. Suppose m < n−f , and consider any failure detectorD ∈ SF(m). Since
m, the number of mistakes made by D, is less than the number of correct processes,
there is at least one correct process that D never suspects. Thus, D satisfies weak
accuracy. By the definition of SF(m), D also satisfies weak completeness. So
D ∈ W , and it can be used to solve Consensus (Corollary 2).

Suppose m = n − f . Even though D can now make a mistake about every
correct process, it can still be used to solve Consensus (even if a majority of the
processes are faulty). The corresponding algorithm uses rotating coordinators, and
is similar to the one for

�
W given in Figure 6. Because of this similarity, we omit

the details.

From the above two theorems:

Corollary 12. In asynchronous systems with f ≥ d n
2
e, Consensus can be

solved using SF(m) if and only if m ≤ n− f .

We now turn our attention to solving Consensus using WF(m).

Theorem 12. In asynchronous systems with f ≥ dn
2
e, Consensus cannot be

solved using WF(m) with m > 0.

Proof. In Theorem 10, we described a failure detector D that cannot be used
to solve Consensus in asynchronous systems with f ≥ d n

2
e. It is easy to verify that

D makes at most one mistake about each correct process, and thus D ∈ WF(1).
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From Corollary 10 and the above theorem, we have:

Corollary 13. In asynchronous systems with f ≥ d n
2
e, Consensus can be

solved using WF(m) if and only if m = 0.
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