
© C. Karamanolis 1 Distributed Algorithms

Fault-Tolerant Broadcasts - Motivation

� We have seen that if some kind of broadcast primitive existed in
asynchronous systems, Consensus would be solvable!

Broadcasts are important for fault-tolerance in distributed systems.

� Broadcasts are communication primitives that simplify the design
of distributed systems (replication, group-ware, …).

Hard to design/implement certain types of broadcasts. Problem complicated
by process/link failures. Usually, the stricter (and more useful), the harder
broadcasts are… So, what exactly do we need?

pt2pt comm primitives (send/recv) Group comm primitives(bcast/delv)

+ easy to support
+ cheap to provide
– hard to work with

– hard to support
– expensive to provide
+ easy to work with

© C. Karamanolis 2 Distributed Algorithms

Fault-Tolerant Broadcasts - Architecture

Our goal is to provide the “group communication s/w” that implements
bcast /delv using thesend /recv provided by the underlying network

applic. process applic. process
p q

group comm
s/w

group comm
s/w

communication network

Assume:
Fixed group of (application) processes; senders from within group.
Each broadcast messagem is unique by tagging with two fields:
• sender(m) : the identity of its sender
• seq#(m): sequence no. of m in its sender

bcast(m) bcast(m) delv(m)delv(m)

send(m) send(m)recv(m) recv(m)

© C. Karamanolis 3 Distributed Algorithms

Fault-Tolerant Broadcasts

SYSTEM MODEL :

� Asynchronousdistributed systems

� Failure assumptions:
� Processes may crash

� link failures possible

� Point-to-point networks (represented as graphs - nodes: processes,

edges: bi-directional comm. links)

Definitions for fault-tolerant broadcasts:

� p broadcasts m: p invokes bcast(m)

[may not complete it due to a crash]

� p delivers m : p completesexecution ofdelv(m)

© C. Karamanolis 4 Distributed Algorithms

Fault-Tolerant Broadcasts

METHODOLOGY - Modular protocol design:
� Various broadcast protocols presented as ahierarchy of specifications

and corresponding algorithms.

� Obtain algorithm for a stronger variation by using given weaker
broadcast primitive as a “black box” - based on that primitive’s
specifications and not actual implementation! (“transformations”)

� We’ll describegeneric transformations, which given anyalgorithm
for some type of fault-tolerant broadcast, will produce an algorithm
for a stronger type of fault-tolerant broadcast by:

� preserving the properties of the given (weak) broadcast
� introducing some additional properties

� Application processesmust use the “group communication
software/layer” as black box too - based on its properties
(specs), not actual implementation in a certain system model!

© C. Karamanolis 5 Distributed Algorithms

Reliable broadcast - Specifications

� Validity : If a correctprocess broadcasts a messagem, then
it eventually deliversm.

� Agreement: If a correctprocess delivers a messagem, then
eventually all correct processes deliverm.

� Integrity : For any messagem, a (?) process deliversm at
most once and only ifsender(m) has previously broadcastm.

Liveness
S

afety

Informally :
• the same (perhaps infinite)setof msgs is delivered by all correct

processes [Agreement]
• that set includes all msgs broadcast by correct processes

[Validity+Agreement]
• “spurious” msgs are not included in that set [Integrity]

What is the possible outcome when a process fails while broadcasting m?
© C. Karamanolis 6 Distributed Algorithms

Reliable broadcast - Algorithm

The Reliable Broadcast algorithm to be presented here is the basis for all
other algorithms to be presented later on… others use it directly or indirectly.
So, it is important to make clear when this algorithm works!

No-partition assumption: Any two correct processes are connected
via a path consisting only of correct processes and correct links

No-partition assumption: Any two correct processes are connected
via a path consisting only of correct processes and correct links

I.e. network connections have enough redundancy, so that failures do not
disrupt communication between correct processes. Assumption necessary;
otherwise, Reliable bcast and, hence, any other type of bcast is unsolvable.

1

26

5

4

3

In this network, theno-partition assumptionis

• satisfied, if we know that
≤ 2 processes and≤ 1 link may be faulty.

• violatedif we know that 2 processes
and 2 links may be faulty.

1

26

5

4

3

1

26

5

4

3

© C. Karamanolis 7 Distributed Algorithms

Reliable broadcast - Algorithm

To broadcast, a process p executes…
R_bcast(m):

tag m with sender(m) and seq#(m);
send (m) to all neighbours including p;

R_delv(m) occurs as follows (every process p executes this)...
upon recv(m) do

if p has not previously executed R_delv(m) then
if sender(m)≠p then send (m) to all neighbours;
R_delv (m);

To broadcast, a process p executes…
R_bcast(m):

tag m with sender(m) and seq#(m);
send (m) to all neighbours including p;

R_delv(m) occurs as follows (every process p executes this)...
upon recv(m) do

if p has not previously executed R_delv(m) then
if sender(m)≠p then send (m) to all neighbours;
R_delv (m);

Diffusion Algorithm

Recall (from models of distrib systems) the properties ofsend/recv primitives:
• Safety: q receives m from p at most once and only if p previously sent m to q.
• Liveness: if p sends m to q and q takes infinitely many steps (i.e. q correct), then

q eventually receives m from p.

Correctness?
• Validity: by liveness of send/recv.
• Agreement: By no-partition assum + liveness of send/recv + induction.
• Integrity: By safety of send/recv + induction.

an
yo

bv
io

us

an
yo

bv
io

us

op
tim

isa
tio

ns

op
tim

isa
tio

ns
??

© C. Karamanolis 8 Distributed Algorithms

FIFO broadcast - Motivation

In Reliable broadcast, there areno requirements onorder in which
messages are delivered. This may result in “anomalies”...

Broadcast messages from thesame sendermust be delivered in some
order consistent with the order they were generated (for delivery to
reflect potential dependencies on sender).

Example:Delivery of a message canceling a flight reservation (on airline’s
server) before delivery of the original message making the reservation -
airliner’s server application may get “confused”!

tclient

server

“reserve” “cancel”

“Prices
15% off”

© C. Karamanolis 9 Distributed Algorithms

FIFO broadcast - Specifications

FIFO Broadcast = Reliable Broadcast + FIFO Order

FIFO Order: If a process broadcasts a messagem before it broadcasts
a messagem’ , then nocorrectprocess deliversm’ unless it has
previously deliveredm.

Note:
Suppose a processp broadcasts messagesm1, m2 andm3 in that order.
Due to a transient failure of processp while it broadcastsm2, a
correct processq deliversm1 andm3 (in that order) but notm2.

Is this behaviour permitted by the specification of FIFO broadcast?

A Safety property.

© C. Karamanolis 10 Distributed Algorithms

FIFO broadcast - Specifications

Consider the following alternative definition ...

FIFO Order: All messages broadcast by the same process
are delivered to all processes in the order they were sent.

Is this definition correct?

© C. Karamanolis 11 Distributed Algorithms

FIFO broadcast - Algorithm

We present ageneric transformation, which given anyalgorithm for
Reliable broadcastwill provide FIFO broadcast: preserves the three
properties of Reliable broadcast and adds FIFO delivery order.

Every process p executes the following:
Initialisation :

msgSet := ∅; // set of messages R_delv’ed but not F_delv’ed
next[q] := 1 forall q; // seq# of next m from q that p will F_delv

F_bcast(m):
R_bcast(m);

upon R_delv(m) do
s := sender(m);
msgSet := msgSet ∪ {m};
while (∃m’ ∈ msgSet : sender(m’)=s and seq#(m’)=next[s]) do

F_delv(m’);
next[s] := next[s] + 1;
msgSet := msgSet - {m’};

Every process p executes the following:
Initialisation :

msgSet := ∅; // set of messages R_delv’ed but not F_delv’ed
next[q] := 1 forall q; // seq# of next m from q that p will F_delv

F_bcast(m):
R_bcast(m);

upon R_delv(m) do
s := sender(m);
msgSet := msgSet ∪ {m};
while (∃m’ ∈ msgSet : sender(m’)=s and seq#(m’)=next[s]) do

F_delv(m’);
next[s] := next[s] + 1;
msgSet := msgSet - {m’};

Relies only oncorrectnessof R_bcast - needs no system model assumptions.
© C. Karamanolis 12 Distributed Algorithms

FIFO broadcast - Algorithm execution

t

p

q

m1 m3

msgSetq={}

nextq[p]=1

nextq[q]=1

msgSetq={}

nextq[p]=2

nextq[q]=1

msgSetq={m3}

nextq[p]=2

nextq[q]=1

msgSetq={m1}

nextq[p]=1

nextq[q]=1

msgSetq={m3 ,m2}

nextq[p]=2

nextq[q]=1

msgSetq={m3}

nextq[p]=3

nextq[q]=1

msgSetq={}

nextq[p]=4

nextq[q]=1

recv(m1)
R_delv(m1)

F_delv(m1)
R_delv(m2)

F_delv(m3)R_delv(m3)
recv(m3)

recv(m2)

F_delv(m2)

m2

© C. Karamanolis 13 Distributed Algorithms

Causal broadcast - Motivation

FIFO Order does not preclude all anomalies due to bizarre order of delivery...
Example:The “newsgroup anomaly”

Use group communication primitives to implement newsgroup software.
To post an article, a userF_bcastsit to the group. The article is delivered
to the user’s newsreader application as soon as it arrives at his/her local site.

tChristos

Student 2

m1:
“Fri exam cancelled”

Student 1
m2:

“let’s party on Thu night”

m3:
“but we have an exam on Fri!”

• FIFO order is satisfied (trivially)
• What is wrong then? m2 depends on m1, yet Student 2 delivers m2 before

delivering m1. m1 causally precedesm2, i.e. m1 →→→→ m2
© C. Karamanolis 14 Distributed Algorithms

Causal broadcast - Specifications

Causal Broadcast = Reliable Broadcast + Causal Order

Causal Order: If the broadcast of a messagem causally precedes
the broadcast of messagem’ , then nocorrectprocess delivers
m’ unless it has previously deliveredm.

A Safety property.

Causal Order ���� FIFO Order , but

FIFO Order ���� Causal Order

So, Causal Order = FIFO Order + ?

© C. Karamanolis 15 Distributed Algorithms

Causal broadcast - Specifications

Causal Order = FIFO Order + Local Order

Local Order: If a process delivers a messagem before
broadcasting a messagem’ , then no correct process
deliversm’ unless it has previously deliveredm.

A Safety property.

© C. Karamanolis 16 Distributed Algorithms

Causal broadcast - Algorithm

Again, this is ageneric transformation, which given anyalgorithm for
FIFO broadcast will provide Causal broadcast.

Every process p executes the following:
Initialisation :

rcntDlvs := ⊥; // sequence of msgs that p C_delv’ed since its
// previous C_bcast

C_bcast(m):
F_bcast(�rcntDlvs||m�); // append m at end of rcntDlvs
rcntDlvs := ⊥;

upon F_delv(�m1,m2,…,mn �) do
for i := 1 .. n do // order : important!

if p has not previously executed C_delv(mi) then
C_delv(mi);
rcntDlvs := rcntDlvs || mi;

Every process p executes the following:
Initialisation :

rcntDlvs := ⊥; // sequence of msgs that p C_delv’ed since its
// previous C_bcast

C_bcast(m):
F_bcast(�rcntDlvs||m�); // append m at end of rcntDlvs
rcntDlvs := ⊥;

upon F_delv(�m1,m2,…,mn �) do
for i := 1 .. n do // order : important!

if p has not previously executed C_delv(mi) then
C_delv(mi);
rcntDlvs := rcntDlvs || mi;

© C. Karamanolis 17 Distributed Algorithms

Causal broadcast - Example

p

q

r

t����m �� ��

����m,m’ �� ��

C_delv(m)
then
C_delv(m’)

ignore as
previously
delivered

This is anon-blocking algorithm (transformation), i.e. C_delivery of
messages is never postponed until some condition is satisfied.

This is obviously not a practical protocol due to thesize of messages
transmitted (sequences of msgs). This the price to pay for not blocking!

Practical protocols (e.g. ISIS - see later on) transmit not sequences of
msgs, but sequences of msg IDs. However, they delay C_delivery of
a msg until all its causal predecessors have arrived and been delivered.

© C. Karamanolis 18 Distributed Algorithms

Causal broadcast - Example

t

p1

p2

p3

C_bcast (m1)

C_bcast (m2)

C_bcast (m3)

����m1�� ��

����m2�� ��

����m1,m2 , m3�� ��

C_delv (m1)

C_delv (m3)
m2 already C_delv’ed!

C_delv (m1)

C_delv (m1)
C_delv (m2)

C_delv (m2) C_delv (m3)

C_delv (m3)

C_delv (m2)

© C. Karamanolis 19 Distributed Algorithms

Atomic broadcast - Motivation

Even Causal Order is not enough to ensure absence of anomalies...
Example:“Replicated bank account”

Use group communication primitives to implement a replicated database
for a bank, in two sites. Bankers may work on any of the sites. A request
to update an account in the database is broadcast to both replicas.

R1

R2

tA:£100

A:£100

Deposit
£20

Add 10%
interest

A:£120

A:£110

A:£132

A:£130

Although replicas identical at start, they diverge at the end.

• Causal Order satisfied (trivially).

• Problem: to guarantee identical replicas at the end, must ensure that all
updates are delivered insame order, even if not causally related.

© C. Karamanolis 20 Distributed Algorithms

Atomic broadcast - Specifications

Atomic Broadcast = Reliable Broadcast + Total Order

Total Order: If correct processesp andq both deliver messages
m andm’ , thenp deliversm beforem’ if and only if q
deliversm beforem’ .

In Atomic broadcast…
• the same (perhaps infinite)sequenceof msgs is delivered by all

correct processes [Agreement + Total Order]

Compare with specifications of Reliable broadcast…
The only difference is: “sequence” instead of “set”

This innocuous-seeming difference makes a huge difference in the
kind of systems in which these two types of broadcasts can be
implemented!

© C. Karamanolis 21 Distributed Algorithms

Atomic broadcast & Consensus

We have seen that Consensus can be solved using some kind of broadcast.
In fact, that is Atomic broadcast. In other words, the problem ofConsensus
can bereducedto the problem ofAtomic broadcast.

Consensus impossible in
asynchronous systems

Consensus impossible in
asynchronous systems

Atomic broadcast impossible
in asynchronous systems

Atomic broadcast impossible
in asynchronous systems

In addition, it has been shown (by Chandra & Toueg) that the problem of
Atomic broadcast can bereducedto the problem ofConsensus. I.e. given
an algorithm for Consensus, Atomic broadcast can be implemented.

Atomic Broadcast ⇔⇔⇔⇔ ConsensusAtomic Broadcast ⇔⇔⇔⇔ Consensus

© C. Karamanolis 22 Distributed Algorithms

Atomic broadcast

� Reliable bcastimplementable in asynchronous systems
[for any # of process/link failures, given no-partition]

� Atomic bcast not implementable in asynchronous systems
[even for oneprocess failure]

We cannot use the “Diffusion Algorithm” for Reliable broadcast
(as it is) to transform it into an Atomic broadcast algorithm!

Total Order ���� Causal Order

���� FIFO Order

So, we have two more, evenstronger, broadcasts:

FIFO Atomic bcast: Reliable bcast + FIFO Order + Total Order

Causal Atomic bcast:Reliable bcast + Causal Order + Total Order

© C. Karamanolis 23 Distributed Algorithms

Relationship among Broadcast types

Reliable
broadcast

FIFO
broadcast

Causal
broadcast

Causal Atomic
broadcast

FIFO Atomic
broadcast

Atomic
broadcast

Total Order

Algorithm transformations?

Timed
Reliable

broadcast

+Timeliness Total Order

Causal Order

Total Order

Total Order

FIFO Order FIFO Order

Local OrderCausal Order
Local Order

© C. Karamanolis 24 Distributed Algorithms

Timed Reliable Broadcast

To construct an Atomic broadcast algorithm (by transformation), we
need Timed Reliable Broadcast = Reliable broadcast + Timeliness.

Timeliness:There is a known constant∆∆∆∆ such that if a messagem
is broadcast at timet, then no correct process deliversm after
time t+∆∆∆∆.

Timeliness can be achieved insynchronous point-to-pointnetworks,
where processes/links maycrash.

The “Diffusion” Algorithm for Reliable Broadcast
presented earlier does, in fact, satisfy Timeliness

when executed in synchronous networks.

The “Diffusion” Algorithm for Reliable Broadcast
presented earlier does, in fact, satisfy Timeliness

when executed in synchronous networks.

What is the value of∆∆∆∆?

© C. Karamanolis 25 Distributed Algorithms

Timed Reliable Broadcast

Recall (from “models” lecture): properties ofsynch. point-to-point networks:
�There is known upper bound on msgtransmission delayover a comm

link which connects directlytwo processes:δδδδ
�There is known upper bound on time required for a process to execute a

local step. Here, we consider the time to process a msg as negligible:0

Recall: “Diffusion Algorithm” requires theno-partition assumption - still
required in the case of synchronous systems. To estimate the value of∆∆∆∆...

Assume:
• f : max # of faulty processes
• k : max # of faulty links
• d : worst shortest path between

any two correct processes,
whenf faulty processes and
k faulty links

1

26

5

4

3

f=2, k=1 � d = ?
[For all failure
combinations, calculate
shortest possible
paths between any two
correct processes;
d = longest of them!]

1

26

5

4

3

1

26

5

4

3

E.g. 3

© C. Karamanolis 26 Distributed Algorithms

Timed Reliable Broadcast

In a synchronous network where a max off processes may crash
and a max ofk links may fail, the“Diffusion” algorithm for
Reliable Broadcast satisfiesTimelinesswith ∆∆∆∆ = (f+d)δδδδ.

In a synchronous network where a max off processes may crash
and a max ofk links may fail, the“Diffusion” algorithm for
Reliable Broadcast satisfiesTimelinesswith ∆∆∆∆ = (f+d)δδδδ.

Why ? (∆∆∆∆ represents the “worst case” delay scenario)

� If a processp bcasts mat timet0, then thefirst correct processc
that deliversm (if one exists), does so at timetc ≤≤≤≤ t0+f δδδδ

p c
t0 ≤t0+δ ≤t0+(f-1)δ ≤t0+f δ

� If a correct processq delivers m at timetq, then everycorrect processs
does so at timets≤≤≤≤ tq+dδδδδ

q s
tq ≤tq+δ ≤tq+(d-1)δ ≤tq+dδ

max:d

© C. Karamanolis 27 Distributed Algorithms

Atomic Broadcast - Algorithm

Given an algorithm forTimed Reliable Broadcastin synchronous
systems, we can use a simple transformation to getAtomic Broadcast...

Every process p executes the following:

A_bcast(m):
tag m with ts(m) := current real time;
R∆∆∆∆_bcast(m);

upon R ∆∆∆∆_ delv(m) do
schedule A_ delv(m) at time ts(m)+∆∆∆∆;

Every process p executes the following:

A_bcast(m):
tag m with ts(m) := current real time;
R∆∆∆∆_bcast(m);

upon R ∆∆∆∆_ delv(m) do
schedule A_ delv(m) at time ts(m)+∆∆∆∆;

Note: if two deliveries scheduled for the same time, then deliver in order
of sender’s identity:sender(m)

The above algorithm transforms anyalgorithm that satisfiesTimeliness
into an Atomic Broadcastpreserving Agreement, Validity, Integrity
and alsoFIFO Order andCausal Order.

© C. Karamanolis 28 Distributed Algorithms

Broadcast algorithms (transformations)

network

Reliable

FIFO

Causal

application
program

network

application
program

Timed Reliable

FIFO Atomic

Causal Atomic

Atomic

C_bcast(m) CA_bcast(m)C_delv(m)

F_bcast(m)

R_bcast(m)

send(m)
send(m)

R∆∆∆∆_bcast(m)

A_bcast(m)

FA_bcast(m)

CA_delv(m)

recv(m)

A_delv(m)

FA_delv(m)

R∆∆∆∆_delv(m)

recv(m)

R_delv(m)

F_delv(m)

© C. Karamanolis 29 Distributed Algorithms

ISIS - practical Group Communication

ISIS is a toolkit developed by Ken Birman and others at
Cornell Univ. It facilitates the construction offault-tolerant
distributed applications by providing a range ofgroup
communication primitives. It is now marketed commercially.
Has been used for the development of s/w for the NY and
Zurich Stock Exchanges. It supports the following protocols:

FBCAST : FIFO Broadcast (groupmulti -cast)
CBCAST : Causal Broadcast (groupmulti -cast)
ABCAST : Atomic Causal Broadcast (groupmulti -cast)

ISIS gives to the application programmer the abstraction of virtual synchrony:
Application behaviour perceives group communication activities (broadcasts,
process failures) as if scheduled in sequential order, the same in all processes.
In fact, ISIS is designed for asynchronous systems and processes are executed
concurrently and asynchronously.
Ref: “Lightweight Causal and Atomic Group Multicast”, ACM Trans. on Computer Sys., 9(3), 1991

© C. Karamanolis 30 Distributed Algorithms

ISIS - System Model

�Processes formgroups which are the destination for multicasts. A process
has to explicitlyjoin a group (can be member of >1 groups).

�Processesmulti-cast messages to groups they are members of.

�Processes fail by crashing detectably -failstop. A faulty process is removed
from the group(s) it is member of.

�Processes learn of group membership through theview mechanism. A view
of a process groupg is a list of its members’ IDs. Aview “history” for
groupg is an infinite sequence

view0(g), view1(g),…, viewn(g),… where:

• view0(g) = ∅
• ∀i>0, viewi(g) ⊆ P (set of all processes in the system)viewi(g) and
viewi+1(g) differ by the addition / subtraction of exactly oneprocess

If correct process’sp current view ofg is vp(g), thenp∈∈∈∈ vp(g). If q∈∈∈∈ vp(g),
thenp andq have “seen” the same sequence of views of groupg from the
moment they where both members ofg up to (including)vp(g).

© C. Karamanolis 31 Distributed Algorithms

Virtual Synchrony

� Address expansion:Group ids are used as the destination for
multicasts. The protocols expand group ids intodestination listsand
deliver messages in such a way that:

� Delivery atomicity and order
The protocols obey theValidity, AgreementandIntegrity properties of
Reliable broadcasts (within a group - multicasts). Either all correct processes
in the group eventually deliver a message or (only if the sender fails) none of
them does.In addition,CBCASTprovides Causal order andABCAST
providesTotal order consistent with Causality.

� Virtual Synchrony
If processp (correct or faulty) multicastsm to g “in view” vi(g) and there is
correct processq that deliversm in view vi+k(g) (k≥0), then everycorrect
process ing deliversm in vi+k(g); in that casep ∈∈∈∈ vi+k(g) . What if p faulty?

These properties require that processes must not deliver multicasts from a
process which is not member of theircurrent view (removed because failed).

© C. Karamanolis 32 Distributed Algorithms

CBCAST Protocol - Vector Clocks

� Each processpi maintains a vector clockVT(p i)[j] , for all pj in g.
Initially, ∀j : VT(pi)[j] = 0;

� Before each eventsend(m) at pi, VT(p i)[i] := VT(p i)[i] + 1 andm is
timestamped withVT(p i).

� After C_deliver(m) at pj, the process updates its local vector clock:

∀∀∀∀k : VT(p j)[k] := max{ VT(p j)[k], VT(m)[k] } (*)

Assume:process participates in singlegroupg.

Recall that vector clocks represent causality precisely:
m →→→→ m’ if and only if VT(m) < VT(m’)

where
VT 1 ≤≤≤≤ VT 2 if and only if ∀∀∀∀i: VT 1[i] ≤≤≤≤ VT2[i]
VT 1 < VT2 if and only if VT 1 ≤≤≤≤ VT 2 and ∃∃∃∃i: VT 1[i] < VT 2[i]

[What does VT(pi)[i] represent ?]

[What does VT(pj)[k] represent ?]

© C. Karamanolis 33 Distributed Algorithms

CBCAST Protocol - Algorithm

Every process pi executes the following:

C_multicast(m):
VT(pi)[i] := VT(pi)[i] + 1;

tag m with VT(m) := VT(pi);
send(m) to g;

upon recv(m) do
s := sender(m);
if pi = s then C_deliver(m);
else delay delivery of m until the following hold:

a) VT(pi)[s] = VT(m)[s] - 1
b) VT(pi)[k] ≥ VT(m)[k] , ∀k ∈ {1,2,…,n} - {s}

When m delivered by pi, update VT(pi) as in (*)

Every process pi executes the following:

C_multicast(m):
VT(pi)[i] := VT(pi)[i] + 1;

tag m with VT(m) := VT(pi);
send(m) to g;

upon recv(m) do
s := sender(m);
if pi = s then C_deliver(m);
else delay delivery of m until the following hold:

a) VT(pi)[s] = VT(m)[s] - 1
b) VT(pi)[k] ≥ VT(m)[k] , ∀k ∈ {1,2,…,n} - {s}

When m delivered by pi, update VT(pi) as in (*)

• Delayed messages are kept in aCBCAST delay queue. This queue issorted
by vector time. Concurrent messages are ordered by id of sender.

• ISIS is designed on top of TCP (n*n connections per group); assumes that
msg diffusion (required for reliability) is implemented at that level.

© C. Karamanolis 34 Distributed Algorithms

CBCAST Protocol - Comments

The main functionality of the protocol is implemented on receipt
of a message:

condition (a): ensures thatpi has delivered all messages froms
that precedem.

condition (b): ensures thatpi has delivered all those messages
delivered bys before it sentm.

Since the ordering relation “→” imposed by vector clocks is acyclic,
the protocol isdeadlock free.

p1

p2

p3

tm[1,0,0]

m’[1,1,0]

delv

delv

delv

delv

delv delvdelay
[1,1,0]

© C. Karamanolis 35 Distributed Algorithms

ABCAST Protocol

� Uses atoken site to impose total order.
Token holder processtoken(g) ∈∈∈∈ viewi(g)
Each message is uniquely identified byuid(m) = ����sender(m), seq#(m) �� ��

� To ABCAST(m):
if sender(m) = token(g) then CBCAST(m) else

� CBCAST(m), but mark m “undeliverable”. This may also delay causally
following CBCASTs in delay queue of some processes.

� token(g) deliversm (as if it wasCBCAST) and recordsuid(m).

� token(g) generates andCBCASTs msg typed“set_order” containing list ofuids
for ABCASTs it has delivered, in the order it has delivered them.

� On receipt of am’=“set_order” , a processp ≠ token(g) placesm’ in the local
CBCASTdelay queue. Eventuallyall ABCASTs referred to inm’ (its causal
predecessors) are received by p. ConcurrentABCASTs are re-ordered in queue
as indicated bym’ and are marked “deliverable” (order must still respect VTs).

� “Deliverable” ABCAST msgs are delivered from thefront of the queue.

© C. Karamanolis 36 Distributed Algorithms

ABCAST

CBCAST

TCP/IP

application

p1

p2

p3

t

token
site

C_delv
A_delv

A_delv
C_delv

m1

+set order
<1,3,2>

m2

m3

C_delv and
A_delv

m1 m3 m2

m1 m3 m2

ISIS ABCASTISIS ABCAST

recv

not A-deliverable

not A-deliverable

ABCAST(m)

CBCAST(m)

send(m) recv(m)

C_delv(m)

A_delv(m)

© C. Karamanolis 37 Distributed Algorithms

ABCAST Protocol - Comments

Implications of theFLP result :
� Token holder does not respond - has itcrashedor slow? Correct

processes cannot deliver delayedABCAST without a “set_order”
msg from token holder -blocked!
� There is aFailure Detector in the system, which uses empiricaltimeouts

(partially synchronous?) to detect (suspect) crashed processes. If a process
decided faulty and is in fact correct, it is forced to re-join the group!

� Correct processp does not receive anABCAST msgm’ referenced by
some “set_order” msg -blocked! Shall p wait longerfor m’ or has
sender(m’) crashed? In the latter case, canm’ be retrieved from other
process(es)?
� There is a protocol (not presented here) to update groupviewsaccording

to theVirtual Synchrony requirements. In the case of decidedprocess
failure , this protocol is initiated toflush any “transient” msgs of correct
processes and any msgs of faulty processes that have been received by
just a subset of the surviving processes; then, the new view is installed!

