ﬁ Fault-Tolerant Broadcasts - Motivation

+ We have seen that if some kind of broadcast primitive existed in
asynchronous systems, Consensus would be solvable!

Broadcasts are important for fault-tolerance in distributed systems.
+ Broadcasts are communication primitives that simplify the design
of distributed systems (replication, group-ware, ...).

Hard to design/implement certain types of broadcasts. Problem complicated
by process/link failures. Usually, the stricter (and more useful), the harder
broadcasts are... So, what exactly do we need?

pi2pt comm primitves (sendirecy] N

+ easy to support — hard to support
+ cheap to provide — expensive to provide
— hard to work with + easy to work with

© C. Karamanolis 1 Distributed Algorithms

ﬁ Fault-Tolerant Broadcasts - Architecture

Our goal is to provide the “group communication s/w” that implements
bcast /delv using thesend /recv provided by the underlying network

applic. process applic. process
bcasf(m P delv(m) 5 q delv(m
(I) ? bca t(?) ? (m)
group/comm group/comm
s/w s/w
send(m? rtircv(m) send(m) | _Arrecv(m)
v | v |

communication network

Assume
» Fixed group of (application) processes; senders from within group.
» Each broadcast messages unique by tagging with two fields:
« sender(m : the identity of its sender
* seg#(m). sequence no. of min its sender

© C. Karamanolis 2 Distributed Algorithms

E-E: Fault-Tolerant Broadcasts

SYSTEM MODEL :

Asynchronousdistributed systems
Failure assumptions:

* Processes may crash
¢ link failures possible

Point-to-point networks fepresented as graphs - nodes: processes,
edges: bi-directional comm. links

Definitions for fault-tolerant broadcasts:

p broadcasts m: p invokes bcast(m)
[may not complete it due to a crash]

p delivers m: p completegexecution of delv(m)
© C. Karamanolis 3 Distributed Algorithms

E-E: Fault-Tolerant Broadcasts

METHODOLOGY - Modular protocol design:
= Various broadcast protocols presented ageaarchy of specifications
and corresponding algorithms.
= Obtain algorithm for a stronger variation by using given weaker
broadcast primitive as étack box’ - based on that primitive’'s
specifications and not actual implementatiorttghsformations”)
= We’'ll describegeneric transformations which given_ anyalgorithm
for some type of fault-tolerant broadcast, will produce an algorithm
for a stronger type of fault-tolerant broadcast by:
preserving the properties of the given (weak) broadcast
introducing some additional properties

Application processesnust use the “group communication
software/layer” as black box too - based on its properties
(specs), not actual implementation in a certain system model!

© C. Karamanolis 4 Distributed Algorithms

B :
¢=ks Reliable broadcast - Specifications

+ Validity : If a correctprocess broadcasts a messagehen
it eventually deliversn.

SSQUAAIT

¢ Agreement If a correctprocess delivers a messagethen
eventually all correct processes deliver

+ Integrity : For any message, a(?) process deliverm at
most once and only gendefm) has previously broadcast.

Kayes

Informally:
« the same (perhaps infinitegtof msgs is delivered by all correct
processesAgreemeng
 that set includes all msgs broadcast by correct processes
[Validity+Agreement
« “spurious” msgs are not included in that setégrity]

What is the possible outcome when a process fails while broadcasting m?

© C. Karamanolis 5 Distributed Algorithms

E Reliable broadcast - Algorithm

The Reliable Broadcast algorithm to be presented here is the basis for all
other algorithms to be presented later on... others use it directly or indirectly.
So, it is important to make clear when this algorithm works!

No-partition assumption: Any two correct processes are connec
via a path consisting only of correct processes and correct links

I.e. network connections have enough redundancy, so that failures do not
disrupt communication between correct processes. Assumption necessary;
otherwise, Reliable bcast and, hence, any other type of bcast is unsolvable.

@ In this network, theno-partition assumptiors
« satisfied if we know that
< 2 processes and 1 link may be faulty.

* violatedif we know that 2 processes
and 2 links may be faulty.

© C. Karamanolis 6 Distributed Algorithms

ﬁ Reliable broadcast - Algorithm

Recall (from models of distrib systems) the propertiesefdrecv primitives:

* Safety g receives m from p at most once and only if p previously sent m to g.
* Livenessif p sends m to g and g takes infinitely many steps (i.e. g correct), then

g eventually receives m from p.
Diffusion Algorithm |
To broadcast, a process p executes...
R_bcast(m):

tag m with sender(m) and seg#(m)); R4 I
send (m) to all neighbours including p; 'QO &

R_delvn) occurs as follows (every process p executes thi
upon recv(m) do K4 \&
if p has not previously executed R_delv(m) then R
if sender(m)#p then send (m) to all neighbours;

R_delv (m);

« Validity: by liveness of send/recv.
Correctness? « AgreementBYy no-partition assum + liveness of send/recv + induction.
« Integrity. By safety of ser71d/recv + induction.

© C. Karamanolis Distributed Algorithms

ﬁ FIFO broadcast - Motivation

In Reliable broadcast, there are requirements oorder in which
messages are delivered. This may result in “anomalies”...

Example:Delivery of a message canceling a flight reservation (on airline’s
server) before delivery of the original message making the reservation -
airliner’s server application may get “confused”!

client __reserve” __ “cancel” £
server —

Prices

15% off”

Broadcast messages from teame sendamnust be delivered in some
order consistent with the order they were generated (for delivery to
reflect potential dependencies on sender).

© C. Karamanolis 8 Distributed Algorithms

&! FIFO broadcast - Specifications

FIFO Broadcast = Reliable Broadcast + FIFO Order

FIFO Order: If a process broadcasts a messageefore it broadcasts
a messag@e’, then nocorrectprocess deliversn’ unless it has

previously deliverean.
A Safety property.

Note:

Suppose a procegsbroadcasts messages, m, andms in that order.
Due to a transient failure of procegswhile it broadcastsn,, a
correct process| deliversm, andm; (in that order) but noim,.

Is this behaviour permitted by the specification of FIFO broadcast?

Distributed Algorithms

© C. Karamanolis

&! FIFO broadcast - Specifications

Consider the following alternative definition ...

FIFO Order: All messages broadcast by the same process
are delivered to all processes in the order they were sent.

Is this definition correct?

10 Distributed Algorithms

© C. Karamanolis

&: FIFO broadcast - Algorithm

We present generic transformation, which given_anyalgorithm for
Reliable broadcastwill provide FIFO broadcast: preserves the three
properties of Reliable broadcast and adds FIFO delivery order.

Every process p executes the following:
Initialisation:
msgSet := O; // set of messages R_delv’ed but not F_delv'eg
next[q] := 1 forall g; // seg# of next m from q that p will F_dely,

F_bcast(m):
R_bcast(m);

upon R_delv(m) do
s := sender(m);
msgSet := msgSet O {m};
while (Om’ 00 msgSet : sender(m’)=s and seg#m’)=next[s]) do
F_delv(m’);
next[s] := next[s] + 1;
msgSet := msgSet - {m’};

1 Distributed Algorithms

Relies only orcorrectnes®f R_bcast - needs no system model assumptions.

© C. Karamanolis

&! FIFO broadcast - Algorithm execution

l

1,

> oy m, m,

recv(m,) recy(m recv%mf)

q R_Fd%ﬁémﬁb R_delv(3m3 R—r—?{\n/](\?ri%\‘,:_dew(mﬁ
msgSet={}| |msgSe={mggSe={} msgSei ek imilsgSe={
next[p]=1 | |next[p]=1next[p]=2 next[pleXiiekigp]=3 |next[p]=4
next[a]=1 | [next[q]=1nex[q]=1 next[qlexiiektlql=1 ne tlal=1

12 Distributed Algorithms

© C. Karamanolis

¢k Causal broadcast - Motivation

FIFO Order does not preclude all anomalies due to bizarre order of delivery...
Example:The “newsgroup anomaly

Use group communication primitives to implement newsgroup software.

To post an article, a us€ér_bcastsit to the group. The article is delivered

to the user’s newsreader application as soon as it arrives at his/her local site.

Christos “Fri exam cancelled t,
Student 1 X'et S party %’/h: night” /
Student 2 \%*

“but we haven;"qﬁ exam on Fril”
* FIFO order is satisfied (trivially)
* What is wrong then? gdepends on myet Student 2 delivers pibefore
delivering m. m, causally precedemz, i.e. ml - m2

© C. Karamanolis Distributed Algorithms

ﬁ Causal broadcast - Specifications

Causal Broadcast = Reliable Broadcast + Causal Order

Causal Order: If the broadcast of a messagecausally precedes
the broadcast of message, then nocorrectprocess delivers
m’ unless it has previously delivereal

A Safety property.

Causal Order = FIFO Order , but
FIFO Order % Causal Order

So, Causal Order = FIFO Order + ?

© C. Karamanolis 14 Distributed Algorithms

E-E: Causal broadcast - Specifications

Causal Order = FIFO Order + Local Order

Local Order: If a process delivers a messanebefore
broadcasting a message, then no correct process
deliversm’ unless it has previously deliverea

A Safety property.

© C. Karamanolis 15 Distributed Algorithms

E—E: Causal broadcast - Algorithm

Again, this is ageneric transformation, which given_anyalgorithm for
FIFO broadcast will provide Causal broadcast

Every process p executes the following:
Initialisation:
rentDIvs := [0; // sequence of msgs that p C_delv’ed since
Il previous C_bcast

itss

C_bcast(m):
F_bcast((rcntDlvs||m); // append m at end of rcntDlvs
rcntDIvs = [;

upon F_delv((m;,m,,...,m,) do
for i:=1..n do /order:important!
if p has not previously executed C_delv(m;) then
C_delv(m,);
rcntDlvs := rentDIvs || m;;

© C. Karamanolis 16 Distributed Algorithms

=
g=ly Causal broadcast - Example

p m L
o
q
r .
C_delv(m) ignore as
then previously

C_delv(m’) delivered
=}= This is anon-blocking algorithm (transformation), i.e. C_delivery of
messages is never postponed until some condition is satisfied.

== This is obviously not a practical protocol due to #iee of messages
transmitted (sequences of msgs). This the price to pay for not blocking!

Practical protocols (e.g. ISIS - see later on) transmit not sequences of
msgs, but sequences of msg IDs. However, they delay C_delivery of
a msg until all its causal predecessors have arrived and been delivered.

© C. Karamanolis 17 Distributed Algorithms

=
g=ly Causal broadcast - Example

t,
C_bcast (M) c_delv (m,) C_delv (m,) C_delv (my)
1
(my
C_delv (L) C_bcast (M) c_delv (m.)
P, C_delv (m,)
(m;,m,, my
(m,
p 4
3 C_bcast (m,) C_delv (M) C_delv (m,)
m, already C_delv’ed!
C_delv (my)
© C. Karamanolis 18 Distributed Algorithms

g=ls Atomic broadcast - Motivation

Even Causal Order is not enough to ensure absence of anomalies...

Example:*Replicated bank account
Use group communication primitives to implement a replicated database
for a bank, in two sites. Bankers may work on any of the sites. A request
to update an account in the database is broadcast to both replicas.
Deposit
£20

A:£1=00 A:£=120 A:£l132 t,

1

R, A£100 . .
2 T Add 10% - =
O rest A:£110 A:£130

Although replicas identical at start, they diverge at the end.
» Causal Order satisfied (trivially).

* Problem to guarantee identical replicas at the end, must ensure that all
updates are delivered same order, even if not causally related.

© C. Karamanolis 19 Distributed Algorithms

gl Atomic broadcast - Specifications

Atomic Broadcast = Reliable Broadcast + Total Order

Total Order: If correct processegs andq both deliver messages
m andm’, thenp deliversm beforem’ if and only if g
deliversm beforem’.

In Atomic broadcast...
« the same (perhaps infinitegquenceof msgs is delivered by all
correct processegreement + Total Ordér

Compare with specifications of Reliable broadcast...
The only difference is: Sequencéinstead of ‘sef’

This innocuous-seeming difference makes a huge difference in the
kind of systems in which these two types of broadcasts can be
implemented!

© C. Karamanolis 20 Distributed Algorithms

& Atomic broadcast & Consensus

We have seen that Consensus can be solved using some kind of broadcast.
In fact, that is Atomic broadcast. In other words, the probler@afisensus
can bereducedto the problem oAtomic broadcast

Consensus impossiblel Atomic broadcast impossible.
asynchronous system in asynchronous systems

In addition, it has been shown (by Chandra & Toueg) that the problem of
Atomic broadcast can bereducedto the problem ofConsensusl.e. given
an algorithm for Consensus, Atomic broadcast can be implemented.

© C. Karamanolis 21 Distributed Algorithms

& Atomic broadcast

~ Reliable bcastimplementable in asynchronous systems
[for any # of process/link failures, given no-partition]

= Atomic bcast notimplementable in asynchronous systems
[even for oneprocess failure]

Q We cannotuse the “Diffusion Algorithm” for Reliable broadcast
(asitis) to transform it into an Atomic broadcast algorithm!

Total Order 8 Causal Order
FIFO Order

So, we have two more, evetronger, broadcasts:
» FIFO Atomic bcast: Reliable bcast + FIFO Order + Total Order
» Causal Atomic bcast: Reliable bcast + Causal Order + Total Order

© C. Karamanolis 22 Distributed Algorithms

& Relationship among Broadcast types

+Timeliness Timed Total Order
7 Reliable |
Reliable broadcast| | Atomic
broadcast "| broadcast
| |
FIFO Order FIFO Order
FIFO Total Order FIFO Atomic
broadcast "| broadcast
| Causal Order Causal Order
Local Order Local Order
Causal Total Order
broadcast g
Algorithm transformations?
© C. Karamanolis 23 Distributed Algorithms

& Timed Reliable Broadcast

To construct an Atomic broadcast algorithm (by transformation), we
need Timed Reliable Broadcast = Reliable broadcast + Timeliness

Timeliness: There is a known constaftsuch that if a message
is broadcast at timg then no correct process delivensafter
time t+A.

Timeliness can be achievedsgnchronous point-to-pointnetworks,
where processes/links mayash.

The “Diffusion” Algorithm for Reliable Broadcast;
presented earlier does, in fact, satisfy Timelin
when executed in synchronous networks.

What is the value of A?

© C. Karamanolis 24 Distributed Algorithms

& Timed Reliable Broadcast

Recall (from “models” lecture): properties synch. point-to-point networks:

» There is known upper bound on msgnsmission delayover a comm
link which connects directlywo processed

» There is known upper bound on time required for a process to execute a
local step Here, we consider the time to process a msg as neglidible:

Recall: ‘Diffusion Algorithni requires theno-partition assumption - still
required in the case of synchronous systems. To estimate the value of

Assume: E.g. o _
- f: max # of faulty processes f=2, k—l_ = d=3
« k : max # of faulty links (6) [For all failure

combinations, calculate
shortest possible
paths between any two

- d : worst shortest path betwee
any two correct processes, ®
whenf faulty processes and correct processes:
k faulty links d = longest of thertj

© C. Karamanolis 25 Distributed Algorithms

& Timed Reliable Broadcast

In a synchronous network where a max @rocesses may cra
and a max ok links may fail, the“Diffusion” algorithm for
Reliable Broadcast satisfidgmelinesswith A = (f+d)o.

Why ? (A represents the “worst case” delay scenarip

O If a procesgp bcasts mat timet,, then thefirst correct processc
that deliveram (if one exists), does so at time < t;+f &

PO—O0— —O0—@°
ty <t,+0 <ty +(f-1)0 st+Hf o

If a correct procesg) delivers mat timet,, then_evencorrect process
does so at timet < t,+dd
— maxd____
q o—0— —Q@—@°

t <t +0 e stH(d-10 <t +dd

© C. Karamanolis Distributed Algorithms

% Atomic Broadcast - Algorithm

Given an algorithm foffimed Reliable Broadcastin synchronous
systems, we can use a simple transformation té\¢@thic Broadcast...

Every process p executes the following:
A _bcast(m):

tag m with ts(m) := current real time;

RA bcast(m);
upon RA_delv(m) do

schedule A_delv(m) attime ts(m)+A;

Note: if two deliveries scheduled for the same time, then deliver in order
of sender’s identitysendefm)

The above algorithm transforms aalgorithm that satisfieSimeliness
into an Atomic Broadcagireserving Agreement, Validity, Integrity
and alsd~IFO Order andCausal Order.

© C. Karamanolis 27 Distributed Algorithms

% Broadcast algorithms (transformations)

application application

program program
C_bcast(m) i i C_delv(m) CA_bcast(m) I i CA_delv(m)

Causal Causal Atomic
F_bcastm) 4 F dem) N1 FAdenm)

FIFO Atomic
FIFO A_bcast(m) @ A _delv(m)

R_bcast(m) ﬁ R_delv(m) Atomic

Reliable RA_bcast(m) RA_delv(m)

send(m) i—f recv(m)
send(m) recv(m)
network

network

© C. Karamanolis 28 Distributed Algorithms

E-E— ISIS - practical Group Communication

ISIS is a toolkit developed by Ken Birman and others at
Cornell Univ. It facilitates the construction &ult-tolerant
distributed applications by providing a rangegvbup
communication primitives. It is now marketed commercially.
Has been used for the development of s/w for the NY and
Zurich Stock Exchanges. It supports the following protocols:

» FBCAST : FIFO Broadcast (groumulti -cast)

» CBCAST : Causal Broadcast (groupulti -cast)

» ABCAST : Atomic Causal Broadcast (groumpulti -cast)

ISIS gives to the application programmer the abstraction of virtual synchrony:
Application behaviour perceives group communication activities (broadcasts,
process failures) as if scheduled in sequential order, the same in all processes.
In fact, ISIS is designed for asynchronous systems and processes are executed
concurrently and asynchronously.

Ref: “Lightweight Causal and Atomic Group Multlcast ACM Trans. on Computer Sys., 9(3), 1991

© C. Karamanolis Distributed Algorithms

E-E- ISIS - System Model

» Processes formgroups which are the destination for multicasts. A process
has to explicitlyjoin a group (can be member of >1 groups).

» Processemulti-cast messages to groups they are members of.

» Processes fail by crashing detectabfgilstop. A faulty process is removed
from the group(s) it is member of.

» Processes learn of group membership througlvidga® mechanism. A view
of a process groug is a list of its members’ IDs. Aiew “history” for
groupg is an infinite sequence

vie\/\b(g), view(9),..., view(g),... where:
* viewy(g) =

« >0, view é g) O P (set of all processes in the systevigw(g) and
V|ew+1(g) differ by the addition / subtraction of exactly opeocess

If correct process’ P current view ofg is v,(g), thenpO v,,(g). If g0 v,,(9),
thenp andq have “seen” the same sequence of views of gpinom the
moment they where both membersgadip to (including)v,(9).

© C. Karamanolis 30 Distributed Algorithms

E_ﬁ. Virtual Synchrony

+ Address expansionGroup ids are used as the destination for
multicasts. The protocols expand group ids irdestination listsand
deliver messages in such a way that:

= Delivery atomicity and order

The protocols obey thealidity, Agreemenandintegrity properties of

Reliable broadcasts (within a group - multicasts). Either all correct processes
in the group eventually deliver a message or (only if the sender fails) none of
them doesln addition,CBCAST provides Causal order a#dBCAST
providesTotal order consistent with Causality

= Virtual Synchrony
If processp (correct or faulty) multicastsn to g “in view” v;(g) and there is

correct procesgq that deliveram in view v;,, (g) (k=0), then evercorrect
process irg deliversm in v, (9); in that case O v,,, (g) . What if p faulty?

These properties require that processes must not deliver multicasts from a
process which is not member of theitrrent view (removed because failed).

© C. Karamanolis 31 Distributed Algorithms

E-:E- CBCAST Protocol - Vector Clocks

Assumeprocess participates in singieoupg.
Each procesp; maintains a vector clockT(p;)[j] , for all p;in g.
Initially, O : VT(p;)[i] =0
Before each everstendm) atp;, VT(p))[i] :=VT(p)] +1 andm s
timestamped witl/T(p;). [What does VT (p,)[i] represent ?]
After C_delive{m) atp;, the process updates its local vector clock:
Ok - VT(p IK] := max{ VT(p k], VT(m)[K]} *)
[What does VT(pj)[k] represent ?]
Recall that vector clocks represent causality precisely:
m - m’' ifandonlyif VT(m)<VT(m’)
where

VT, <VT, ifandonlyif Oi VT j[i] < VT,i]
VT, < VT, ifandonlyif VT,<VT,and O: VT ,[i] < VT ,i]

© C. Karamanolis 32 Distributed Algorithms

E CBCAST Protocol - Algorithm

Every process;gxecutes the following:
C_multicast(m):

VT(p)Ii] = VT(p)Ii] + 1;

tag m with VT(m) := VT(p);

send(m) to g;

upon recv(m) do
s := sender(m);
if p;=s then C_deliver(m);
else delay delivery of m until the following hold:
a) VT(p)[s] =VT(m)[s] - 1

E CBCAST Protocol - Comments

The main functionality of the protocol is implemented on receipt
of a message:
condition (a): ensures tha, has delivered all messages fram
that preceden.
condition (b): ensures thap; has delivered all those messages
delivered bys before it sentm.
Since the ordering relation” imposed by vector clocks is acyclic
the protocol isdeadlock free

b) VT(p)lk] = VT(m)K], Ok 0{1,2,...,n} - {s} o m[1,0,0] delv delv g
When m delivered by p;, update VT(p,) as in (*) o
 Delayed messages are kept i@BCAST delay queue This queue isorted P2 L1 o
by vector time. Concurrent messages are ordered by id of sender. p o o o, [1.1,0]
« ISIS is designed on top of TCP (n*n connections per group); assumes that 3 dela: delv delv
msg diffusion (required for reliability) is implemented at that level.
© C. Karamanolis 33 Distributed Algorithms © C. Karamanolis 34 Distributed Algorithms
B application
4= ABCAST Protocol ABCAST(m l TA_der(m)
ABCAST ISIS ABCAST |
Uses a@oken siteto impose total order. ' A
C_del
Token holder processoken(g) O view(g) CBCAST(m J' T ~delv(m)
Each message is uniquely identified lojd(m) = (sendetm), seq#m) CBCAST
To ABCAST(m): send(m) v recv(m)
if sendefm) =toker(g) then CBCAST(m) else TCP/IP
andeliverable’. Thi t
© CBCAST(m), but mark m indeliverable’. This may also delay causally ml- —— -

following CBCASTs in delay queue of some processes.
@ toker(g) deliversm (as if it wasCBCAST) and recordsiid(m).

toker(g) generates andBCASTs msg typedset_order” containing list ofuids
for ABCASTs it has delivered, in the order it has delivered them.

On receipt of an’="set_order” , a proces® # toker(g) placesn’ in the local
CBCASTdelay queue. Eventualgll ABCASTSs referred to irm’ (its causal
predecessors) are received by p. Concu&aASTSs are re-ordered in queue

as indicated byn’ and are markeddeliverable’ (order must still respect VTs).

“Deliverable” ABCAST msgs are delivered from theont of the queue.

© C. Karamanolis 35 Distributed Algorithms

p Z 4 7| Aﬁdelv
! FoF—t———-=C_delv

C_delv and
" A delv

m3 not A-deliverable

© C. Karamanolis 36 Distributed Algorithms

ﬁ ABCAST Protocol - Comments

Implications of theFLP result :

» Token holder does not respond - hascdtashedor slow? Correct

processes cannot deliver delay&RICAST without a “set_order”
msg from token holderblocked!

¥ There is a@ailure Detector in the system, which uses empiri¢aheouts
(partially synchronous?) to detect (suspect) crashed processes. If a process
decided faulty and is in fact correct, it is forced to re-join the group!
Correct procesp does not receive aiBCAST msgm’ referenced by
some “set_order” msgizlocked! Shallp wait longerfor m’ or has

sendefm’) crashe@ In the latter case, can’ be retrieved from other
process(es)?

¥~ There is a protocol (not presented here) to update gvaygsaccording
to theVirtual Synchrony requirements. In the case of decidedcess
failure, this protocol is initiated télush any “transient” msgs of correct
processes and any msgs of faulty processes that have been received by

just a subset of the surviving processes; then, the new view is installed!
© C. Karamanolis 37 Distributed Algorithms

