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Abstract

The concept of unreliable failure detector was introduced by Chandra and Toueg

as a mechanism that provides information about process failures. This mechanism

has been used to solve several agreement problems, like Consensus. In this paper,

algorithms that implement failure detectors in partially synchronous systems are pre-

sented. First two simple algorithms of the weakest class to solve Consensus, namely

the Eventually Strong class (3S), are presented. While the first algorithm is wait free,

the second is f -resilient, where f is a known upper bound on the number of faulty

processes. Both algorithms guarantee that, eventually, all the correct processes agree

permanently on a common correct process, i.e., they also implement a failure detector
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of the class Omega (Ω). They are also shown to be optimal in terms of the number of

communication links used forever. Additionally, a wait-free algorithm that implements

a failure detector of the Eventually Perfect class (3P ) is presented. This algorithm is

shown to be optimal in terms of the number of bidirectional links used forever.

Keywords: distributed computing, fault-tolerance, Consensus, failure detector, partial

synchrony.

1 Introduction

The concept of unreliable failure detector was introduced by Chandra and Toueg in [7]. They

showed how unreliable failure detectors can be used to solve the Consensus problem [35] in

asynchronous systems. (This was shown to be impossible in a pure asynchronous system

by Fischer et al. [14].) They also showed in [6] that one of the classes of failure detectors

they defined, namely the Eventually Strong (3S) class, is the weakest allowing to solve

Consensus in an asynchronous system with a majority of correct processes. In fact, the

Eventually Weak failure detector class, denoted 3W , is presented as the weakest one for

solving Consensus. However, Chandra and Toueg have shown in [7] that 3S and 3W

are equivalent in asynchronous systems with reliable channels. Since then, many fault-

tolerant distributed algorithms have been designed based on Chandra-Toueg’s unreliable

failure detectors [15, 19, 31, 36]. Almost all of them consider a system model in which the

failure detector they require is available, i.e., an asynchronous system augmented with a

failure detector, such that the algorithm is designed on top of it. This work addresses a

different problem, namely the implementation of these failure detectors.

From the results of Fischer et al. and those of Chandra and Toueg, it can be derived

the impossibility of implementing failure detectors strong enough to solve the Consensus

problem in a pure asynchronous system. In [7], Chandra and Toueg presented a timeout-

based algorithm implementing an Eventually Perfect (3P ) failure detector —a class strictly

stronger than 3S— in models of partial synchrony [10]. This algorithm is based on all-to-all

communication: each process periodically sends an i-am-alive message to all processes,

in order to inform them that it has not crashed, and thus requires a quadratic number

of messages to be periodically sent. Also, a quadratic number of communication links are

used forever. In [23], Larrea et al. propose more efficient algorithms implementing several
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classes of failure detectors, including 3S and 3P . These algorithms are based on a ring

arrangement of the processes, and require only a linear number of messages to be periodically

sent. Consequently, only a linear number of communication links are used forever.

1.1 Unreliable Failure Detectors

An unreliable failure detector is a mechanism that provides (possibly incorrect) information

about faulty processes. When it is queried, the failure detector returns a set of processes

believed to have crashed (suspected processes). In [7], failure detectors were characterized

in terms of two properties: completeness and accuracy. Completeness characterizes the

failure detector capability of suspecting incorrect processes (processes that have actually

crashed), while accuracy characterizes the failure detector capability of not suspecting correct

processes. In this work, we focus on the following completeness and accuracy properties, from

those defined in [7]:

• Strong Completeness. Eventually every process that crashes is permanently suspected

by every correct process.

• Weak Completeness. Eventually every process that crashes is permanently suspected

by some correct process.

• Eventual Strong Accuracy. There is a time after which correct processes are not sus-

pected by any correct process.

• Eventual Weak Accuracy. There is a time after which some correct process is never

suspected by any correct process.

Note that, in isolation, completeness and accuracy are useless. For example, strong

completeness can be satisfied by forcing every process to permanently suspect every other

process in the system. Similarly, eventual strong accuracy can be satisfied by forcing every

process to never suspect any process in the system. Such failure detectors are clearly useless,

since they provide no information about failures. To be useful, a failure detector must satisfy

some completeness and some accuracy.

Combining in pairs these completeness and accuracy properties, four different failure

detector classes are obtained, which are presented in Figure 1. As previously said, Chandra
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Eventual Strong Accuracy Eventual Weak Accuracy

Eventually Perfect Eventually Strong
Strong Completeness 3P 3S

Eventually Quasi-Perfect Eventually Weak
Weak Completeness 3Q 3W

Figure 1: Four classes of failure detectors defined in terms of completeness and accuracy.

et al. showed in [6] that 3W is the weakest class of failure detectors required for solving

the Consensus problem in an asynchronous system with a majority of correct processes, and

in [7] that classes 3S and 3W are equivalent. For this reason it is said that 3S is the

weakest class of failure detectors for solving Consensus.

It is worth noting here that the equivalence of 3S and 3W does not come for free, i.e.,

not all failure detectors in 3W are in 3S. Instead, it means that any failure detector in

3W can be extended with a simple distributed algorithm to obtain a failure detector in

3S. Since most Consensus algorithms proposed require at least a failure detector of class

3S (e.g., [7, 19, 31, 36]), if the costs of implementing 3S and 3W failure detectors are

similar, it is more efficient to directly implement a failure detector of class 3S, instead

of implementing one of class 3W and running the extension algorithm on top of it. For

example, the extension algorithm proposed in [7] requires a quadratic number of messages

to be periodically exchanged.

The Omega Failure Detector

In their proof of 3W being the weakest class of failure detectors for solving Consensus [6],

Chandra et al. defined a new failure detector class, called Omega (Ω). To prove their result,

Chandra et al. show first that Ω is at least as strong as 3W , and then that any failure

detector D that can be used to solve Consensus is at least as strong as Ω , and hence at

least as strong as 3W . The output of the failure detection module of Ω at a process p is a

single process q, that p currently considers to be correct: p trusts q. A failure detector in Ω

satisfies the following property:

• There is a time after which all the correct processes always trust the same correct

process.
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It is said that Ω provides an eventual leader election functionality.

As with 3W , the output of the failure detection module of a detector in Ω at a process p

may change with time, i.e., p may trust different processes at different times. Furthermore,

at any given time t, two processes p and q may trust different processes. However, note that

the period during which the output of Ω is arbitrary is finite.

It is straightforward to transform a detector in Ω into one in 3W (and 3S) at no

additional communication cost if the system membership is known to all processes (otherwise,

even 3W cannot be implemented [21]). It can be done by forcing each process to suspect

every process in the system except its trusted process. This gives us the completeness and

accuracy properties required by 3W (and 3S). As we will see, the 3S algorithms presented

in this paper follow this strategy.

Observe that while Ω can be transformed into 3W and 3S without any communication,

transforming 3W or 3S into Omega is far from being trivial and requires communication [9,

30]. Therefore, a lower bound result for 3S directly implies a lower bound result for Ω , while

the opposite direction is not true.

1.2 Related Work

In the latest years several authors have investigated the implementation of failure detectors.

A lot of this effort has gone to provide implementations of (a detector in) Omega in the

weakest possible system. (We will often use the name of the failure detector class to denote

a detector of the class. Whether we mean a detector or the whole class shall be clear from

the context.) In [1], Aguilera et al. introduce the notion of stable leader election, and

propose several algorithms implementing Omega in a system where all links to and from

some correct process are eventually timely. (A link is eventually timely if there is a time

GST and a bound δ such that, after GST , all messages sent on the link are received in δ

time.) In [2, 4], they propose an algorithm implementing Omega in a system where only the

output links of an unknown correct process are eventually timely, but in which a quadratic

number of links must carry messages forever. With the additional assumption that some

unknown correct process has all its input and output links fair, Aguilera et al. propose an

algorithm such that eventually only one process, e.g., the leader, sends messages. More

recently, they study in [3] the degree of synchrony required to implement Omega when the
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maximum number of processes that can crash is known. There are other recent papers that

also use some form of eventual timeliness as the system property required to implement Ω

[11, 20, 21, 26].

In [27], Mostéfaoui et al. propose a new look at the implementation of Ω failure detectors,

based on the pattern of message arrivals instead of their timing. The proposed approach

is based on a query/response mechanism and assumes that the query/response messages

exchanged obey a pattern where the responses from some processes to a query arrive among

the first ones. This approach is used in [33] to implement Omega. Furthermore, they show

in [28, 29] that this new approach can be advantageously combined with the classical ap-

proach based on partial synchrony assumptions to implement failure detectors with eventual

accuracy using hybrid protocols. Timing and pattern assumptions have been combined to

implement Ω in [12, 34].

Another line of research has to do with implementing failure detectors with probabilistic

guarantees. Chen et al. study in [8] the quality of service of failure detectors. In [5], Bertier

et al. propose a new probabilistic implementation of a failure detector. This implementation

is a variant of the heartbeat failure detector of [8] which is adaptable and can support scalable

applications. In [13], Fetzer et al. propose a failure detection protocol that relies as much

as possible on application messages to monitor the processes, using control messages only

when no application messages are sent by the monitoring process to the observed process.

In [16], Gupta et al. look at quantifying the optimal network load (in messages per second,

with messages having a size limit) of failure detectors as a function of two application-

specified requirements, (1) quick failure detection, and (2) accuracy of failure detection.

In [18], Hayashibara et al. present a novel approach to adaptive failure detectors, called

ϕ-failure detectors, which dynamically adapt to application requirements as well as network

conditions. In contrast to traditional boolean failure detectors (processes are suspected or

not), a ϕ-failure detector associates a numerical value ϕp to every known process p, which

represents the degree of confidence that process p has crashed.

A preliminary version of this work was presented in [22]. In that version, a stronger partial

synchrony model was assumed, namely that of Dwork et al. [10], and only the first algorithm

was presented. Assuming the same partial synchrony model, in [23, 25] several ring-based

algorithms implementing various classes of failure detectors are proposed, including 3S and

3P . In these algorithms a linear number of bidirectional and unidirectional communication
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links, respectively, are used forever (n links if no process crashes, which is optimal for 3P

and unidirectional links). In [24], an algorithm transforming the failure detector class 3C

into 3P is presented. The 3C class can be viewed as the combination of classes 3S and

Omega. The transformation uses 3C as a black box, and assumes partially synchronous

communication from every process to the leader, and fair communication from the leader to

the rest of processes.

1.3 Our Contributions

In this paper, we propose three algorithms that implement failure detectors in partially

synchronous systems. Two algorithms implement detectors in the class 3S, while the third

one implements a detector in the class 3P .

As said above, two algorithms implementing 3S in a system with weak synchrony are

first presented. Both algorithms guarantee that eventually all the correct processes agree

permanently on a common correct process, i.e., they implement the Omega failure detector.

Then, by not suspecting this common correct process, they obtain the accuracy required by

3S. Moreover, by suspecting all the other processes, they trivially obtain the completeness

required by 3S. The differences between both 3S algorithms are the system requirements

to be correct, and the fact that the first one works with up to n− 1 failures (i.e., it is wait

free), while the second one works if up to f processes can crash (and the processes know it).

We show that they are both optimal in terms of the number of communication links used

forever.

Then, a wait-free algorithm that implements a failure detector of class 3P is presented.

The algorithm builds on the wait-free 3S detector, using the eventually agreed correct

process. We show that the algorithm is optimal on the number of bidirectional links used

forever.

More specifically, the contributions of this paper are:

• A wait-free algorithm that implements 3S, by implementing Omega, in a system in

which the output links of the correct process with smallest identifier are eventually

timely. We show that the maximum number of links that carry messages forever with

this algorithm, n− 1, is in fact optimal.

• An algorithm that implements 3S, by implementing Omega, in a system in which up
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to f processes can fail, with f ≤ n−1. The algorithm requires that the links connecting

the correct process with smallest identifier to the rest among the f + 1 with smallest

identifiers are eventually timely, and the availability of a reliable broadcast service.

(A simple way to implement reliable broadcast is by message diffusion, see [7], in a

system with reliable communication paths between every pair of correct processes.)

The number of links that carry messages forever with this algorithm is at most f ,

which is shown to be optimal.

• A wait free algorithm that implements 3P in a system in which the bidirectional (input

and output) links of the correct process with smallest identifier are eventually timely.

The number of bidirectional links that carry messages forever is at most n − 1 with

this algorithm, which is shown to be optimal.

It is interesting to compare these results with other results in the literature. For instance,

looking at our first algorithm, Aguilera et al. [2, 4] showed that it is possible to implement

Omega if any process has its output links eventually timely, but at a cost of a quadratic

number of links carrying messages forever. To reduce this number of links to n − 1 the

additional assumption of a fair-hub (a node with all links fair) was made. In this paper

the additional assumption restricts which is the process whose output links are eventually

timely. Similarly, considering our second algorithm, Aguilera et al. [3] implement Omega in

a system with fair links (which is known to be equivalent to reliable links) and some process

whose output links with f processes are eventually timely. Again this comes at the cost

of more than f links carrying messages forever. Considering the third algorithm, Larrea et

al. [23] and Aguilera et al. [1] have algorithms that implement 3P and have n bidirectional

links carrying messages forever. This value is reduced here to n − 1. Observe that, if

(uni)directional links are considered, 3P can be implemented even if only n directional links

carry messages forever [25].

1.4 Roadmap

The rest of the paper is organized as follows. In Section 2, we describe the system model

and discuss different approaches in order to implement failure detectors. In Section 3, we

present two optimal algorithms implementing a failure detector of class 3S. In Section 4, we

8



present an optimal algorithm implementing a failure detector of class 3P . Finally, Section 5

concludes the paper.

2 The Model

2.1 System Model

We consider a distributed system consisting of a finite set Π of n processes, Π = {p1, p2, . . . , pn},
that communicate only by sending and receiving messages. Every pair of processes (pi, pj)

is assumed to be connected by two directed communication links (pi → pj) and (pj → pi),

seen also as a bidirectional communication link. We also assume that processes are totally

ordered. Without loss of generality, process pi is preceded by processes p1, . . . , pi−1, and

followed by processes pi+1, . . . , pn.

Processes can fail by crashing, that is, by prematurely halting. Crashes are permanent,

i.e., crashed processes do not recover. In every run of the system we identify two complemen-

tary subsets of Π: the subset of processes that do not fail, denoted correct , and the subset

of processes that do fail, denoted crashed . We assume that the number of correct processes

in the system in a given run is at least one, i.e., |correct | ≥ 1.

In the three algorithms presented in this paper, the correct process with smallest identifier

is always chosen to have a special role. For that reason we call it the leader process and use

a special notation for it.

Definition 1 pleader is the correct process with smallest identifier, i.e., leader = min{i : pi ∈
correct}.

In this regard, we consider asymmetric leader election: always the correct process with

the smallest identifier is finally elected. This is not true with other Omega protocols, in

which the result depends on the number of suspicions. Moreover, our optimality results are

only for this kind of asymmetric protocols.

We use f to denote the maximum number of processes that can crash in any run of the

system. If nothing is specified, we assume f = n−1. The set of f+1 processes with smallest

identifiers will be denoted as Pf .
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We consider a variant of the model of partial synchrony proposed by Chandra and Toueg

in [7], which is an adaptation of the models proposed by Dwork et al. in [10]. This model

stipulates that, in every run of the system, there is an upper bound on processing delay,

defined as the time from the reception of a message to the time the message is processed

and (potentially) new messages are sent out. Additionally, some links are eventually timely,

which means that there is a bound δ on message transmission times on the links. These

bounds are not known and they hold only after some unknown but finite time (called GST

for Global Stabilization Time). To simplify the proofs, we will consider that the bound δ

includes both the transmission and processing time of any message sent after GST. This

can be done without loss of generality due to the upper bound on processing delay. Unless

otherwise said, a link that is not eventually timely can be asynchronous and/or lossy.

Each of the three algorithms presented has a different set of timing and reliability re-

quirements from the links of the underlying system. We define them as properties here.

First, the wait-free 3S algorithm requires the following property from the system.

Property 1 All the output links of pleader are eventually timely.

The f -resilient 3S algorithm requires the following property.

Property 2 All the output links of pleader to the rest of processes in Pf are eventually timely,

and a reliable broadcast service is available.

The reliable broadcast service guarantees that a message that has been broadcast will be

delivered by all correct processes or none. More precisely, it guarantees that all correct pro-

cesses deliver the same set of messages. This set includes at least all messages broadcast by

correct processes. To provide the reliable broadcast service it is enough to have reliable (or

even fair lossy) links. The access to the reliable broadcast service is done with two primi-

tives, R-broadcast(m) which broadcasts message m in a reliable fashion, and R-deliver(m)

which delivers message m. Formally, the reliable broadcast service satisfies the following

properties [17]:

• Validity. If a correct process R-broadcasts a message m, then it eventually R-delivers

m.

• Agreement. If a correct process R-delivers a message m, then all correct processes

eventually R-deliver m.
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• Uniform integrity. For any message m, every process R-delivers m at most once, and

only if m was previously R-broadcast by some process.

Finally, the wait-free 3P algorithm requires the following property from the system.

Property 3 All the bidirectional links of pleader are eventually timely.

All the algorithms presented in this paper assume that a local clock that can accurately

measure real-time intervals is available to each process. However, clocks are not synchronized.

2.2 Implementation of Failure Detectors

A distributed failure detector can be viewed as a set of n failure detection modules, each

one attached to a different process in the system. These modules cooperate to satisfy the

required properties of the failure detector. Upon request, each module provides its attached

process with a set of processes it suspects to have crashed. These sets can differ from one

module to another at a given time. We denote by suspectedi the set of suspected processes of

the failure detection module attached to process pi. We assume that a process interacts only

with its local failure detection module in order to get the current set of suspected processes.

In this paper, we only describe the behavior of the failure detection modules in order

to implement a failure detector, but not the behavior of the processes to which they are

attached. For this reason, in the rest of the paper we will use the term process instead of

failure detection module. It will be clear from the context if we are referring to the failure

detection module or the process attached to it. However, it is assumed that if a process

crashes, its failure detector module crashes as well, and vice-versa.

Any algorithm implementing a failure detector requires that some processes detect whether

other processes have crashed, and take proper action if so. There are mainly two possible

ways to implement this failure detection: the push model and the pull model. In the push

model, processes are permanently sending i-am-alive messages to the processes in charge

of detecting their potential failure. In the pull model, the later ask the former for such

messages. In any case, the only way a process can show it has not crashed is by sending

messages to other processes.

The algorithms presented in this paper are based on the push model. At any time, at

least one process is sending i-am-alive messages (most of the time we denote them i-am-

the-leader messages) periodically to a subset of the processes in the system. Processes

11



monitor each other by waiting for these periodical i-am-alive messages. To monitor a

process pj, process pi uses an estimated value —timeout— that tells how much time it has

to wait for the i-am-alive message from pj. This time value is denoted by ∆i,j. Then, if

after ∆i,j time pi did not receive the i-am-alive message from pj, it suspects that pj has

crashed. We need to allow these time values to vary over time in our algorithms. We use

∆i,j(t) to denote the value of ∆i,j at time t.

3 Optimal Implementations of 3S

3.1 Wait-free 3S Algorithm

In this section, we present a first algorithm implementing a failure detector of class 3S. The

algorithm works in a system in which up to n−1 processes can fail (i.e., it is wait free). This

algorithm guarantees that eventually all the correct processes converge on the leader process

pleader as a common correct process. This property trivially allows the algorithm to provide

the eventual weak accuracy property required by 3S: eventually, pleader is not suspected by

any correct process. The strong completeness property of 3S is reached by simply making

every process pi suspect all processes in the system except pleader.

Each process pi runs an instance of the algorithm of Figure 2, in which there is a local

variable called trustedi. As we will show, eventually the value of trustedi for each correct

process pi will be the same, and trustedi = leader.

Every process pi, i = 1, . . . , n executes:

trustedi ← 1

∀j ∈ {1, . . . , i− 1} : ∆i,j ← default timeout

cobegin

‖ Task 1: repeat periodically

if trustedi = i then send i-am-the-leader to pi+1, . . . , pn

‖ Task 2: when (trustedi < i) and

(did not receive i-am-the-leader from ptrustedi
during the last ∆i,trustedi

time units)

trustedi ← trustedi + 1

‖ Task 3: when (received i-am-the-leader from pj) and (j < trustedi)

trustedi ← j

∆i,j ← ∆i,j + 1

coend

Figure 2: Wait-free algorithm used to implement a failure detector of class 3S.
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The algorithm of Figure 2 executes as follows. Initially, each process pi starts with

trustedi = 1, which means that p1 will be their first candidate to be the process pleader.

Process p1 starts sending i-am-the-leader messages periodically (i.e., every ∆T1 time

units, with ∆T1 statically defined) to the rest of processes p2, . . . , pn. In general, a process

pi will be sending i-am-the-leader messages periodically to its successors pi+1, . . . , pn if

trustedi = i (Task 1). A process pi such that trustedi 6= i, just waits for periodical i-am-

the-leader messages from the process ptrustedi . If it does not receive an i-am-the-leader

message on time (within some timeout period ∆i,trustedi), then pi suspects that ptrustedi has

crashed and chooses the next candidate to be the process pleader by increasing trustedi by

one (Task 2).

If, later on, a process pi receives an i-am-the-leader message from a process pj, such

that j < trustedi, then pi will stop considering that pj has crashed, and will trust pj again

(by making trustedi = j). In order to prevent this from happening an infinite number of

times, pi also increases the value of the timeout period ∆i,j (Task 3). Moreover, if pi was

sending i-am-the-leader messages periodically, it will automatically stop sending them,

since now trustedi 6= i.

Correctness Proof

We show now that the algorithm of Figure 2, combined with either of the following definitions

of suspectedi (Π−{ptrustedi} or Π−{ptrustedi , pi}), implements a failure detector of class 3S.

The key of the proof is to show that, eventually and permanently, trustedi = leader for every

correct process pi. Thus, with either definition of suspectedi, eventually some correct process

(namely pleader) is never suspected by any correct process, which provides the eventual weak

accuracy property of 3S, and eventually all crashed processes are permanently suspected

by all correct processes, which provides the strong completeness property of 3S.

Recall that it is assumed that Property 1 holds. All time instants considered in the rest

of this section are assumed to be after GST (Global Stabilization Time). We also assume

that, at these instants, all messages sent before GST on eventually timely links have already

been delivered and processed, or lost. These assumptions allow us to consider in the rest

of the section that the unknown bounds on processing delay and on message transmission

times hold (the later only for the messages sent by pleader). We denote by trustedi(t) the
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value of trustedi at time t.

Lemma 1 ∃t0 : ∀t > t0, ∀pi ∈ correct , trustedi(t) ≥ leader.

Proof: Let pi be any correct process. By definition of pleader, eventually all its predecessors,

namely p1, . . . , pleader−1, will crash. Consider a time t′ at which all the predecessors of pleader

have crashed and all their messages have already been delivered and processed (in Task 3)

or lost. Then, if at any time t′′ ≥ t′, trustedi(t
′′) = j < leader, at most ∆i,j(t

′′) time units

later Task 2 will be activated and the variable trustedi will be updated to j + 1. Hence,

there is some time ti ≥ t′ at which trustedi(ti) ≥ leader. Since pi will never receive any

other message from processes p1, . . . , pleader−1 after t′, the variable trustedi will never take a

value below leader (see Task 3). Let t0 = max{ti : pi ∈ correct}. From the above reasoning,

∀t > t0, ∀pi ∈ correct , trustedi(t) ≥ leader. 2

Lemma 2 ∀t > t0, where t0 is the same as in Lemma 1, trustedleader(t) = leader.

Proof: From the initialization of trustedi to 1 and Task 2, ∀t : trustedleader(t) ≤ leader.

From Lemma 1, ∀t > t0, trustedleader(t) ≥ leader. Hence, ∀t > t0, trustedleader(t) = leader.

2

Lemma 3 After t0, the process pleader will be permanently sending i-am-the-leader mes-

sages periodically to all its successors pleader+1, . . . , pn.

Proof: Follows from Lemma 2 and Task 1. 2

Let ∆T1 be the period of Task 1. Also, recall that δ is the maximum time between the

sending of a message by pleader and the delivery and processing at its destination process

(assuming that the destination is correct).

Lemma 4 Let pi ∈ correct : i 6= leader. If at time t′ > t0, trustedi(t
′) > leader, then ∃t′′ :

t′ < t′′ ≤ t′ + ∆T1 + δ and trustedi(t
′′) = leader.

14



Proof: Note that, by definition of pleader, pi has to be a successor of pleader. From Lemma 3,

after time t0 the process pleader is permanently sending i-am-the-leader messages, with a

period of ∆T1, to all its successors, including pi. After t′, the first i-am-the-leader message

will be sent by pleader at time t′+ ∆T1 at the latest. This message takes a maximum time of

δ to be delivered and processed by pi. Hence, at some time t′′ ≤ t′ + ∆T1 + δ, pi will deliver

and process an i-am-the-leader message from pleader. From Lemma 1, trustedi ≥ leader

at t′′, and then from Task 3, trustedi will take the value leader at that time. 2

Lemma 5 Let pi ∈ correct : i 6= leader. After t0, trustedi will change from leader to a

value different from leader a finite number of times.

Proof: Let us assume, by the way of contradiction, that trustedi changes from leader to a

value different from leader an infinite number of times after t0. From Lemma 4, the value

of trustedi will be leader at some time after t0. From Task 2, trustedi changes from leader

to leader + 1 if two i-am-the-leader messages are received by pi more than ∆i,leader time

apart. Note from Task 1 and from the fact that we have a partially synchronous system that

two consecutive i-am-the-leader messages sent by pleader are received and processed by pi

at most ∆T1 + δ time apart. Also, from Lemma 4, the value of trustedi will become leader

again eventually. Every time this happens, from Task 3, the value of ∆i,leader is incremented

by one. Hence, since this will happen an infinite number of times, eventually ∆i,leader will be

larger than ∆T1 + δ. However, after that happens trustedi will never change its value from

leader, which is a contradiction. 2

Theorem 1 ∃t1 : ∀t > t1, ∀pi ∈ correct , trustedi(t) = leader.

Proof: Follows from Lemma 2 for the case i = leader, and from Lemmas 4 and 5 for the

case i 6= leader. 2

Corollary 1 Let suspectedi be defined as either Π−{ptrustedi} or Π−{ptrustedi , pi}, ∀pi ∈ Π.

The algorithm of Figure 2, combined with either of these definitions of suspectedi, implements

a failure detector of class 3S.
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Optimality

In this section, we study the number of communication links used forever by the algorithm.

Observe that, eventually, only pleader sends messages. This means that at most its n − 1

output links carry messages forever.

We prove now that n− 1 is in fact a lower bound on the number of unidirectional links

that carry messages forever in any fault-free execution of a 3S algorithm, if up to n − 1

processes can crash. Hence this algorithm is optimal with respect to this parameter.

Theorem 2 Let A be any (wait-free) algorithm that implements 3S in a system in which

up to n−1 processes can crash. Then, in all fault-free runs of A, at least n−1 unidirectional

links carry messages forever.

Proof: Consider some such algorithm A and assume that it has a fault-free run R in which

no more than n − 2 unidirectional links carry messages after some time T . Then, after T ,

the set of processes can be divided into at least two disjoint non-empty subsets of processes

such that each subset Πk does not communicate anymore with the rest of processes Π \ Πk

(they are permanently disconnected).

From the eventual weak accuracy property, there must be a process p` and a time after

which p` /∈ suspectedi permanently, for each process pi. Let Πj be the subset that contains

p`. Consider a run R′ in which every process behaves exactly like in R except that the

whole set Πj crashes simultaneously after time T . Since Πj is disconnected from the rest

of processes, no process in Π \ Πj notices the failures. Then, since p` is never permanently

suspected by the processes in Π \ Πj, strong completeness is not satisfied. 2

Corollary 2 The algorithm of Figure 2 is optimal on the number of unidirectional links that

carry messages forever among the algorithms that implement 3S in systems with up to n−1

crashes.

3.2 f-Resilient 3S Algorithm

In this section, we present a second algorithm that implements a 3S failure detector. The

main differences of this algorithm with respect to the previous is that it uses the knowledge
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of the maximum number f of processes that can crash to increase the efficiency, and that it

has different requirements from the system.

In fact, this algorithm uses the same approach as the previous one to choose a leader, but

instead of running it on the whole set of processes, it only uses f +1 processes (in particular,

Pf = {p1, ..., pf+1}). This guarantees the existence of at least one correct process (at least

pleader) in such a set. Then, every time a leader is chosen, it is communicated to the rest of

processes, which adopt it as their trusted process. Figure 3 presents the algorithm in detail.

Every process pi, i = 1, . . . , f + 1 executes:

trustedi ← 1; counti ← 0

∀j ∈ {1, . . . , i− 1} : ∆i,j ← default timeout

cobegin

‖ Task 1: repeat periodically

if trustedi = i then send i-am-the-leader to pi+1, . . . , pf+1

‖ Task 2: when (trustedi < i) and

(did not receive i-am-the-leader from ptrustedi during the last ∆i,trustedi time units)

trustedi ← trustedi + 1

if trustedi = i then R-broadcast(new-leader, counti)

‖ Task 3: when (received i-am-the-leader from pj) and (j < trustedi)

∆i,j ← ∆i,j + 1

trustedi ← j

‖ Task 4: when (R-deliver(new-leader, countj) from pj) and ((counti, i) < (countj , j))

counti ← countj + 1

if trustedi = i then R-broadcast(new-leader, counti)

coend

Every process pi, i = f + 2, . . . , n executes:

trustedi ← 1

counti ← 0

cobegin

‖ Task 1: when (R-deliver(new-leader, countj) from pj) and ((counti, trustedi) < (countj , j))

trustedi ← j

counti ← countj

coend

Figure 3: f -resilient algorithm used to implement a failure detector of class 3S.

The difficulty here is to make sure that the communication of leaders to the rest of

processes is done in such a way that correctness is guaranteed. For that, we use the reliable

broadcast service that is available by Property 2. We use reliable broadcast to enforce that

the last message R-delivered by the processes not in Pf was sent by pleader, the process

trusted by all processes in Pf . To do so, processes that believe to be the leader R-broadcast
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a new-leader message to the rest of processes to announce so. We impose an order among

these messages by making them to carry a counter (i.e., a scalar clock for leader proposals),

and breaking ties with the sender’s identifier. (In Figure 3 we assume (counti, i) < (countj, j)

if counti < countj or both counti = countj and i < j.) Processes send such a message when

they become potential leaders (Task 2) or when they are leaders and find that another

process sent a message with larger counter (Task 4). The processes that are not in Pf apply

these messages in increasing order. To prove the correctness of the algorithm we just show

that the last such message, i.e., the message with the highest associated counter, was sent

by pleader.

Correctness Proof

We show now that the algorithm of Figure 3 implements a failure detector of class 3S.

Observe that pleader is always in the set Pf . The algorithm of Figure 3 uses the same

approach to choose a leader as the algorithm of Figure 2, but just among the processes in Pf

instead of the whole set of processes Π. Additionally, Property 2 provides an assumption for

Pf similar to the one that Property 1 provides for Π. Hence, applying a similar reasoning

to that of the algorithm of Figure 2, it is simple to prove that, eventually, all the correct

processes in Pf will permanently agree on the same leader, and that this leader will be pleader.

Hence, the following lemma holds.

Lemma 6 ∃t : ∀t′ > t, ∀pi ∈ correct ∩ Pf , trustedi(t
′) = leader.

In order to prove that the rest of correct processes will also agree permanently on pleader,

we will show that the new-leader message with the largest counter R-delivered to all

correct processes to announce a leader —if any new-leader message is R-delivered— was

sent by pleader.

Lemma 7 If any new-leader message is R-delivered by the correct processes, then the R-

delivered new-leader message with the largest counter was R-broadcast by process pleader.

Proof: Assume by contradiction that the R-delivered new-leader message with the largest

counter was R-broadcast by a process pj with j 6= leader. From the properties of reliable

broadcast, pleader will R-deliver the message. When it does so, it sets countleader to countj+1.
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There are two cases to consider. If pleader had trustedleader = leader when it R-delivered the

message, then it R-broadcasts a new (new-leader, countj + 1) message. If that was not

the case, from Lemma 6, eventually pleader sets trustedleader = leader, and R-broadcasts a

new (new-leader, count) message, with count > countj. In either case, the corresponding

message gets R-delivered, which contradicts the initial assumption. 2

Lemma 8 ∃t : ∀t′ > t, ∀pi ∈ correct, f + 2 ≤ i ≤ n, trustedi(t
′) = leader.

Proof: Follows directly from Lemma 7, if some new-leader message is ever R-delivered.

If no new-leader message is R-delivered, it is because leader = 1, and the claim follows

from the way processes pf+2, . . . , pn (initially) set their trusted process in the algorithm. 2

Theorem 3 Let suspectedi be defined as either Π−{ptrustedi} or Π−{ptrustedi , pi}, ∀pi ∈ Π.

The algorithm of Figure 3, combined with either of these definitions of suspectedi, implements

a failure detector of class 3S.

Proof: Follows directly from Lemma 6 and Lemma 8. 2

Optimality

Observe in the algorithm of Figure 3 that, once the last (if any) new-leader message is

R-delivered, all the messages sent are from pleader to the rest of processes in Pf . Then, at

most f links carry messages forever. We prove now that f is in fact a lower bound on the

number of links that carry messages forever in any fault-free execution of a 3S algorithm if

up to f processes can crash. Hence this algorithm is optimal with respect to this parameter.

Theorem 4 Let A be any algorithm that implements 3S in a system in which up to f

processes can crash. Then in all fault-free runs of A at least f links carry messages forever.

Proof: Consider some such algorithm A and assume that it has a fault-free run R in which

no more than f − 1 links carry messages after some time T . Then, after T , the set of

processes can be divided into at least n− f + 1 disjoint non-empty subsets of processes such
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that each subset Πk does not communicate anymore with the rest of processes Π \Πk (they

are permanently disconnected). Observe that no subset has size larger than n− (n−f) = f .

From the eventual weak accuracy property, there must be a process p` and a time after

which p` /∈ suspectedi permanently, for each process pi. Let Πj be the subset that contains

p`. Consider a run R′ in which every process behaves exactly like in R except that the

whole set Πj crashes simultaneously after time T . Since Πj is disconnected from the rest

of processes, no process in Π \ Πj notices the failures. Then, since p` is never permanently

suspected by the processes in Π \ Πj, strong completeness is not satisfied. 2

Corollary 3 The algorithm of Figure 3 is optimal on the number of links that carry messages

forever among the algorithms that implement 3S in systems with up to f crashes.

4 Wait-free 3P Algorithm

In this section, we propose an algorithm implementing a failure detector of the Eventually

Perfect class (3P ). This algorithm successfully exploits the eventual leader election property

of the wait-free 3S algorithm of the previous section, and extends it with a periodic com-

munication between every non-leader process and its leader process. As there is eventually

a unique and correct leader, it can be used to build and propagate a global set of suspected

processes satisfying the properties of 3P .

Figure 4 presents the algorithm in detail, which works as follows. Each leader process

(i.e., each process that trusts itself) builds a local set of suspected processes by using timeouts

(Tasks 2, 4 and 5), and sends its set periodically to the rest of processes (Task 1). Con-

currently, each non-leader process periodically sends an i-am-alive message to its trusted

process (Task 1). Finally, when a process receives a set of suspected processes from its

trusted process, it adopts this set as its own set (Task 3).

While the algorithms implementing 3S of the previous section require that, eventually,

the bound on message transmission times holds only for the output links of the leader

process to the rest of correct processes (in the case of the second algorithm, to the rest

of correct processes in Pf ), this algorithm requires that the bound holds also for the links

(pi → pleader), for every correct process pi (except pleader). Not surprisingly, the fact that
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Every process pi, i = 1, . . . , n executes:

trustedi ← 1

suspectedi ← ∅ {suspectedi provides the properties of 3P}
∀j ∈ {1, . . . , n} : ∆i,j ← default timeout{∆i,j , j < i are used to eventually agree on a common leader process}

{∆i,j , j > i are used by the leader to build the set of suspected processes}
cobegin

‖ Task 1: repeat periodically

if trustedi = i then

send (i-am-the-leader, suspectedi) to pi+1, . . . , pn

else

send i-am-alive to ptrustedi

‖ Task 2: when (trustedi < i) and (did not receive (i-am-the-leader, suspectedtrustedi
) from ptrustedi

during the last ∆i,trustedi time units)

trustedi ← trustedi + 1

if trustedi = i then suspectedi ← {p1, . . . , pi−1}
‖ Task 3: when (received (i-am-the-leader, suspectedj) from pj) and (j ≤ trustedi)

if j < trustedi then

trustedi ← j

∆i,j ← ∆i,j + 1

suspectedi ← suspectedj

‖ Task 4: when (trustedi = i) and (did not receive i-am-alive from pj during the last ∆i,j time units)

and (j > i)

suspectedi ← suspectedi ∪ {pj}
‖ Task 5: when (trustedi = i) and (received i-am-alive from pj) and (pj ∈ suspectedi)

suspectedi ← suspectedi − {pj}
∆i,j ← ∆i,j + 1

coend

Figure 4: Wait-free algorithm implementing 3P .

the class 3P of failure detectors is strictly stronger than 3S is reflected in this stronger

synchrony requirement.

Correctness Proof

We show now that the algorithm of Figure 4 implements a failure detector of class 3P . Note

first that, concerning the management of the trustedi variable, the first three tasks of the

algorithm of Figure 4 are equivalent to the three tasks of the algorithm of Figure 2. Note

also that the rest of the algorithm of Figure 4 does not affect the trustedi variable. Hence

the following observation.

Observation 1 Theorem 1 holds with the algorithm of Figure 4.
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This theorem states that eventually all the correct processes will permanently trust the same

correct process pleader. All the time instants considered in the rest of the proof are greater

than t1, as defined in Theorem 1. We also assume that all the incorrect processes have

already crashed, and all their messages have already been delivered and processed or lost.

Lemma 9 Eventually every process that crashes is permanently suspected by pleader.

Proof: Let pj be a process that crashes. There are two cases to consider: (1) j < leader,

and (2) j > leader. In case (1), by Task 2 pleader will include pj in its set of suspected

processes as soon as it trusts itself. In case (2), due to its crash, pj will stop sending i-

am-alive messages. From Task 4, pleader will eventually include pj in its set of suspected

processes. For pj to be removed from that set of suspected processes, pleader has to receive

an i-am-alive message from pj. Since pj has crashed, this will not happen, and thus pleader

will permanently suspect pj. 2

Let ∆T1 be the period of Task 1. Also, since Property 3 holds, recall that δ is the

maximum time between the sending of a message by pleader and the delivery and processing

by its destination process (assuming that the destination is correct), as well as the maximum

time between the sending of a message by the rest of correct processes to pleader and the

delivery and processing by pleader.

Lemma 10 Let pi ∈ correct , i 6= leader: pleader will suspect process pi a finite number of

times.

Proof: Let us assume, by the way of contradiction, that pleader suspects pi an infinite number

of times. From Task 1 and Theorem 1, pi will eventually and permanently send i-am-alive

messages periodically to pleader. From Task 5, each time that pi is incorrectly suspected by

pleader (in Task 4), pleader will eventually stop suspecting pi, incrementing its timeout value

∆leader,i. Hence, since this will happen an infinite number of times, eventually ∆leader,i will

be larger than (∆T1 + δ). However, after that happens pleader will no more suspect pi, which

is a contradiction. 2

Lemma 11 There is a time after which no correct process is suspected by pleader.
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Proof: Since a process never suspects itself, the lemma directly applies to the process pleader

itself. For the rest of correct processes, it follows directly from Lemma 10 and the fact that

by the algorithm (Tasks 1, 4, and 5) all the incorrect suspicions made by pleader are eventually

corrected. 2

Lemma 12 Eventually every correct process will permanently agree with pleader in the set of

suspected processes.

Proof: From Task 1, pleader will send periodically its set of suspected processes to every

correct process. Let pj be a correct process. From Task 3 and Theorem 1, pj will receive

periodically the set of suspected processes of pleader, adopting it as its own set of suspected

processes. 2

Theorem 5 The algorithm of Figure 4 implements a failure detector of class 3P .

Proof: From Lemmas 9, 11, and 12, eventually every process that crashes is permanently

suspected by every correct process (Strong Completeness), and there is a time after which

correct processes are not suspected by any correct process (Eventual Strong Accuracy). This

gives us the two properties of 3P . 2

Optimality

The algorithm of Figure 4 has at most n− 1 bidirectional links that carry messages forever,

i.e., the input and output links of the leader process. We prove now that, if only bidirectional

links are available, n − 1 is in fact a lower bound on the number of bidirectional links that

carry messages forever in any fault-free execution of a 3P algorithm if up to n− 1 processes

can crash. Hence this algorithm is optimal with respect to this parameter. Note however

that the optimality is only about bidirectional links. If we count each bidirectional link as

two unidirectional links, the algorithm is not optimal.

Theorem 6 Let A be any algorithm that implements 3P in a system in which up to n− 1

processes can crash. Assume that only bidirectional links are available. Then, in all fault-free

runs of A at least n− 1 bidirectional links carry messages forever.
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Proof: The proof is almost verbatim to that of Theorem 2. 2

Corollary 4 The algorithm of Figure 4 is optimal on the number of bidirectional links that

carry messages forever among the algorithms that implement 3P in systems with up to n−1

crashes.

5 Conclusion

In this paper, we have presented two algorithms implementing 3S, the weakest failure

detector class for solving Consensus. We have also presented an algorithm implementing

a failure detector of class 3P . Our algorithms are optimal in terms of the number of

communication links used forever.

Comparing to other algorithms that implement 3S, it may seem that our 3S algorithms

have a big loss of accuracy, because all processes except one are systematically suspected.

However, the fact that eventually all the processes agree on a leader process can be very help-

ful to solve Consensus more efficiently, i.e., in less rounds, than existing previous algorithms

for 3S [24, 32].
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