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This paper presents a new algorithm implementing the Omega failure detector in the
crash-recovery model. Contrary to previously proposed algorithms, this algorithm does
not rely on the use of stable storage and is communication-efficient, i.e., eventually
only one process (the elected leader) keeps sending messages. The algorithm relies on a
nondecreasing local clock associated with each process. Since stable storage is not used to
keep the identity of the leader in order to read it upon recovery, unstable processes, i.e.,
those that crash and recover infinitely often, output a special ⊥ value upon recovery, and
then agree with correct processes on the leader after receiving a first message from it.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

A fundamental problem in fault-tolerant distributed
computing is the consensus problem [30]. Roughly speak-
ing, consensus allows a set of processes to decide on a
common value that has necessarily been proposed by one
of them. The importance of consensus relies on the fact
that other agreement problems like group membership
and totally ordered broadcast can be reduced to some form
of consensus, and hence solutions to these problems can
be built on top of a consensus algorithm.

Since Fischer et al. showed the impossibility of solv-
ing consensus deterministically in asynchronous systems
if at least one process can crash [13], several ways of
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circumventing this impossibility result have been studied.
One of the most successful approaches, proposed by Chan-
dra and Toueg in [7], consists in augmenting the asyn-
chronous system with an unreliable failure detector, which
provides (possibly incorrect) information about process
failures. The completeness and accuracy properties satis-
fied by Chandra–Toueg’s unreliable failure detectors give
enough information to solve consensus. Moreover, with
Hadzilacos they showed in [6] that a failure detector called
Omega is the weakest failure detector for solving consen-
sus. Informally, Omega provides an eventual leader elec-
tion functionality, i.e., eventually all processes agree on a
common correct process. Omega, or a similar weak leader
election mechanism, is at the heart of several consensus
algorithms that have been proposed [14,16,18,27].

A lot of algorithms implementing Omega in the crash
model, i.e., in which a crashed process does not recover,
have been proposed [2–5,8,10–12,15,17,20,24–26,28,29].
They differ in aspects like the communication reliability
and synchrony assumptions (e.g., the number of eventu-
ally timely and of fair lossy links), the communication
pattern among processes (all-to-all, logical ring, rotating
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star, etc.), and the initial knowledge or not of the mem-
bership. In some of these algorithms, eventually only one
process (the elected leader) keeps sending messages pe-
riodically to the rest of processes. Such an algorithm is
said communication-efficient [3], or more recently, quies-
cent [19].

Failure detection has also been studied in the crash-
recovery model, i.e., in which a crashed process can re-
cover (even infinitely often). Aguilera et al. defined in [1]
an adaptation of the �S failure detector to the crash-
recovery model, proposing an algorithm implementing it
in partially synchronous systems [7,9]. Regarding specific
algorithms implementing Omega in the crash-recovery
model, Martín et al. have proposed in [22,23] several
Omega algorithms that rely on the use of stable storage to
keep, among other informations, the identity of the leader
and a local incarnation number associated with each pro-
cess, while Martín and Larrea have proposed in [21] an
Omega algorithm that does not use stable storage. These
algorithms either rely on a message forwarding mecha-
nism and/or have a permanent all-to-all communication
pattern, and hence require a high number of messages
to be exchanged. Recently, Larrea and Martín have pro-
posed in [19] two more efficient Omega algorithms, one of
which uses stable storage and is quiescent, i.e., eventually
only one process keeps sending messages, while the other
one does not use stable storage and is near-quiescent, i.e.,
eventually only one correct process keeps sending mes-
sages.2

In this work we present a simple and communication-
efficient Omega algorithm in the crash-recovery model
which does not rely on the use of stable storage but on
a nondecreasing local clock associated with each process.
With this algorithm, correct processes, i.e., those that even-
tually remain up forever, will eventually and permanently
agree on the same correct process �. Moreover, eventually
� will be the only process that keeps sending messages
to the rest of processes. Regarding unstable processes, i.e.,
those that crash and recover infinitely often, since stable
storage is not used they must “learn” from some other
process(es) — actually, from � — the identity of the leader
upon recovery. In this regard, we make unstable processes
not trust any process upon recovery, i.e., output a special
value ⊥, until either they trust the leader or crash.

2. System model

We consider a system S composed of a finite and to-
tally ordered set Π = {p1, p2, . . . , pn} of n > 1 processes
that communicate only by sending and receiving messages.
We also use p, q, r, etc. to denote processes. Every pair of
processes is connected by two unidirectional communica-
tion links, one in each direction.

Processes can only fail by crashing. Crashes are not per-
manent, i.e., crashed processes can recover. In every execu-
tion of the system, Π is composed of the following three

2 The small difference between a quiescent Omega algorithm and a
near-quiescent Omega algorithm is that in the latter, besides the leader,
unstable processes can send messages forever.
disjoint subsets [22]: (1) eventually up, i.e., processes that
eventually remain up forever, (2) eventually down, i.e., pro-
cesses that eventually remain crashed forever, and (3) un-
stable, i.e., processes that crash and recover an infinite
number of times. By definition, eventually up processes are
correct, while eventually down and unstable processes are
incorrect. We assume that the number of correct processes
in the system in any execution is at least one.

Processes are synchronous, i.e., there is an upper bound
on the time required to execute an instruction. For sim-
plicity, and without loss of generality, we assume that local
processing time is negligible with respect to message com-
munication delays.

Each process has a nondecreasing local clock that can
measure intervals of time with a bounded drift (the bound
is unknown). The clocks of the processes are not synchro-
nized. We assume that clocks continue running despite the
crash of processes.

Communication links cannot create or alter messages,
and are not assumed to be FIFO. Concerning timeliness
or loss properties, we consider the following types of
links [3]: (1) eventually timely links, where there is an un-
known bound δ on message delays and an unknown global
stabilization time T , such that if a message is sent at a
time t � T , then this message is received by time t +δ, and
(2) lossy asynchronous links, where there is no bound on
message delay, and the link can lose an arbitrary number
of messages (possibly all). Note however that every mes-
sage that is not lost is eventually received at its destina-
tion. More precisely, we assume that for every correct pro-
cess p, there is an eventually timely link from p to every
correct and every unstable process. The rest of links of S ,
i.e., the links from/to eventually down processes and the
links from unstable processes, can be lossy asynchronous.

Finally, the Omega failure detector, adapted to system S ,
satisfies the following property [21]: there is a time after
which (1) every correct process always trusts the same cor-
rect process �, and (2) every unstable process, when up, always
trusts either ⊥ (i.e., it does not trust any process) or �. More pre-
cisely, upon recovery it trusts first ⊥, and — if it remains up for
sufficiently long — then � until it crashes.

3. The algorithm

In this section, we present a communication-efficient
algorithm implementing Omega in system S without using
stable storage. Fig. 1 presents the algorithm in detail. The
process chosen as leader by a process p, i.e., trusted by p,
is held in a variable leaderp , which is initialized to the spe-
cial value ⊥, indicating that no process is trusted by p yet.
Every process p also has a Timeoutp variable used to set a
timer with respect to its current leader, initialized to the
value returned by the local clock clock(), as well as two
timestamps tsp and tsmin, initialized to clock() and to tsp ,
respectively. Note that the initialization part of the algo-
rithm is executed by p at each recovery.

The algorithm, which is composed of three concurrent
tasks that are started at the end of the initialization, works
as follows. In Task 1, p first waits Timeoutp time units, af-
ter which if p still has no leader, i.e., leaderp = ⊥, then p
sets leaderp to p. Otherwise, p resets timerp to Timeoutp
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Every process p executes the following:

Initialization:
leaderp ← ⊥
Timeoutp ← clock()

tsp ← clock()
tsmin ← tsp

start tasks 1, 2 and 3

Task 1:
wait (Timeoutp ) time units
if leaderp = ⊥ then

leaderp ← p
else

reset timerp to Timeoutp

end if
repeat forever every η time units

if leaderp = p then
send (LEADER, p, tsp ) to all processes except p

end if

Task 2:
upon reception of (LEADER,q, tsq ) do

if (tsq < tsmin)
or [(tsq = tsmin) and (leaderp = ⊥) and (q < p)]
or [(tsq = tsmin) and (leaderp �= ⊥) and (q � leaderp )] then

leaderp ← q
tsmin ← tsq

reset timerp to Timeoutp

end if

Task 3:
upon expiration of timerp do

Timeoutp ← Timeoutp + 1
leaderp ← p
tsmin ← tsp

Fig. 1. Communication-efficient Omega algorithm in the crash-recovery
model.

in order to monitor its current leader. Then, p enters a
permanent loop in which every η time units it checks if
it is the leader, i.e., leaderp = p, in which case p sends a
(LEADER, p, tsp) message to the rest of processes.

Task 2 is activated whenever p receives a (LEADER,q, tsq)
message from another process q. Observe that this task
is active during p’s waiting instruction of Task 1. The re-
ceived message is taken into account if either (1) tsq <

tsmin, i.e., q has recovered earlier than p’s current leader,
(2) (tsq = tsmin) and (leaderp = ⊥) and (q < p), i.e., p has
no leader yet and q is a good candidate, or (3) (tsq = tsmin)
and (leaderp �= ⊥) and (q � leaderp), i.e., q is a better can-
didate than leaderp (or q = leaderp). In all these cases p
adopts q as its current leader, setting leaderp to q and
tsmin to tsq , and resets timerp to Timeoutp .

In Task 3, which is activated whenever timerp expires,
p “suspects” its current leader: it increments Timeoutp in
order to avoid premature erroneous suspicions in the fu-
ture, and considers itself as the new leader, setting leaderp

to p and tsmin to tsp .
With this algorithm, the elected leader � will be the

“oldest” correct process, i.e., the process that first recov-
ers definitely (using the process identifiers to break ties).
Hence, eventually every correct process will permanently
trust �. Consequently, by Task 1 eventually only one correct
process will keep sending messages. Concerning the be-
havior of unstable processes, the waiting instruction at the
beginning of Task 1 guarantees that, eventually and perma-
nently, unstable processes always receive a first (LEADER,

�, ts�) message from � before the end of the waiting,
changing their leader from ⊥ to � in Task 2. Moreover,
the initialization of Timeoutp to clock() prevents unstable
processes from disturbing the leader election, because it
ensures that eventually every unstable process u will never
suspect the leader � (since u’s timeout with respect to �

keeps increasing forever, and hence eventually timeru will
never expire). By the previous, it is simple to see that the
algorithm is communication-efficient, i.e., eventually only
one process (the elected leader �) keeps sending messages.

Correctness proof

We show now that the algorithm of Fig. 1 implements
Omega in system S , and that it is communication-efficient.

Lemma 1. Any message (LEADER, p, tsp), p ∈ Π , eventually
disappears from the system.

Proof. A message m cannot remain forever in a link, since
it remains at most T + δ time in an eventually timely link,
and is lost or eventually received in a lossy asynchronous
link. Also, m cannot remain forever in the destination pro-
cess, since processes are assumed to be synchronous. Then,
the destination process will eventually by Task 2 either
take m into account or drop it. Hence, m will eventually
disappear from the system. �

For the rest of the proof we will assume that any time
instant t is larger than t1 > t0, where:

(1) t0 is a time instant that occurs after the stabiliza-
tion time T (i.e., t0 > T ), and after every eventually
down process has definitely crashed, every correct (i.e.,
eventually up) process has definitely recovered, and
every unstable process has a clock value bigger than
tsp for every correct process p, i.e., ∀u ∈ unstable,
∀p ∈ correct: tsu > tsp ,

(2) and t1 is a time instant such that all messages sent be-
fore t0 have disappeared from the system (this even-
tually happens from Lemma 1). In particular, this in-
cludes (a) all messages sent by eventually down pro-
cesses, (b) all messages sent by correct processes be-
fore recovering definitely, and (c) all messages sent by
every unstable process u with tsu � tsp , for every cor-
rect process p.

Let be � the correct process with the smallest value for
its ts variable, i.e., the correct process that first recovers
definitely. If two or more correct processes have the same
final value for their ts variables, then let � be the pro-
cess with smallest identifier among them. We will show
that eventually and permanently (1) for every correct pro-
cess p, leaderp = �, and (2) for every unstable process u,
either leaderu = ⊥ or leaderu = �.

Lemma 2. Eventually and permanently, leader� = �.

Proof. By the algorithm, the only way for process � to
have as leader another process q is by receiving an “ac-
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ceptable” message from it in Task 2. However, it is sim-
ple to see that such a scenario cannot happen, since any
(LEADER,q, tsq) message that � can receive necessarily has
either (1) tsq > tsmin = ts� at �, or (2) tsq = tsmin at � and
q > �, and hence is discarded in Task 2. As a result, eventu-
ally and permanently process � considers itself the leader,
i.e., leader� = �. �
Lemma 3. Eventually and permanently, process � will periodi-
cally send a (LEADER, �, ts�) message to the rest of processes.

Proof. Follows directly from Lemma 2 and the algo-
rithm. �
Lemma 4. Eventually and permanently, for every correct pro-
cess p, leaderp = �.

Proof. Follows from Lemma 2 for process �. Let be any
other correct process p. By Lemma 2 and Task 1 of the al-
gorithm, � will periodically send a (LEADER, �, ts�) message
to the rest of processes, including p. By the fact that the
communication link between � and p is eventually timely,
by Task 2 p will receive the message in at most δ time
units, and take it into account, setting leaderp to � and
tsmin to ts� , and resetting timerp to Timeoutp . Observe that
timerp can expire a finite number of times, since by Task 3
every time it expires p increments Timeoutp . Hence, even-
tually by Task 2 p will receive a (LEADER, �, ts�) message
from � periodically and timely, i.e., before timerp expires.
After this happens, p will not change leaderp to a value
different from � any more. �
Lemma 5. Eventually and permanently, every correct process
p �= � will not send any more messages.

Proof. Follows directly from Lemma 4 and the algorithm.

Lemma 6. Eventually, every unstable process u will not send
any more messages, and leaderu will be either ⊥ or � forever.

Proof. By Lemma 2 and Task 1 of the algorithm, � will
periodically send a (LEADER, �, ts�) message to the rest of
processes, including u. By the facts that (1) the communi-
cation link between � and u is eventually timely, and (2) u
waits clock() time units at the beginning of Task 1, eventu-
ally by Task 2 u will always receive a first (LEADER, �, ts�)
message from � before the end of the waiting instruction
of Task 1. Upon reception of that message, and since nec-
essarily ts� < tsmin at process u at that instant, u adopts
� as its leader, changing the value of leaderu from ⊥ to �.
Moreover, by the fact that u initializes Timeoutu to clock(),
eventually timeru will not expire any more. After this hap-
pens, u will not send any more messages. Also, the value
of leaderu will be either ⊥ or � forever. �
Theorem 1. The algorithm of Fig. 1 implements Omega in sys-
tem S.

Proof. Follows directly from Lemmas 2, 4 and 6. �
Theorem 2. The algorithm of Fig. 1 is communication-efficient.

Proof. Follows directly from Lemmas 3, 5 and 6. �
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