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Failure detectors have been shown to be a very useful mechanism to solve the consensus
problem in the crash failure model, for which a number of communication-efficient
algorithms have been proposed. In this paper we deal with the definition, implementation
and use of communication-efficient failure detectors in the general omission failure
model, where processes can fail by crashing and by omitting messages when sending
and/or receiving. We first define a new failure detector class for this model in terms of
completeness and accuracy properties. Then we propose an algorithm that implements a
failure detector of the proposed class in a communication-efficient way, in the sense that
only a linear number of links are used to send messages forever. We also explain how the
well-known consensus algorithm of Chandra and Toueg can be adapted in order to use the
proposed failure detector.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Consensus is one of the fundamental problems in fault-
tolerant distributed computing [1]. However, it was proven
in [2] that consensus cannot be solved deterministically in
an asynchronous system where at least one process may
fail by crashing. In order to circumvent this impossibility
result, Chandra and Toueg proposed in [3] the concept of
unreliable failure detector as a modular device attached to
each process which provides (maybe erroneous) informa-
tion about process failures. One of its main advantages is
that it abstracts the notion of time, so that protocols built
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on top of it, e.g., consensus, can be designed as if they ex-
ecuted in an asynchronous system. Although failure detec-
tors have been widely studied in systems where processes
may only crash, there are few works about failure detectors
in the general omission model, where, in addition to crash-
ing, processes may also fail by omitting messages when
sending and/or receiving [4]. The general omission model
covers situations in which buffers overflow, processes have
restricted capacity for resending, or even malicious behav-
ior. Indeed, as it is shown in [5], the malicious behavior of
processes in the Byzantine failure model can be reduced to
a more benign model of omission failures by using tamper
proof security modules, e.g., smartcards. A generalization
of this idea can be found in [6].

Failure detection in omission environments was first
addressed in [7], and more recently in [8–10], where sev-
eral consensus algorithms based on failure detectors have
been proposed. The failure detector algorithms of [8,9] rely
on piggybacking to cope with transient omissions. The sys-
tem model proposed in [10] allows processes to commu-
nicate indirectly so that more processes can participate
actively in the consensus protocol. All these previously
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proposed algorithms have a permanent all-to-all communi-
cation pattern, which involves a high communication cost.
The reduction of the communication cost has been widely
studied in crash environments. In this regard, communica-
tion efficiency was introduced in [11] as using at most n
links to send messages forever (being n the number of pro-
cesses in the system).

In this work, we propose a new failure detector class
for the general omission model together with a communi-
caion-efficient implementation. The properties of the fail-
ure detector need to be redefined in the general omission
model due to the following issue related to failure detec-
tion in this model. Roughly speaking, if there is a message
omission in the communication between two processes, it
is impossible to reliably blame the faulty process since the
omission could be due to either a send-omission of the
sender or a receive-omission of the receiver and both cases
are indistinguishable. For this reason, instead of trying to
distinguish among correct and faulty processes, we follow
a similar approach as the one in [8–10], looking for pro-
cesses that are correct enough in the sense that they are
able to (1) compute (i.e., they do not crash), and (2) com-
municate with a majority of processes in order to reach
consensus [3]. The main difference is that in this paper
we present a communication-efficient algorithm based on
a bidirectional communication pattern between pairs of
processes. In order to achieve communication efficiency,
we propose a mechanism to pause the communication in
some links as long as processes keep their communication
ability to solve consensus. This communication ability is
represented by the connectivity degree of a process, and is
measured by the number of processes a process is able to
communicate with without omissions.

The proposed communication-efficient failure detector
can be used by the well-known consensus algorithm of
Chandra and Toueg [3] with some adaptations. However,
in the general omission model the implementation of the
failure detector cannot be independent of the messages
sent by the algorithm using it [12]. Indeed, in this model
incorrect processes could arbitrarily stop sending consen-
sus messages while they continue sending failure detector
messages. To cope with such a behavior, we propose to in-
sert consensus messages into failure detector messages, as
it is done in [10]. A different approach, followed in [13],
consists in abandoning the modular design provided by
failure detectors and in using instead timers directly in the
consensus algorithm.

1.1. Contributions

In this paper we first give a new definition of the
completeness and accuracy properties of a failure detec-
tor class for the general omission model, based on process
connectivity. We then propose an algorithm implement-
ing the new failure detector class, and show that it is
communication-efficient in the sense that at most n − 1
bidirectional links are used to send messages forever. We
also describe how the classical consensus algorithm of
Chandra and Toueg for the crash model can be adapted
to work with the proposed failure detector.
2. System model

We model a distributed system as a set of n pro-
cesses Π = {p1, p2, . . . , pn}2 where every pair of processes
is connected by a bidirectional communication link. Con-
cerning timing assumptions, we consider a partially syn-
chronous model in which there are bounds on relative
process speed and message transmission times [14]. More-
over, these bounds are not known and they hold only after
some unknown but finite time (called GST for Global Sta-
bilization Time). The communication links supporting this
model are also called eventually timely links [15]. How-
ever, we consider that communication links are reliable,
i.e., every message put into a link is eventually received
at the destination (although potentially omitted by the re-
ceiving process). We assume that every process has a local
clock that can measure real-time intervals, although clocks
are not synchronized.

We consider the general omission model, where pro-
cesses can fail either by permanently crashing or by omit-
ting messages. Omission failures can occur either while
sending or while receiving messages, and can be transient,
i.e., a process may temporarily omit messages and later on
reliably deliver messages again. A process is correct if it
does neither crash nor omit any message. Informally, we
say that a process is correct enough, later on defined as
well-connected, if it satisfies the following two conditions:
(1) it does not crash, and (2) it is able to communicate in
both directions and without omissions, either directly or
indirectly, with a majority of processes. Observe that we
are assuming the existence of a majority of well-connected
processes.

2.1. Bidirectional communication: b-link

We use the concept of b-link to represent the state of a
bidirectional link. Given a pair of processes (p,q) ∈ Π ×Π ,
we denote by b-linkp↔q , equivalent to b-linkq↔p , the state
of the bidirectional communication between processes p
and q. At a given time, b-linkp↔q can be in one of the
following three possible states: Active, Paused and Blocked.
When b-linkp↔q is Active, p and q exchange messages peri-
odically (in both directions). Instead, when b-linkp↔q is not
Active, i.e., it is either Paused or Blocked, p and q do not ex-
change messages periodically. An Active b-linkp↔q becomes
Blocked when either the communication between p and q
is not timely or a message is omitted. An Active b-link that
behaves timely and where the processes have not omitted
any message can be paused in order to reduce the commu-
nication cost. Reciprocally, a Paused b-link can be activated
in order to increase the process connectivity. Fig. 1 shows
the state diagram and state transitions for a b-link.

2.2. Well-connectedness

Let G = (V , E) be the undirected graph representing the
system, where vertexes are processes, i.e., V (G) = Π , and
edges are Active b-links, i.e., E = {{p,q} such that b-linkp↔q

2 We will also use p, q, r, etc. to denote processes.
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Fig. 1. State diagram of a b-link.

is Active}. Due to crashes and omissions, G can be a dis-
connected graph with several connected components. All
the processes belonging to a connected component S ⊆ G
can communicate through a path of Active b-links. Thus,
we say that two processes p,q ∈ V (S) are connected.

We assume in our model that every system contains
a connected component S such that |V (S)| � � (n+1)

2 �. We
say that every process p ∈ V (S) is well-connected.

2.3. Failure detector definition

The failure detector definition we propose for the gen-
eral omission model is close to that of an Eventually Per-
fect failure detector for the crash model, denoted �P [3].
Indeed, we adapt the correct/faulty classification of pro-
cesses in the crash model to the well-connected/not well-
connected classification in the general omission model. This
failure detector satisfies the following completeness and
accuracy properties:

• Strong Completeness: eventually every not well-
connected process is permanently considered as not
well-connected by every well-connected process.

• Eventual Strong Accuracy: eventually every well-
connected process is permanently considered as well-
connected by every well-connected process.

2.4. Communication efficiency

We say that an algorithm is communication-efficient in
the general omission model if it uses at most n − 1 bidi-
rectional links to send messages forever. In the previously
defined graph G , the minimum set of edges that connect
all the vertexes, i.e., a spanning tree of G , has n − 1 edges.
If G is a disconnected graph, in each connected component
S ⊆ G with m processes, a spanning tree of S will have
m − 1 edges, so that in the disconnected graph G there
will be less than n − 1 edges.

3. Implementing the failure detector

In this section, we present a communication-efficient
failure detection algorithm satisfying the properties de-
fined in the previous section. First we describe how the
Fig. 2. Undirected graph of b-links (a) and subsequent spanning trees (b).

connectivity of processes is managed in order to get com-
munication efficiency. Then, we get into details to explain
how state transitions are implemented and formal proper-
ties satisfied.

3.1. Achieving communication efficiency

Our failure detection algorithm eventually uses at most
n − 1 Active b-links in order to maintain the n processes
connected, and thus is communication-efficient. To achieve
communication efficiency, every process p locally com-
putes a spanning tree T for the connected component
S ⊆ G that p belongs to, using a deterministic version of
the well known breadth-first search (BFS) algorithm [16].
The input to the BFS algorithm is the connectivity matrix
of p, so every process in the same connected component
eventually computes the same spanning tree. We assume
that our BFS implementation starts with the process with
the smallest identifier within each connected component
and traverses the network in the order of increasing pro-
cess identifier values.

Once a process p obtains the spanning tree T , p looks
up which of its Active b-links should be paused according
to T , i.e., if a b-linkp↔q is in S but not in T its state is set
to Paused. The process in charge of pausing a b-linkp↔q is
always the process with the smallest identifier between p
and q. This way, for each connected component an over-
lay network with m − 1 Active b-links is built, being m the
number of processes in the connected component.

Fig. 2a shows an example of an undirected graph repre-
senting the connectivity of the system in a given execution.
Fig. 2b shows the result of applying the spanning tree al-
gorithm to the graph. Paused links are not shown. Note
that the following b-links are paused: b-link2↔4,b-link3↔5
and b-link4↔5. According to the policy for pausing b-links,
process p2 will pause b-link2↔4, process p3 will pause
b-link3↔5 and process p4 will pause b-link4↔5.

3.2. The algorithm

Fig. 3 presents the proposed failure detection algorithm.
For every process p, a set connectedp stores p’s perception
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Procedure main()1
connectedp ← Π ;2
forall q ∈ Π do3

linkp [q].state ← active;4
linkp [q].buffer ← ∅;5
linkp [q].send-seq ← 1; {next message to be sent to q}6
linkp [q].recv-seq ← 1; {next expected message from q}7
linkp [q].timeout ← default time-out interval;8

forall u ∈ Π do Mp[q][u] ← 1;9
V p[q] ← 0; {version number for every row of Mp }10

|| Task 1: repeat periodically {Sending heartbeats}11
forall q ∈ Π − {p} do12

if linkp[q].state = active then13
send-message(alive, linkp [q].send-seq++, Mp , V p ) to q;14

|| Task 2: repeat periodically {Checking time-outs}15

if

⎛
⎜⎜⎝

linkp [q].state = active and
p has not received (alive, linkp [q].recv-seq,

Mq, Vq) from q 
= p during the last
linkp [q].timeout time units of p’s clock

⎞
⎟⎟⎠ then

16
linkp [q].timeout++;17
change-link-state(q, blocked);18

|| Task 3: when receive a message m (type, id, Mq , Vq ) from q19
{Processing received messages in order}

insert m into linkp[q].buffer;20

while
( ∃ a message m′ with (type, id, Mq , Vq) in

linkp [q].buffer such that id = linkp[q].recv-seq

)
do

21
if linkp[q].state = blocked then22

change-link-state(q, active);23

if type = start and linkp[q].state = paused then24
change-link-state(q, active);25

if type = pause and linkp [q].state = active then26
change-link-state(q, paused);27

forall u ∈ Π − {p} do28
if Vq[u] > V p[u] then29

forall v ∈ Π do Mp [u][v] ← Mq[u][v];30
V p[u] ← Vq[u];31

remove m′ from linkp[q].buffer;32
linkp [q].recv-seq++;33

|| Task 4: when Mp changes do {Check connectivity}34
connectedp ← calculate-set-of-connected-processes(Mp );35

if |connectedp | < � (n+1)
2 � then36

q ← process r with the smallest id such that37
(linkp[r].state = paused) and (r /∈ connectedp );
if q 
= null then38

change-link-state(q, active);39
send-message(start, linkp[q].send-seq++, Mp , V p ) to q;40

candidatesp ← get-redundant-b-links(Mp );41
forall q ∈ candidatesp do42

change-link-state(q, paused);43
send-message(pause, linkp [q].send-seq++, Mp , V p ) to q;44

Procedure change-link-state(q:process-id; newState:state-type)45
linkp [q].state ← newState;46
Mp[p][q] ← (newState = active);47
V p[p]++;48

Fig. 3. The failure detector algorithm.

of the connected component p belongs to, and henceforth
provides the properties of the failure detector. In this re-
gard, if |connectedp| < � (n+1)

2 �, then process p does not
consider itself as well-connected. On the other hand, if
|connectedp| � � (n+1)
2 �, then process p considers itself as

well-connected, as well as all the processes in connectedp .
A b-linkp↔q is implemented by a pair of variables,

linkp[q].state at process p, and linkq[p].state at process q.
For the sake of brevity, in the rest of this section we will
use linkp[q] to refer to linkp[q].state. A Boolean matrix M p

is used by every process p to represent the connectivity of
the whole system. M p represents the adjacency matrix of
an undirected graph where M p[p][q] shows if there is an
edge between p and q. If M p[p][q] = M p[q][p] = 1 then
b-linkp↔q is Active, while if M p[p][q] = M p[q][p] = 0 then
b-linkp↔q is non-Active (either Paused or Blocked).

The algorithm is based on the periodical exchange of
heartbeat messages. Every message sent by p carries M p

as well as a version number V p[q] for each row q of the
matrix. A process p updates M p whenever a b-linkp↔q , for
any q, changes. Also, p updates M p from the matrix Mq

carried by every message received from q (in this case,
vectors V p and Vq are compared in order to get the most
up-to-date information regarding the connectivity of the
system).

We now describe the four main tasks that the algo-
rithm executes. In Task 1, every process p periodically
sends an alive message through each one of its Active b-
links. In order to detect message omissions, every message
that p puts into a link has an associated sequence number
linkp[q].send-seq.

In Task 2, every process p waits for the next alive

message from each one of its Active b-links. If p does not
receive the next expected message from a process q timely,
then linkp[q] is changed from active to blocked and
the corresponding timeout value is incremented. When
linkp[q] changes to blocked, p stops sending alive mes-
sages to q, and therefore linkq[p] will eventually change
to blocked too. Observe that if the timeout has expired
due to a message omission, the b-link will remain Blocked
forever. Otherwise, i.e., if the timeout was premature, the
increment of the timeout value guarantees that eventually
the expected message, unless omitted, will always be re-
ceived timely.

In Task 3, received messages are delivered following
their sequence number. If the message is received through
a blocked linkp[q], it consequently becomes active, and by
Task 1 process p starts sending alive messages to q again.
The b-link state transitions between Active and Paused of
Fig. 1 are implemented too, and some rows of matrix Mq

are copied into M p if needed.
Finally, Task 4 is executed by a process p whenever M p

changes (either in Task 2 or in Task 3) in order to update
connectedp . Furthermore, Task 4 adjusts p’s connectivity
if necessary. In case p needs to increase its connectiv-
ity, it will send start messages to processes with which
it has a Paused b-link. This task also checks if there are
redundant Active b-links (by the get-redundant-b-links pro-
cedure, which implements the previously described BFS
algorithm). To pause an Active b-linkp↔q , process p sends
a pause message to q.
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3.3. Correctness proof

We now show that the presented algorithm satisfies the
failure detector properties defined in Section 2. Further-
more, we also show that the algorithm is communication-
efficient.

The proof is divided in three parts. First, Lemmas 1 to 5
show that, for every two processes p and q, the variables
linkp[q] and linkq[p] represent consistently the behavior
defined for b-linkp↔q . Then, Lemmas 6 to 8 show that the
system eventually converges, i.e., eventually all the pro-
cesses in each connected component agree permanently on
the same set of Active b-links. Finally, Lemmas 9 and 10
show that the connectedp variable at each well-connected
process p satisfies the completeness and accuracy proper-
ties defined in Section 2.

Lemma 1. If an active linkp[q] is set to blocked, then eventu-
ally either linkq[p] is set to blocked or paused, or linkp[q] will
not remain blocked.

Proof. By Task 2, a process p that does not receive the
next expected message from q (linkp[q].recv-seq) in time
by an Active b-linkp↔q sets linkp[q] to blocked (Line 18).
If the next expected message from q has been omitted,
linkp[q] is set to blocked permanently. As a consequence,
p stops sending alive messages to q (by Task 1 of p) per-
manently, and if linkq[p] is active it will be set to blocked

permanently too (Line 18). If the next expected message
from q has not been omitted, this message will eventu-
ally arrive to p and linkp[q] will be set to active again
(Lines 22–23). If when p receives the expected message
from q, sets linkp[q] to active again and sends by Task 1
an alive message to q which is received in q before its
timeout on p triggers, then linkq[p] will remain active.
Otherwise, if the timer on p triggers at q, linkq[p] will
be set to blocked temporarily. Finally, note that if q con-
currently has set linkq[p] to paused, linkq[p] will remain
paused, since no messages from p are waited by Task 2 of
q if linkq[p] is paused, and thus the transition to blocked

does not apply. �
Lemma 2. If an active linkp[q] is set to paused, then eventually
linkq[p] is set to paused or blocked.

Proof. By the procedure get-redundant-b-links, a process p
tries to pause b-linkp↔q by sending a pause message to
q and changing linkp[q] to paused (Lines 41–44). Observe
that, according to our policy for pausing b-links, an Active
b-linkp↔q is paused only by the process with the smallest
identifier between p and q.

When a linkp[q] is set to paused, if the pause message
sent by p is not eventually received in q, by Task 2, q sets
linkq[p] to blocked permanently. If the pause message sent
by p is eventually received in q and linkq[p] is active, by
Task 3, q will set linkq[p] to paused (Lines 26–27). Oth-
erwise, if linkq[p] is blocked due to a premature timeout,
linkq[p] will be set first to active (Lines 22–23 of Task 3
of q) and then to paused (Lines 26–27). �
Lemma 3. If a blocked linkp[q] is set to active, then eventu-
ally either linkq[p] is set to active, or linkp[q] will not remain
active.

Proof. By Task 3 (Line 23) a process p sets a blocked

linkp[q] to active when the next expected message,
linkp[q].recv-seq, is received. Consequently, by Task 1,
p starts to send alive messages to q. If linkq[p] is blocked

and q eventually receives the next expected message from
p, q will set linkq[p] to active and, by Task 1, q will send
alive messages to p. Otherwise, if the next expected mes-
sage from p to q is omitted, by the reasoning followed
in Lemma 1, linkq[p] is set to blocked permanently, and
hence linkp[q] will not remain active. Finally, note that if
linkq[p] is set to paused concurrently, by Lemma 2 linkp[q]
is set to paused or blocked, i.e., it will not remain ac-

tive. �
Lemma 4. If a paused linkp[q] is set to active, then eventu-
ally either linkq[p] is set to active, or linkp[q] will not remain
active.

Proof. By Task 4 (Lines 36–40), a process p tries to ac-
tivate b-linkp↔q (in order to increase its connectivity) by
sending a start message to q and changing linkp[q] to ac-

tive. If linkq[p] is paused and q receives the start message,
by Task 3, q sets linkq[p] to active (Lines 24–25) and con-
sequently, by Task 1, q starts to send alive messages to p.
Otherwise, if q does not receive the start message from
p, linkq[p] will not be set to active. Thus, q will not start
to send alive messages to p and therefore, linkp[q] will
be set to blocked. Finally, note that if linkq[p] is perma-
nently blocked (due to an omission from p to q), then by
the reasoning followed in Lemma 1, linkp[q] will be set to
blocked too. �
Lemma 5. The communication between every pair of processes
p,q ∈ Π corresponds to the behavior defined for b-links.

Proof. By Lemmas 1, 2, 3 and 4 the communication from p
to q, determined by the variable linkp[q], and the commu-
nication from q to p, determined by the variable linkq[p],
will eventually have a consistent behavior, which is the
one defined for the corresponding b-linkp↔q . Observe that
the variables linkp[q] and linkq[p] will not have perma-
nently the combination of values (active, non-active),
where non-active is either blocked or paused. �
Lemma 6. Eventually, b-links will block only due to omissions
and they will be blocked permanently.

Proof. By Lemma 1, a b-linkp↔q switches to the state
Blocked when process p (or q) does not receive an ex-
pected message in time. This may occur either because
the timer linkp[q].timeout triggered (in Task 2 of p) be-
fore the message was received, or because the message
was omitted. Since the system is partially synchronous,
and since, by Task 2 (Line 17), the timeout associated
with the linkp[q] variable (linkp[q].timeout) is incremented
whenever the link state is set to blocked, eventually no
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expected message will be received after the timer trig-
gers. Thus, eventually, the only reason for any b-link to be
Blocked will be a message omission, and henceforth the b-
link will be Blocked permanently. �
Observation 1. At every process p, the matrix M p is up-
dated with its own connectivity information and with the
matrices Mq received in the alive messages. Every time
p changes matrix M p in the procedure change-link-state
(Lines 45–48) the version number V p[p] is incremented.
The updated M p and its version number V p are sent with
p’s next alive message at least to one process in the same
connected component. Observe that when p delivers a
message in Task 3, M p is updated with Mq comparing the
version numbers V p and Vq , and therefore, copying only
the last version of the connectivity information (Lines 28–
31). Besides, the local delay in process p for relaying M p

and V p , δ, is bounded in the algorithm by the period of
Task 1 of p, which is finite if p is eventually synchronous
and has not crashed. This way, implicitly, a relaying mech-
anism of the last version of M p and V p is obtained among
the processes in the same connected component.

Lemma 7. Eventually every process p will not activate more b-
links.

Proof. Eventually, by the definition of connected compo-
nent and by Lemma 6, for every two processes p and q
that belong to different connected components, b-linkp↔q

will be Blocked permanently. Observe that eventually, by
Observation 1, all the processes in the same connected
component will share the same matrix M p with the con-
nectivity information. In Task 4 (Lines 36–40), processes
activate b-links trying to connect to a majority of processes.
If a process p is well-connected, it will eventually be in
a connected component with at least � (n+1)

2 � processes.
After that, p will not activate more b-links (condition in
Line 36). If a process q is not a well-connected process, by
definition, it will belong to a connected component with
less than � (n+1)

2 � processes. However, eventually q will
not have any Paused b-link with processes outside its con-
nected component, so q will not be able to activate more
b-links (Lines 37–38). �
Lemma 8. Processes in the same connected component will
calculate eventually and permanently the same set of Active
b-links (eventually the state of a b-link does not change from
Active to Paused or vice versa).

Proof. From Lemma 5, the communication between two
processes p,q is always bidirectional, in the sense that
both processes exhibit a consistent behavior regarding
b-linkp↔q . According to Observation 1, when p activates a
b-link, all the processes in the same connected component
will receive this information and will have the same con-
nectivity matrix, M p ; therefore they will share the same
set of Active b-links. Observe that the algorithm used to
pause b-links in Task 4, procedure get-redundant-b-links,
is deterministic. Henceforth, all the processes in the same
connected component will calculate the same set of Active
b-links. Since by Lemma 7 eventually no b-link will be ac-
tivated, and consequently no more b-links will be paused,
the set of Active b-links will be permanently identical for
every process p that belongs to the same connected com-
ponent. �
Lemma 9. Eventually and permanently, for every well-con-
nected process p every not well-connected process q /∈
connectedp .

Proof. If q is a not well-connected process, by Lemma 8
and by the definition of not well-connected process, even-
tually q is permanently in a connected component with
less than � (n+1)

2 � processes. Being p a well-connected pro-
cess, by definition, p is in a connected component with at
least � (n+1)

2 � processes. Therefore p and q will belong to
different connected components, and by the algorithm and
Lemma 8, q /∈ connectedp permanently. �
Lemma 10. Eventually and permanently, for every well-con-
nected process p every well-connected process q ∈ connectedp .

Proof. If q and p are well-connected processes, they will
activate b-links to connect to a majority of processes, and
by Lemma 8, eventually they will calculate permanently
the same set of Active b-links and they will be connected
with a majority of the processes permanently. If both p
and q are connected to a majority of the processes they
must be in the same connected component, and by the
algorithm and Lemma 8, q ∈ connectedp permanently. �
Theorem 1. The algorithm of Fig. 3 implements the properties
of Strong Completeness and Eventual Strong Accuracy defined in
Section 2.

Proof. Directly from Lemmas 9 and 10. �
Theorem 2. Eventually the number of b-links used in the sys-
tem is permanently n − 1 or lower.

Proof. By Lemma 8, eventually every connected compo-
nent will not change, and Active b-links will express the
connectivity in the connected component, i.e., the number
of b-links used permanently. The procedure get-redundant-
b-links executes a BFS algorithm that guarantees a span-
ning tree of Active b-links in a connected component. By
the definition of connected component and by Lemma 6,
eventually every b-linkp↔q for p and q in different con-
nected components will be Blocked forever. Therefore, since
the spanning tree of a graph with k nodes has k − 1 edges,
the number of Active b-links in the system will be at most
n − 1. �
3.4. Using the failure detector to solve consensus

We describe now how the proposed failure detector can
be used to solve consensus. Following the line of [10], in-
stead of designing a new consensus algorithm from scratch
we propose an adaptation of the well-known consensus al-
gorithm of Chandra and Toueg for crash-prone systems [3].
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The adaptation is close to the one proposed in [10], but
differs in what concerns the use of the overlay network
provided by the underlying failure detector.

As in [10], consensus messages are inserted into mes-
sages of the failure detector, in order to cope with omis-
sions in the consensus algorithm. Process connectivity,
and specifically the component containing well-connected
processes, provides the necessary relaying framework for
consensus messages to be delivered. Therefore, consensus
messages follow a path of Active b-links to reach their des-
tination. Proceeding in this way, the communication cost
of the consensus algorithm remains linear too. Neverthe-
less, contrary to [10], where the underlying failure detector
uses a permanent all-to-all communication pattern which
eases the adaptation, the fact that our failure detector is
communication-efficient forces to check if the overlay net-
work has changed during the execution of the current
round of the algorithm, in which case the round is skipped
in order to avoid blocking.
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