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Failure models in fault-tolerant systems

The Crash failure model
The Crash-recovery failure model

The Omission failure model

The Byzantine failure model
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Failure detectors to solve Consensus

@ The FLP impossibility result (Fisher-Lynch-Paterson, 1985)
e Consensus cannot be solved in asynchronous systems if at least
one process can crash
@ The failure detector abstraction (Chandra-Toueg, 1996)

o Encapsulating asynchrony to circumvent the FLP result
e Partial synchrony (Dwork-Lynch-Stockmeyer, 1988)
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Failure detectors to solve Consensus

Failure detector classes

A process can be correct or not correct

For every process p, its failure detector provides a list of
suspected processes

@ A number of failure detector classes have been defined
(Chandra-Toueg)

We focus on the Eventually Perfect failure detector class: QP
Properties of OP

o Eventual Strong Completeness
o Eventual Strong Accuracy
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Implementing failure detectors

Processes monitor each other

Every (correct) process build a list of suspected processes

Monitoring mechanism:
o Polling
o Heartbeats

o Communication pattern:

o All-to-all
o One-to-one (e.g., arranging the processes in a ring)
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Communication-efficient failure detectors

e Communication efficiency: at most n — 1 links used
permanently (Aguilera et al, 2001)
e Communication-efficient FDs:
o Larrea et al: DISC 2005, JS 2008, JCSD 2006
e Communication-optimal FDs:

o Using sporadic reliable broadcast (Larrea el al: DISC 2006,
JCSD 2007)

o Using sporadic one-to-m (m << n) communication (Lafuente
et al: PODC 2008, JCSD 2008)



Context of the research
®0

From the Crash model to the Omission model

The General Omission failure model

@ Processes can fail by
o Crashing
o Omit to send messages
o Omit to receive messages
@ In the General Omission model processes suffer
o Only send omissions, only receive omissions, or both
o Permanent omissions or transient omissions
o Non-selective omissions or selective omissions
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From the Crash model to the Omission model

Questions to be answered

@ Which omissions can/cannot be detected in the General
Omission model?

@ How can a failure detector class be defined in the General
Omission model?

@ Can a communication-efficient failure detector be implemented
in the General Omission model?

@ How can communication efficiency be defined in the General
Omission model?
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Contribution

@ Definition of an eventually perfect failure detector class for the
General Omission model

@ A communication-efficient implementation of the failure
detector
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The limits of detectability in the General
Omission model

Problem
p sends a message to g, but g does not receive it

@ a send omission of p or a receive omission of g7
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The limits of detectability in the General
Omission model

Problem

p sends a message to g, but g does not receive it

@ a send omission of p or a receive omission of g7

@ A naive solution: consider both p and g as not correct

o Instead, we focus on well-connected | not well-connected
processes
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System Model

Failure model: General Omission

Majority of correct processes

Timing assumptions: Partially synchronous
Reliable links

Bidirectional communication: the b-link abstraction
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The bidirectional link abstraction

The b-link abstraction

@ b-linky g = b-linkg , represents the state of the bidirectional
communication between processes p and g

o b-link, q = Active: p and q are exchanging messages
periodically (in both directions)

o b-link, o = Blocked: p and g do not exchange messages
periodically (in both directions)

o b-link, q = Paused: p and g do not exchange messages
periodically (in both directions)

o Note that Paused and Blocked b-links exhibit the same
behavior (we say that the b-link is not Active)

@ Paused and Blocked b-links differ in how they are reached
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The bidirectional link abstraction

increasing time-out of the
connectivity expected message

avoiding ~message expected
redundant received message
connectivity received

Figure: State diagram of a b-link.
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Well-connected processes

o Consider a graph of process and Active b-links G = (V, E)

@ Due to crashes and omissions, G can be a disconnected graph
with several connected components S C G

e Eventually and permanently, there will be in G a connected
component S such that | V(S) |> [@]

@ Every process p € V/(S) is well-connected
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Failure detector properties

@ Strong Completeness: eventually every not well-connected
process will be permanently considered as not well-connected
by every well-connected process

o Eventual Strong Accuracy: eventually every well-connected
process will be permanently considered as well-connected by
every well-connected process
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Communication efficiency

@ An algorithm is communication-efficient in the General
Omission model if it uses at most n — 1 bidirectional links to
send messages forever

@ Note that in a connected graph with m nodes, exactly m — 1
edges are needed

@ In G there will be less than n — 1 edges
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Communication efficiency

@ An algorithm is communication-efficient in the General
Omission model if it uses at most n — 1 bidirectional links to
send messages forever

@ Note that in a connected graph with m nodes, exactly m — 1
edges are needed

@ In G there will be less than n — 1 edges

o Calculate a spanning tree for every connected component
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Achieving communication efficiency

@ Every process p computes a spanning tree T for the connected
component S C G it belongs to

@ Using a deterministic implementation of a breadth-first search
(BFS) algorithm

o If a b-linky g isin S but not in T, then b-link, q is set to
Paused
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Implementing the FD algorithm

@ Every process p sends periodic heartbeat messeges m to the
other processes

m includes the current connectivity information as viewed by p

@ Upon the reception (or time-out) of a message m from gq, a
process p:

manages the state transition of b-link, 4, if any
@ Blocked — Active (or Active — Blocked)
updates its connectivity information
recalculates the spanning tree for its connected component

updates the list of connected processes
manage the state transitions for its connected component

@ Active — Paused or Paused — Active
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Implementing the FD algorithm

Implementing the FD algorithm

@ Every process p sends periodic heartbeat messeges m to the
other processes
e m includes the current connectivity information as viewed by p
@ Upon the reception (or time-out) of a message m from gq, a
process p:
e manages the state transition of b-link, q, if any
@ Blocked — Active (or Active — Blocked)
updates its connectivity information
recalculates the spanning tree for its connected component

updates the list of connected processes
manage the state transitions for its connected component

@ Active — Paused or Paused — Active

e Eventually there will be a permanent connected set including a
majority of well-connected processes
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@ Now we have a communication-efficient algorithm with at
most n — 1 bidirectional links carrying messages forever
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Discussion

@ In a previous FD algorithm for the General Omission model,
we used all-to-all communication (Cortifias et al, 2007)

@ Now we have a communication-efficient algorithm with at
most n — 1 bidirectional links carrying messages forever
@ What do we pay for that?

e Chandra-Toueg consensus algorithm is more dificult to adapt

o Consensus messages are forwarded using the spanning tree
o Connectivity should not change during a consensus round in
order to avoid blocking
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