On Communication-Efficient Failure

Detection in Omission Environments

R. Cortifias |. Soraluze M. Larrea A. Lafuente

University of the Basque Country, San Sebastian, Spain

JCSD 2010

@ Context of the research
@ Failure models in fault-tolerant systems
o Failure detectors to solve Consensus
o Communication-efficient failure detectors
@ From the Crash model to the Omission model
o Contribution

© The limits of detectability

© System Model
@ The bidirectional link abstraction
@ Well-connected processes
o Failure detector properties
@ Communication efficiency

@ The failure detector algorithm
@ Achieving communication efficiency
@ Implementing the FD algorithm

@ Discussion

Context of the research
]

Failure models in fault-tolerant systems

Failure models in fault-tolerant systems

The Crash failure model
The Crash-recovery failure model

The Omission failure model

The Byzantine failure model

Context of the research
©00

Failure detectors to solve Consensus

Failure detectors to solve Consensus

@ The FLP impossibility result (Fisher-Lynch-Paterson, 1985)
e Consensus cannot be solved in asynchronous systems if at least
one process can crash
@ The failure detector abstraction (Chandra-Toueg, 1996)

o Encapsulating asynchrony to circumvent the FLP result
e Partial synchrony (Dwork-Lynch-Stockmeyer, 1988)

Context of the research
oo

Failure detectors to solve Consensus

Failure detector classes

A process can be correct or not correct

For every process p, its failure detector provides a list of
suspected processes

@ A number of failure detector classes have been defined
(Chandra-Toueg)

We focus on the Eventually Perfect failure detector class: QP
Properties of OP

o Eventual Strong Completeness
o Eventual Strong Accuracy

Context of the research
ooe

Failure detectors to solve Consensus

Implementing failure detectors

Processes monitor each other

Every (correct) process build a list of suspected processes

Monitoring mechanism:
o Polling
o Heartbeats

o Communication pattern:

o All-to-all
o One-to-one (e.g., arranging the processes in a ring)

Context of the research
°

Communication-efficient failure detectors

Communication-efficient failure detectors

e Communication efficiency: at most n — 1 links used
permanently (Aguilera et al, 2001)
e Communication-efficient FDs:
o Larrea et al: DISC 2005, JS 2008, JCSD 2006
e Communication-optimal FDs:

o Using sporadic reliable broadcast (Larrea el al: DISC 2006,
JCSD 2007)

o Using sporadic one-to-m (m << n) communication (Lafuente
et al: PODC 2008, JCSD 2008)

Context of the research
®0

From the Crash model to the Omission model

The General Omission failure model

@ Processes can fail by
o Crashing
o Omit to send messages
o Omit to receive messages
@ In the General Omission model processes suffer
o Only send omissions, only receive omissions, or both
o Permanent omissions or transient omissions
o Non-selective omissions or selective omissions

Context of the research
oe

From the Crash model to the Omission model

Questions to be answered

@ Which omissions can/cannot be detected in the General
Omission model?

@ How can a failure detector class be defined in the General
Omission model?

@ Can a communication-efficient failure detector be implemented
in the General Omission model?

@ How can communication efficiency be defined in the General
Omission model?

Context of the research
°

Contribution

Contribution

@ Definition of an eventually perfect failure detector class for the
General Omission model

@ A communication-efficient implementation of the failure
detector

The limits of detectability

The limits of detectability in the General
Omission model

Problem
p sends a message to g, but g does not receive it

@ a send omission of p or a receive omission of g7

The limits of detectability

The limits of detectability in the General
Omission model

Problem

p sends a message to g, but g does not receive it

@ a send omission of p or a receive omission of g7

@ A naive solution: consider both p and g as not correct

The limits of detectability

The limits of detectability in the General
Omission model

Problem

p sends a message to g, but g does not receive it

@ a send omission of p or a receive omission of g7

@ A naive solution: consider both p and g as not correct

o Instead, we focus on well-connected | not well-connected
processes

System Model

System Model

Failure model: General Omission

Majority of correct processes

Timing assumptions: Partially synchronous
Reliable links

Bidirectional communication: the b-link abstraction

System Model
°0

The bidirectional link abstraction

The b-link abstraction

@ b-linky g = b-linkg , represents the state of the bidirectional
communication between processes p and g

o b-link, q = Active: p and q are exchanging messages
periodically (in both directions)

o b-link, o = Blocked: p and g do not exchange messages
periodically (in both directions)

o b-link, q = Paused: p and g do not exchange messages
periodically (in both directions)

o Note that Paused and Blocked b-links exhibit the same
behavior (we say that the b-link is not Active)

@ Paused and Blocked b-links differ in how they are reached

System Model
oe

The bidirectional link abstraction

increasing time-out of the
connectivity expected message

avoiding ~message expected
redundant received message
connectivity received

Figure: State diagram of a b-link.

System Model
®00

Well-connected processes

Well-connected processes

o Consider a graph of process and Active b-links G = (V, E)

@ Due to crashes and omissions, G can be a disconnected graph
with several connected components S C G

e Eventually and permanently, there will be in G a connected
component S such that | V(S) |> [@]

@ Every process p € V/(S) is well-connected

System Model
o] Yo}

Well-connected processes

O o ©

& & ©

System Model
ooe

Well-connected processes

[ay
I\D
w

System Model
°

Failure detector properties

Failure detector properties

@ Strong Completeness: eventually every not well-connected
process will be permanently considered as not well-connected
by every well-connected process

o Eventual Strong Accuracy: eventually every well-connected
process will be permanently considered as well-connected by
every well-connected process

System Model
®0

Communication efficiency

Communication efficiency

@ An algorithm is communication-efficient in the General
Omission model if it uses at most n — 1 bidirectional links to
send messages forever

@ Note that in a connected graph with m nodes, exactly m — 1
edges are needed

@ In G there will be less than n — 1 edges

System Model
®0

Communication efficiency

Communication efficiency

@ An algorithm is communication-efficient in the General
Omission model if it uses at most n — 1 bidirectional links to
send messages forever

@ Note that in a connected graph with m nodes, exactly m — 1
edges are needed

@ In G there will be less than n — 1 edges

o Calculate a spanning tree for every connected component

System Model
oce

Communication efficiency

System Model
oce

Communication efficiency

The failure detector algorithm
°

Achieving communication efficiency

Achieving communication efficiency

@ Every process p computes a spanning tree T for the connected
component S C G it belongs to

@ Using a deterministic implementation of a breadth-first search
(BFS) algorithm

o If a b-linky g isin S but not in T, then b-link, q is set to
Paused

The failure detector algorithm
]

Implementing the FD algorithm

Implementing the FD algorithm

@ Every process p sends periodic heartbeat messeges m to the
other processes

m includes the current connectivity information as viewed by p

@ Upon the reception (or time-out) of a message m from gq, a
process p:

manages the state transition of b-link, 4, if any
@ Blocked — Active (or Active — Blocked)
updates its connectivity information
recalculates the spanning tree for its connected component

updates the list of connected processes
manage the state transitions for its connected component

@ Active — Paused or Paused — Active

The failure detector algorithm
]

Implementing the FD algorithm

Implementing the FD algorithm

@ Every process p sends periodic heartbeat messeges m to the
other processes
e m includes the current connectivity information as viewed by p
@ Upon the reception (or time-out) of a message m from gq, a
process p:
e manages the state transition of b-link, q, if any
@ Blocked — Active (or Active — Blocked)
updates its connectivity information
recalculates the spanning tree for its connected component

updates the list of connected processes
manage the state transitions for its connected component

@ Active — Paused or Paused — Active

e Eventually there will be a permanent connected set including a
majority of well-connected processes

Discussion

Discussion

@ In a previous FD algorithm for the General Omission model,
we used all-to-all communication (Cortifias et al, 2007)

@ Now we have a communication-efficient algorithm with at
most n — 1 bidirectional links carrying messages forever

Discussion

Discussion

@ In a previous FD algorithm for the General Omission model,
we used all-to-all communication (Cortifias et al, 2007)

@ Now we have a communication-efficient algorithm with at
most n — 1 bidirectional links carrying messages forever

@ What do we pay for that?

Discussion

Discussion

@ In a previous FD algorithm for the General Omission model,
we used all-to-all communication (Cortifias et al, 2007)

@ Now we have a communication-efficient algorithm with at
most n — 1 bidirectional links carrying messages forever
@ What do we pay for that?

e Chandra-Toueg consensus algorithm is more dificult to adapt

o Consensus messages are forwarded using the spanning tree
o Connectivity should not change during a consensus round in
order to avoid blocking

	Outline
	Context of the research
	Failure models in fault-tolerant systems
	Failure detectors to solve Consensus
	Communication-efficient failure detectors
	From the Crash model to the Omission model
	Contribution

	The limits of detectability
	System Model
	The bidirectional link abstraction
	Well-connected processes
	Failure detector properties
	Communication efficiency

	The failure detector algorithm
	Achieving communication efficiency
	Implementing the FD algorithm

	Discussion

