
Journal of Computer and System Sciences 81 (2015) 383–397
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Communication-optimal eventually perfect failure detection

in partially synchronous systems ✩

Alberto Lafuente ∗, Mikel Larrea, Iratxe Soraluze, Roberto Cortiñas

University of the Basque Country UPV/EHU, Faculty of Computer Science, Lardizabal 1, 20018 San Sebastián, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 March 2009
Received in revised form 18 July 2013
Accepted 19 May 2014
Available online 2 July 2014

Keywords:
Distributed algorithms
Fault tolerance
Consensus
Partial synchrony
Unreliable failure detectors
Communication optimality

Since Chandra and Toueg introduced the failure detector abstraction for crash-prone
systems, several algorithms implementing failure detectors in partially synchronous
systems have been proposed. Their performance can be measured by their Communication
efficiency, defined as the number of links used forever. In this regard, in a communication-
efficient algorithm only n links are used forever, n being the number of processes in the
system. In this paper, we present communication optimality, a communication efficiency
degree reached when only c links are used forever, c being the number of correct
processes. We show that c is the minimum number of links used forever required to
implement �P and that c is also optimal for �S and Ω when c < n. Finally, we propose
two communication-optimal �P algorithms following respectively one-to-all and one-
to-one communication patterns to manage suspicions, showing that there is a trade-off
between detection latency and sporadic communication overhead.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background and related work

Unreliable failure detectors, proposed by Chandra and Toueg in [1], are a mechanism providing (possibly incorrect) in-
formation about process failures. This mechanism has been used to solve several problems in asynchronous distributed
systems where processes may crash by prematurely halting, in particular the consensus problem [2]. The specific classes of
failure detectors proposed in [1] are defined by a completeness property, which characterizes the failure detector’s capability
of suspecting incorrect processes, and by an accuracy property, which restricts the mistakes the failure detector can make.
More specifically, Chandra and Toueg defined, among others, the following two completeness properties and two accuracy
properties that a failure detector may satisfy:

• Strong Completeness: eventually every process that crashes is permanently suspected by every correct process.
• Weak Completeness: eventually every process that crashes is permanently suspected by some correct process.
• Eventual Strong Accuracy: there is a time after which correct processes are not suspected by any correct process.
• Eventual Weak Accuracy: there is a time after which some correct process is never suspected by any correct process.

✩ Research partially supported by the Spanish Research Council, under grant TIN2013-41123-P, the Basque Government, under grants IT395-10 and
S-PE12UN109, and the University of the Basque Country UPV/EHU, under grant UFI11/45.

* Corresponding author. Fax: +34 943015590.
E-mail addresses: alberto.lafuente@ehu.es (A. Lafuente), mikel.larrea@ehu.es (M. Larrea), iratxe.soraluze@ehu.es (I. Soraluze), roberto.cortinas@ehu.es

(R. Cortiñas).
http://dx.doi.org/10.1016/j.jcss.2014.06.010
0022-0000/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2014.06.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:alberto.lafuente@ehu.es
mailto:mikel.larrea@ehu.es
mailto:iratxe.soraluze@ehu.es
mailto:roberto.cortinas@ehu.es
http://dx.doi.org/10.1016/j.jcss.2014.06.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2014.06.010&domain=pdf

384 A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397
Table 1
Four classes of failure detectors.

Eventual strong accuracy Eventual weak accuracy

Strong completeness Eventually perfect (�P) Eventually strong (�S)
Weak completeness Eventually quasi-perfect (�Q) Eventually weak (�W)

The combination of these properties gives us four classes of failure detectors, which are shown in Table 1. Consensus can
be solved using a failure detector of any of those four classes. In particular, there is another failure detector class denoted
by Ω , which is equivalent1 to �S and �W , and which has been proved to be sufficient and necessary, i.e., weakest, for
solving consensus [3]. The Ω failure detector class provides eventual agreement on a common and correct leader among all
non-faulty processes in a system.

Specific algorithms for implementing Ω and/or �S have been proposed, e.g. [4–11]. Observe that �P trivially satisfies
the properties of �S . Also, �P can be easily transformed into Ω , e.g., by choosing as leader the non-suspected process
with the lowest identifier.

Failure detectors of the class �P , being strictly stronger than Ω and �S ,2 can also be used to solve consensus. Several
algorithms implementing �P have been proposed in the literature. The algorithm proposed by Chandra and Toueg in [1]
uses a heartbeat mechanism and all-to-all communication to detect faulty processes. The algorithms proposed by Aguilera
et al. in [12] and by Larrea et al. in [13] use heartbeats too, and rely on a leader-based approach. On the other hand, the
algorithms proposed by Larrea et al. in [14,15] use a polling—or query/reply—mechanism on a ring arrangement of processes.
Roughly speaking, the leader-based and the ring-based algorithms are more efficient than the all-to-all algorithm regarding
the number of sent messages (linear vs. quadratic). Observe also that, compared to polling, the heartbeat mechanism reduces
the number of messages to the half. Moreover, heartbeats inherently provide a certain level of communication reliability in
a system with fair lossy links, while polling usually requires reliable communication.

Chandra and Toueg showed in [1] that �Q can also be used to solve consensus. To do so, they first showed that classes �Q and �P are equivalent from a problem solvability point of view, i.e., a problem which is solvable with �P is also
solvable with �Q and vice versa. It is worth noting that the equivalence of �Q and �P does not come for free, i.e., not
all failure detectors in �Q are in �P . Instead, it means that any failure detector in �Q can be extended with a simple
distributed algorithm to obtain a failure detector in �P .

Since consensus cannot be solved in crash-prone, pure asynchronous systems [2], algorithms that implement failure
detectors make some weak timing assumptions. Specifically, a partially synchronous model [1,16] is considered in this work.
In such a model, in every run of the system, there are bounds on relative process speeds and on message transmission times,
but these bounds are not known and they hold only after some unknown but finite time. In practice, the bounds depend on
parameters such as the network speed or the size of the system, and hold easier in, for example, local area networks than
in wide area networks. Actually, the bounds must exist and hold only for the links that connect correct processes. Hence,
it is important to design failure detection algorithms that use a low number of links, e.g., by arranging the processes in a
logical ring topology.

As shown recently in [17], algorithms for the class �P combining a heartbeat-based detection mechanism on a log-
ical ring arrangement of processes outperform the aforementioned ones in terms of the number of links permanently
used, while preserving good quality-of-service. In this regard, algorithms in [17] are communication-efficient following
Aguilera et al. [12], i.e., eventually only n unidirectional links are used forever. With regard to this performance measure,
heartbeat-based ring algorithms outperform other ring algorithms based on polling [14,15] or algorithms using a centralized
communication pattern [12,13]. By all means, algorithms using an all-to-all communication pattern, such as Chandra–Toueg’s
algorithm [1], are far from being communication-efficient.

Other failure detection algorithms specifically designed for wide area networks, e.g. [18], are based on local failure detec-
tors that provide their properties in a neighborhood of processes (using all-to-all communication inside each neighborhood),
and propagate the information about suspicions among neighborhoods. The advantage of a ring based approach is that, once
the logical ring is defined, neighborhoods are implicit, and eventually involve just two processes for every correct process,
i.e., its correct predecessor and correct successor in the ring.

1.2. Implementing failure detectors

Obviously, an algorithm implementing a failure detector of a given class must satisfy the properties defined for that class.
When implementing a failure detector, besides satisfying the properties of the class it belongs to, performance should also
be taken into account. In this work, we focus on the following two performance issues:

1 Two failure detectors are equivalent if they are reducible to each other [1]. Informally, a failure detector D is reducible to a failure detector D ′ if there is
a distributed algorithm that can transform D into D ′ . The concepts of reducibility and equivalence can be naturally extended to classes of failure detectors.

2 While �P can be transformed into Ω or �S asynchronously, i.e, without any additional synchrony assumption, neither Ω nor �S can be transformed
into �P .

A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397 385
Fig. 1. Links used permanently in (a) a communication-efficient algorithm, and (b) a communication-optimal algorithm.

i) Scalability, which allows a failure detector to be deployed in networks with a high number of nodes and/or heteroge-
neous links. A scalable failure detection algorithm should use a low number of links and avoid all-to-all communication
patterns.

ii) Quality-of-service, which involves several parameters, such as detection latency or stabilization time [19]. They allow
to measure the responsiveness of the system. For example, when a crashed process q is suspected by a process p,
every correct process should be informed as soon as possible in order to provide low detection latencies. In this regard,
a one-to-all communication pattern for suspicion propagation can be helpful. However, such a communication pattern
could become a drawback when the suspicion is erroneous, since it propagates the erroneous suspicion in the system.

Keeping in mind scalability and quality-of-service, we now consider a set of interesting properties for algorithms that
implement a failure detector:

Communication efficiency. In a communication-efficient algorithm only n unidirectional links are used forever, n being the
number of processes in the system [12]. Observe that communication efficiency refers to a permanent behavior that will
hold eventually. In large systems, communication-efficient algorithms will be more scalable than non-communication-
efficient algorithms.

Low sporadic overhead. Besides the permanent communication cost due to periodic messages (also known as heartbeats),
which is addressed by the previous communication efficiency property, an algorithm implementing a failure detector
can involve sporadic extra messages caused by failure suspicions, resulting in a peak overhead. There is a trade-off in the
way this sporadic traffic is managed. On the one hand, a one-to-one communication pattern can be used (e.g., by using
a logical ring arrangement); this way communication overhead is reduced and, henceforth, it provides better scalability.
On the other hand, one-to-all (or even all-to-all) communication leads to provide low detection latencies.

Communication locality. This property is twofold. On the one hand, we will say that a failure detection algorithm has
periodic communication locality when periodic, permanent monitoring messages (i.e., heartbeats), are sent to some pro-
cess(es) in the neighborhood of the sender process. Observe that a logical ring arrangement of processes based on
proximity provides this property naturally. Similarly, we will say that a failure detection algorithm has sporadic com-
munication locality when messages sent as a consequence of a suspicion are sent likely to some process(es) in the
neighborhood of the suspecting process. Again, trade-offs should be considered between the good scalability associated
to communication locality, and the potential good quality-of-service provided by the use of one-to-all and all-to-all
communication patterns.

1.3. Using communication-optimal �P to solve consensus

Despite �S and Ω have been extensively used to solve consensus [1,3,20–23], we focus our work on implementing
communication-optimal failure detectors of the class �P . As we will show, in a communication-optimal �P algorithm only
c unidirectional links are used forever, c being the number of correct processes. The choice of �P is mainly justified by
the fact that, as we will also show, communication optimality is almost the same for �P , �S and Ω (they all require
the same number c of links used forever when c < n), and by the fact that a failure detector of the class �P trivially
implements �S and Ω . Hence, from a resource usage viewpoint, solutions based on either �S , Ω , or on an equivalent
leader election mechanism, e.g. [24–26,13], can also execute efficiently on top of communication-optimal implementations
of �P . Moreover, for certain problems [27] and consensus protocols [28] failure detector �P , being stronger than �S and
Ω , is required. Finally, failure detectors of the class �P are more natural, in the sense that all the correct processes can
provide a precise set composed of exclusively crashed processes, providing stronger accuracy than �S and Ω (Eventual
Strong vs Eventual Weak).

Fig. 1 shows an example of the number of unidirectional links used permanently for a system composed of eight pro-
cesses, out of which five are correct, i.e., n = 8 and c = 5. Faulty processes are represented by gray circles. Observe that in

386 A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397
a communication-efficient algorithm, e.g. [17], n links are used permanently,3 while in a communication-optimal algorithm
only c links are used permanently, which is optimal when implementing �P .

1.4. Summary of contributions

The contributions of this paper are the following:

1. We study the communication efficiency of implementing �P in partially synchronous systems where processes can fail
by crashing, and introduce the notion of communication optimality.

2. We show that the minimum number of unidirectional links used forever needed for an algorithm to provide the prop-
erties of �P is c, i.e., the number of correct processes in the system.

3. We show that c is also minimal for Ω when at least one process crashes, i.e., c < n. Hence, communication optimality
is almost the same for �P , �S and Ω , which makes communication-optimal �P algorithms good candidates to be
used in a consensus algorithm.

4. We show that communication-optimal �P algorithms can be implemented. More precisely, we propose two ring-based
communication-optimal �P algorithms; one of them using a one-to-all communication pattern for communicating
suspicions, and the second one using exclusively a one-to-one communication pattern. Hence, we close algorithmically
the gap in efficiency with respect to [17] (both the present contribution and [17] consider the same system model).

With respect to the communication efficiency property, the two approaches proposed in this paper lead to communica-
tion-optimal �P algorithms, i.e., eventually only c links are used forever. Concerning the sporadic overhead involved by a
suspicion, the first algorithm has a higher overhead due to the use of a reliable broadcast communication primitive, while
the second algorithm has a low overhead. Finally, regarding communication locality, the first algorithm has only periodic
communication locality, while the second algorithm has both periodic and sporadic communication locality. In this regard,
our notion of neighborhood is dynamic and related to the estimation of the correct predecessor and successor of a process
in the ring. Note that according to the properties of �P , the neighborhood of every correct process will eventually stabilize.
If the logical ring is arranged using proximity criteria, e.g., the number of physical hops between consecutive processes in
a wide area network, our second algorithm minimizes the network traffic, which could provide benefits in geographically
dispersed networks.

1.5. Roadmap

The rest of the paper is organized as follows. In Section 2, we describe the system model considered in this work. In
Section 3, we show the communication optimality results for �P and Ω . In Section 4, we give two communication-optimal �P algorithms. In Section 5, we analyze the performance of the algorithms, and compare them with previously proposed �P algorithms. Finally, Section 6 concludes the paper.

2. System model

We consider a distributed system composed of a finite set Π of n > 1 processes, Π = {p1, p2, . . . , pn}, which commu-
nicate only by sending and receiving messages. We also use the alternative notation p, q, r, . . . to denote processes. Every
pair of processes (p, q) is connected by two unidirectional and reliable logical communication links p → q and q → p. This
means that process p can send a message to process q using a send primitive and vice versa. The definition of reliable link
that we consider is the following: if both the sender and the receiver do not crash, then all messages that are sent are
eventually received. Reliable communication is usually implemented using retransmission techniques and acknowledgment
messages.

Processes can only fail by crashing, that is, by prematurely halting. Moreover, crashes are permanent, i.e., crashed pro-
cesses do not recover. In every run of the system we identify two complementary subsets of Π : the subset of processes
that do not fail, denoted by correct, and the subset of processes that do fail, denoted by crashed. We use c to denote the
number of correct processes in the system in the run of interest, which we assume is at least one, i.e., c = |correct| ≥ 1.

We consider that processes are arranged in a logical ring. Without loss of generality, process pi is preceded by process
pi−1, and followed by process pi+1. As usual, p1 follows pn in the ring. In general, we will use the functions pred(p) and
succ(p) to respectively denote the predecessor and the successor of a process p in the ring.

Concerning timing assumptions, we consider a partially synchronous model [1,16] which stipulates that, in every run
of the system, there are bounds on relative process speeds and on message transmission times, but these bounds are not
known and they hold only after some unknown but finite time (called GST for Global Stabilization Time). The communication
links supporting this behavior are also called eventually timely links [29]. Our model is actually a variant of the models of
partial synchrony of [1,16]. The difference is that we assume reliable communication links connecting correct processes in

3 In the algorithm in [17], for every process (correct or faulty), the link coming from its correct predecessor in the ring is used permanently.

A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397 387

1

2
3

4
5
6
7

8

Algorithm 1: Reliable Broadcast by message diffusion.

{ Every process p executes the following }
To execute R-broadcast(m):

send m to all (including p)

R-deliver(m) occurs as follows:
when receive m for the first time do

if sender(m) �= p then
send m to all

R-deliver(m)

a ring. Since a reliable link which is eventually timely actually is always timely, in our model there is an unknown bound
on message transmission time that always holds for these reliable links. When presenting the algorithms, we will refine the
minimal assumptions on communication reliability and synchrony required by each algorithm.

Finally, in the algorithms presented in this paper we assume that a local clock that can measure real-time intervals is
available to each process. Clocks are not synchronized.

2.1. Reliable broadcast

Reliable Broadcast is a communication primitive for asynchronous systems that we use in one of our algorithms. It
guarantees that all correct processes deliver the same set of messages. This set includes at least all messages broadcast by
correct processes. Formally, Reliable Broadcast is defined in terms of two primitives, R-broadcast(m) and R-deliver(m), and
satisfies the following properties [30]:

• Validity. If a correct process R-broadcasts a message m, then it eventually R-delivers m.
• Agreement. If a correct process R-delivers a message m, then all correct processes eventually R-deliver m.
• Uniform integrity. For any message m, every process R-delivers m at most once, and only if m was previously R-broadcast

by sender(m).4

Algorithm 1, proposed in [1], presents a simple Reliable Broadcast algorithm for asynchronous systems with up to n − 1
crash failures. Informally, when a process receives a message for the first time, it relays the message to all processes and
then R-delivers it.5 Although in [1] all the links are considered reliable, observe that a ring of reliable links connecting
correct processes is sufficient for Algorithm 1 to work. As a particular case, consider a system where only those reliable
links exist. In that case, a message m that is broadcast would exactly make a complete tour of the ring, such that every
correct process relays (and delivers) m once.

3. On communication optimality

In this section, we show that c, i.e., the number of correct processes in the system, is the minimum number of unidirec-
tional links used forever necessary for an algorithm to provide the properties of �P . Then, we show that, assuming that at
least one process crashes, i.e., c < n, c is also minimal for implementing Ω .6 Both results hold when there are at least two
correct processes in the system, i.e., c ≥ 2.

Theorem 1. c is the minimum number of unidirectional links used forever necessary for an algorithm to provide the properties of �P
in a crash-prone system.

Proof. Otherwise, if only less than c unidirectional links were used forever, there would be some correct process p that
eventually would stop sending messages. Let t be the time instant in which p stops sending messages. Consider now
another run R ′ , identical to R until time t , and assume that p crashes at time t in R ′ . For any correct process q, if q
does not eventually and permanently suspect p, then the strong completeness property of �P is violated. Hence, q will
eventually and permanently suspect p in R ′ . Observe that both executions R and R ′ are indistinguishable for q. Hence, in
run R q will also eventually and permanently suspect p, violating the eventual strong accuracy property of �P . �
Theorem 2. If at least one process crashes, i.e., c < n, then c is the minimum number of unidirectional links used forever necessary for
an algorithm to provide the property of Ω in a crash-prone system.

4 We assume that messages include the identity of the sender and a sequence number, which make every message unique.
5 An optimization consists in not relaying m to p, sender(m) and the process q from which m has been received for the first time (if q �= sender(m)).
6 By the equivalence relation between Ω and �S [1], the reasoning regarding Ω applies to �S too.

388 A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397
Proof. The proof is by contradiction. Assume that we have an implementation of Ω in which only c − 1 unidirectional links
are used forever (by the leader in order to propagate heartbeat messages). Consider a run R of the algorithm in which c
processes are correct and let t be the time instant after which only c − 1 unidirectional links are used forever. Consider now
another run R ′ , identical to R until time t , and assume that a process q different from the leader, which is correct in R ,
crashes at time t in R ′ . Observe that both executions R and R ′ are indistinguishable for the leader, and there is no way
for the leader to know that q has crashed, and hence it will not stop sending messages to q. Since the number of correct
processes in run R ′ is c − 1, the algorithm should use only c − 2 unidirectional links forever, which contradicts the fact that
the leader will not stop sending messages to q. �

Aguilera et al. propose in [31] an algorithm implementing Ω such that eventually only f links are used forever, f being
the maximum number of processes that can crash. They also show that in the crash failure model no algorithm using fewer
than f links exists. Hence, if f = n − 1 (as in our system model), Ω can be implemented with n − 1 links used forever, even
if no process crashes, i.e., c = n. The system model considered in [31] is weaker than ours, but, as indicated by the authors,
it is too weak for implementing �P . Also, the algorithm of [31] uses always n −1 links, independently of the actual number
of correct processes c. As we will see, the algorithms proposed in this paper, besides implementing �P , dynamically adapt
the number of links used forever to the actual number of correct processes.

Similar results can be deduced from the work by Fernández et al. in [32]. They study the minimal system conditions to
implement unreliable failure detectors, and focus on the set Reach of correct processes that can reach all correct processes
via exclusively eventually timely links and other correct processes. They show that �P cannot be implemented if Reach
does not contain all the correct processes. Similarly, they show that �S (and hence Ω) cannot be implemented if Reach
does not contain at least one correct process. In both cases, the subgraph formed by correct processes and eventually timely
links in their system model must contain at least c arcs (e.g., in a ring topology), with c ≤ n − 1 if at least one process
crashes. In terms of our system model, these arcs correspond to our c links used forever.

4. Communication-optimal implementations of �P

In this section we introduce two approaches to the design of communication-optimal failure detection algorithms im-
plementing �P . The approaches differ in how failure suspicions are managed. The first one uses an eager strategy in order
to get low detection latencies. The second one is much more conservative in order to have a low sporadic communication
overhead.

The first approach is based on every process consistently managing a local balance of suspicions and refutations for any
other process. When a process p suspects another process q, p broadcasts a suspicion to every process, including q. If q
has not failed, upon delivery of that suspicion it will broadcast a refutation in the same way. Suspicions increment the
corresponding balance, while refutations decrement it. With this strategy, eventually every correct process will permanently
have a positive balance for every incorrect process, and a zero balance for every correct process. Observe that a reliable
broadcast of suspicions and refutations is required in order to have consistent balances.

The alternative approach to the global spread of suspicions and refutations is to let a process to manage only suspicions
in its neighborhood in the ring. In this approach, a process p will be in charge of the detection of incorrect processes
between p’s correct predecessor in the ring and p. The ring arrangement is used to propagate information about failures,
piggybacked on periodic heartbeat messages, to all processes in a lazy way.

4.1. An algorithm using reliable broadcast

In this section, we propose a first communication-optimal implementation of �P that uses Reliable Broadcast. In the
algorithm, each process sends heartbeats to its successor in the ring, and monitors its predecessor by waiting heartbeats
from it. Algorithm 2 presents the algorithm in detail, which uses a Balancep vector for every process p, accounting suspicions
and refutations for every process. If Balancep(q) > 0 with q �= p, then p suspects q; else, q is trusted by p. As we will see,
Balancep provides the properties of �P . Every process p starts sending periodically an (alive, p) message to its successor in
the ring, denoted by the variable succp (Task 1). Also, every process p waits for periodical (alive, predp) messages from its
predecessor in the ring, denoted by the variable predp . If p does not receive such a message on a specific time-out interval
of �p(predp), then p suspects that predp has crashed, and R-broadcasts a (suspicion, p, predp) message (Task 2), as shown
in Fig. 2a (p1 suspects p8). In Task 3, when p R-delivers a (suspicion, q, r) message, p increments Balancep(r) and calls
the update_pred_and_succ() procedure. Besides this, if r = p, i.e., p has been erroneously suspected by q, p R-broadcasts
a (refutation, p) message (Fig. 2b). In Task 4, when p R-delivers a (refutation, q) message, p decrements Balancep(q),
increments �p(q), in order to avoid premature suspicions in the future, and calls the update_pred_and_succ() procedure.
Variables predp and succp are updated from Balancep to the nearest predecessor and the nearest successor in the ring
having a non-positive balance respectively.7 If all the components of the Balancep vector are positive, then p sets both predp
and succp to p.

7 Here we informally use the terms nearest predecessor (or nearest successor) of a process p to denote the first process preceding (or succeeding) p
following the ring arrangement and fitting a particular condition.

A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397 389

1
2

3
4
5
6

7
8

9

10

11

12
13
14
15

16
17
18
19

20
21
22

23

24
25

26
Algorithm 2: Communication-optimal �P using Reliable Broadcast.
{Every process p executes the following}

Procedure main()
predp ← pred(p); {p’s estimation of its nearest correct predecessor in the ring}

succp ← succ(p); {p’s estimation of its nearest correct successor in the ring}
foreach q ∈ Π do

�p(q) ← default time-out interval; {�p(q) denotes the duration of p’s time-out for q}
Balancep(q) ← 0;

|| Task 1: repeat periodically {Sending heartbeats}
if succp �= p then send (alive, p) to succp ;

|| Task 2: repeat periodically {Checking time-outs}

if
(

predp �= p and p did not receive (alive,predp)

during the last �p(predp) ticks of p’s clock

)
then {time-out}

R-broadcast (suspicion, p, predp);

|| Task 3: when R-deliver (suspicion, q, r) {Processing SUSPICIONs}
Balancep(r) ← Balancep(r) + 1;
update_pred_and_succ();
if r = p then R-broadcast (refutation, p);

|| Task 4: when R-deliver (refutation, q) {Processing REFUTATIONs}
Balancep(q) ← Balancep(q) − 1;
�p(q) ← �p(q) + 1; {not needed if q = p}
update_pred_and_succ()

Procedure update_pred_and_succ()
if ∀r : Balancep(r) > 0 then

predp ← p;
succp ← p

else
predp ← p’s nearest predecessor r in the ring such that Balancep(r) ≤ 0;
succp ← p’s nearest successor r in the ring such that Balancep(r) ≤ 0

Fig. 2. Sporadic communication in the communication-optimal Algorithm 2. Note that relayed messages caused by Reliable Broadcast are not shown.

Correctness Proof. Now we show that Algorithm 2 implements a failure detector of class �P and that it is communication-
optimal. In the proof, we consider the time after which all the incorrect processes have already crashed, and all the messages
they have sent/R-broadcast before crashing have already been received/R-delivered. We consider also that suspicion and
refutation messages are always broadcast by using R-broadcast and always delivered by using R-deliver.

Observation 1. ∀p ∈ Π, Balancep(r) = [number of (suspicion, −, r) messages delivered by p] − [number of (refutation, −, r)
messages delivered by p]

This derives directly from the fact that Balancep(r) is initialized to 0 (Line 6) and that it is only incremented or decre-
mented when p respectively delivers a suspicion (by Task 3) or a refutation (by Task 4).

Lemma 1. ∀r /∈ correct, ∀p, q ∈ correct, eventually and permanently Balancep(r) = Balanceq(r).

390 A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397
Proof. Balances(r) is only updated when s delivers either a suspicion or a refutation message about r.
Since r is an incorrect process, it will eventually crash. Observe that after that time, r will not be able to broadcast any

more refutation messages. Note also that, by the algorithm, a process p suspecting r does not suspect r again unless p
delivers a refutation message broadcast by r. As a consequence, the number of subsequent suspicion messages about r is
limited (at most n − 1, in case every remaining process is correct).

By the properties of Reliable Broadcast, every message delivered by a correct process is also delivered by the rest of
correct processes. Hence, all correct processes deliver the same amount of suspicions and refutations about r. As a result,
and by Observation 1, eventually and permanently Balancep(r) = Balanceq(r). �
Observation 2. ∀pi ∈ correct; pp = predpi

⇔ (∀p j ∈ {pp+1, · · · , pi−1} : Balancepi (p j) > 0) ∧ (p = i ∨ Balancepi (pp) ≤ 0)

This derives directly from the fact that predpi
is only updated by pi inside the procedure update_pred_and_succ().

Lemma 2. ∀r /∈ correct, ∀p ∈ correct, eventually and permanently Balancep(r) > 0.

Proof. Let q be the nearest correct successor of r in the ring. By the algorithm and Observation 2, at some time predq = r
(assuming that the processes in between have already crashed). Since r is incorrect, it will eventually crash and, as a re-
sult, by Task 2 q will broadcast a suspicion on r, that r will not be able to refute. Consequently, by Task 3 q will set
Balanceq(r) > 0 forever. Finally, by Lemma 1, ∀p ∈ correct, eventually and permanently Balancep(r) > 0. Observe that suspi-
cions broadcast on r by other correct processes will result, by Lemma 1, in the increment of Balancep(r). �
Lemma 3. ∀p, q ∈ correct, for every (suspicion, −, q) message delivered by p, p also delivers a (refutation, −, q) message.

Proof. If a correct process p delivers a (suspicion, −, q) message then all correct processes also deliver such a message
due to the fact that suspicions are broadcast by using Reliable Broadcast. As a result, since q is correct, q will deliver that
suspicion too (by Task 3) and will consequently broadcast a refutation message, which will be also delivered by all correct
processes (by Task 4), since it uses Reliable Broadcast. �
Lemma 4. ∀p, q ∈ correct, for every (suspicion, −, q) message delivered by p at time t, there is a time t′ > t such that Balancep(q) = 0.

Proof. Observe that initially ∀p, q ∈ correct, Balancep(q) = 0. By Lemma 3, for every suspicion message delivered by p, p also
delivers a refutation message. Since (1) every time a refutation is delivered the waiting time for the timer is increased and
(2) the communication channels that connect correct processes are eventually timely, then all messages will eventually be
delivered before new suspicion messages are broadcast. As a consequence, by Observation 1, eventually Balancep(q) = 0. �
Lemma 5. ∀p ∈ correct, eventually and permanently predp and succp will be set to p’s nearest correct predecessor and successor
respectively.

Proof. Let pi be a correct process (remember that there is at least one in the system) and pp its nearest correct prede-
cessor. By Lemma 2, ∀p j ∈ {pp+1, · · · , pi−1}, eventually and permanently Balancepi (p j) > 0. By Observation 2, eventually
predpi

= pp . In the same way, since by Lemma 2, ∀p j ∈ {pp+1, · · · , pi−1}, eventually and permanently Balancepi (p j) > 0, and
by Observation 2 eventually pp will set succpp = pi . As a result, eventually each correct process pi monitors its nearest
correct predecessor pp and each correct process pp sends heartbeats to its nearest correct successor.

Note that, although time-outs can generate new suspicions, by Lemma 4 every correct process p will eventually set its
nearest correct predecessor/successor again. Observe also that each time a suspicion is broadcast, its subsequent refutation

(by Lemma 3) will allow to increase waiting time �p(predp) (Line 18). Hence, from some time on �p(predp) will be large
enough so that the timeout does not expire between the reception of two messages. As a result, there will not be any more
suspicions and, thus, ∀p ∈ correct, eventually and permanently predp and succp will be set to p’s nearest correct predecessor
and successor respectively. �
Lemma 6. ∀p, q ∈ correct, eventually and permanently Balancep(q) = 0.

Proof. Observe that initially ∀p, q ∈ correct, Balancep(q) = 0. Also, by Lemma 4, ∀p, q ∈ correct, for every (suspicion, −, q)
message delivered by p at time t , there is a time t′ > t such that Balancep(q) = 0.

Now, we show that eventually and permanently there will be no more suspicions. On the one hand, observe that in-
correct processes eventually crash, so after that time they will not be able to generate new suspicions. On the other hand,
by Lemma 6, ∀p ∈ correct; predp and succp eventually and permanently stabilize, which implies that they will not issue any
more suspicions.

As a result, ∀p, q ∈ correct, eventually and permanently Balancep(q) = 0. �
Theorem 3. Algorithm 2 implements a failure detector of class �P .

A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397 391
Fig. 3. Sporadic communication in the communication-optimal Algorithm 3.

Proof. From Lemma 6 and Lemma 2, ∀p, q ∈ correct and ∀r /∈ correct eventually and permanently Balancep(q) = 0 and
Balancep(r) > 0. The rule “if Balancep(q) > 0, then p suspects q; else, p does not suspect q” provides the properties of
strong completeness and eventual strong accuracy of �P . �
Theorem 4. Algorithm 2 is communication-optimal, i.e., eventually only c links are used forever.

Proof. From Lemma 6, for every correct process p, eventually and permanently succp will be set to p’s correct successor in
the ring and, by Task 1, p will send (alive, p) messages to it forever. No other periodical messages will be sent. Furthermore,
since no more suspicions will occur, no new suspicion (and thus refutation) messages will be broadcast. Hence, if there
are c correct processes in the system, just a number of c unidirectional links will be permanently used. �

Observe that if there is just one correct process in the system, i.e., c = 1, Algorithm 2 will eventually use no links, by an
optimization introduced in Task 1. Hence, when c = 1 both �P and Ω can be implemented using 0 links used forever.

Finally, although we have initially assumed in the system model that all the communication links were reliable and
eventually timely, in a given execution of Algorithm 2 it is sufficient that this behavior applies only to the c links that
eventually form the ring of correct processes, i.e., the link from every correct process to its correct successor in the ring.
The rest of links can be asynchronous and/or lossy. This makes c reliable and eventually timely links out of the n(n − 1)

links in the system.

4.2. An algorithm using one-to-one local communication

In this section, we present a communication-optimal �P algorithm that uses only one-to-one local communication to
manage suspicions. In the algorithm, a process p will be in charge of the detection of incorrect processes between p’s cor-
rect predecessor in the ring and p. Assuming that simple heartbeat messages circulate around the ring, this strategy only
gives weak completeness and eventual strong accuracy, and hence the resulting failure detector will be of the class �Q.
Henceforth, a further transformation is needed to get a failure detector of the class �P . In this regard, the approach we fol-
low to design the algorithm is incremental: first we present the algorithm implementing �Q and prove its correctness, and
next we give a simple transformation into �P which preserves communication optimality and low sporadic communication
overhead.

4.2.1. Implementing �Q
Algorithm 3 presents a communication-optimal implementation of �Q. Every process p has a local set of suspected

processes, Lp , and two variables, predp and succp , denoting respectively the process that p is monitoring and the process to
which p is periodically sending heartbeat messages (alive, p) by Task 1. When a process p suspects by Task 2 the process it
is monitoring, predp , p includes predp in Lp , sends a suspicion message (suspicion, p) to predp (in Fig. 3a, p1 suspects p6),
and updates predp (and succp if required) accordingly. Observe that Task 2 does not include any explicit mechanism for p
to tell its new predecessor to start sending heartbeats to it. The new predecessor of p will have to be suspected once by p
in order to set its successor to p by Task 3, as we will explain next.

If a suspected process p is correct or has not crashed yet, when it receives (suspicion, q) by Task 3, p will suspect every
process from p to q (both excluded), since all of them have been also suspected by q. Consequently, process q becomes
the new successor of p, and hence, if p does not crash, q will receive periodical (alive, p) messages from p, as shown
in Fig. 3b. Furthermore, a sporadic (probe, p) message is sent by p to every process r from p to q (both excluded), in
order to know if r has actually crashed or not (also shown in Fig. 3b, in which p6 probes p7 and p8). When a process p
receives a (probe, q) message, it just sends an (alive, p) message to q, in order to give q the opportunity to set succq (and
exceptionally predq) to p (in Fig. 3c, p7 and p8 notify p6 that they are alive).

392 A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397

1
2

3
4
5

6
7

8

9

10

11

12

13
14
15
16
17

18
19
20
21
22

23
24

25
26

27
28
Algorithm 3: Communication-optimal �Q using local one-to-one communication.
{Every process p executes the following}

Procedure main()
predp ← pred(p); {p’s estimation of its nearest correct predecessor in the ring}

succp ← succ(p); {p’s estimation of its nearest correct successor in the ring}
foreach q ∈ Π do �p(q) ← default time-out interval; {�p(q): duration of p’s time-out for q}
Lp ← ∅; {Lp provides the properties of �Q}

|| Task 1: repeat periodically {Sending heartbeats}
if succp �= p then send (alive, p) to succp ;

|| Task 2: repeat periodically {Checking time-outs}

if
(

predp �= p and p did not receive (alive,predp)

during the last �p(predp) ticks of p’s clock

)
then {time-out}

Lp ← Lp ∪ {predp}; {p suspects predp has crashed}

send (suspicion, p) to predp ;
update_pred_and_succ();

|| Task 3: when receive (suspicion, q) from some q {Processing SUSPICIONs}
Lp ← Lp ∪ {p, . . . , q} − {p, q};
update_pred_and_succ();
foreach r ∈ {p, . . . , q} − {p, q} do send (probe, p) to r;
send (alive, p) to q;

|| Task 4: when receive (alive, q) from some q {Processing ALIVEs}
if q ∈ Lp then

Lp ← Lp − {q};
update_pred_and_succ();
�p(q) ← �p(q) + 1;

|| Task 5: when receive (probe, q) from some q {Processing PROBEs}
send (alive, p) to q;

Procedure update_pred_and_succ()
predp ← p’s nearest predecessor r in the ring such that r /∈ Lp ;
succp ← p’s nearest successor r in the ring such that r /∈ Lp ;
if predp �= p then Lp ← {predp , . . . , succp} − {predp , p, succp}

On the reception of an (alive, q) message coming from a process q ∈ L p , by Task 4 a process p will remove q from Lp ,
update predp (and succp if required), and increment the time-out interval with respect to q, �p(q).

The probe messages used in this algorithm avoid a process to send periodically alive messages to crashed processes,
a scenario that can happen in communication-efficient algorithms (see Fig. 1, where processes p7 and p8 have crashed).
Hence, the proposed probing mechanism is key to get communication optimality.

Correctness Proof. We show now that Algorithm 3 implements a failure detector of class �Q and that it is communication-
optimal. Given any process p, we denote by corr_predp the correct predecessor of p in the ring. Similarly, we denote
by corr_succp the correct successor of p in the ring. The key of the proof is to show that eventually and permanently
predp = corr_predp and succp = corr_succp for every correct process p. In other words, the ring stabilizes in terms of both
the pred and succ variables of processes, which guarantees the correct construction of the sets L p of suspected processes.

We assume that every task is executed as a critical section. We start by making the following observations:

Observation 3. p /∈ Lp permanently for every process p.

Observation 4. Lp = {predp, . . . , succp} − {predp, p, succp} permanently after the execution of any task for every process p.

Observe that, whenever Lp is modified by Task 2, Task 3 or Task 4 of p, predp and succp (and Lp itself) are updated
accordingly by the procedure update_pred_and_succ().

Observation 5. Whenever a process q is included by a correct process p in Lp , p will send a message (of type suspicion in
Task 2 or type probe in Task 3) to q, and, if q is correct, p will eventually receive an (alive, q) message sent by Task 3 or
Task 5 of q.

A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397 393
For the rest of the proof we will assume that any time instant t considered is larger than a time tbase that occurs after the
stabilization time GST (i.e., tbase > GST), after every incorrect process has crashed, and after all messages sent by incorrect
processes have been received. Note that this eventually happens. Hence, any new message received has necessarily been
sent by a correct process.

Lemma 7. For every correct process p, eventually and permanently predp = corr_predp .

Proof. For a correct process p, let predp = r such that r �= corr_predp . For a given time in the execution of the algorithm,
one of the following cases applies:

Case 1: assume first that r ∈ {corr_predp, . . . , p} − {corr_predp, p}. Observe that, with this assumption, r is by definition
not correct, as well as any other process in that range. Therefore, r will be eventually included in L p (by Task 2 or Task 3
of p), and, since r has already crashed, it will not be able to send an (alive, r) message to p, remaining in L p forever.

Case 2: assume now that r /∈ {corr_predp, . . . , pred(p)}. By Observation 4, corr_predp ∈ Lp . Observe that corr_predp could
have been included in Lp by Task 2 or by Task 3 of p. Since corr_predp is by definition correct, by Observation 5 eventually p
will receive and (alive, corr_predp) message. At this point, predp will be set to corr_predp .

Since every time corr_predp has been suspected by p, �p(corr_predp) is incremented by Task 4 of p, and since the
communication link between corr_predp and p is eventually timely, eventually �p(corr_predp) will reach the unknown
bound on message transmission times, after which p will receive the periodical (alive, corr_predp) messages always before
timer �p(corr_predp) expires and corr_predp will not be suspected by p any more. �
Lemma 8. For every correct process p, eventually and permanently succp = corr_succp .

Proof. The proof is by contradiction. By Lemma 7, eventually and permanently predcorr_succp
= p. Assume that succp �=

corr_succp . Since p is not sending by Task 1 periodical (alive, p) messages to corr_succp , then by Task 2 corr_succp will
eventually suspect p and modify predcorr_succp

, which contradicts Lemma 7. �
Theorem 5. Algorithm 3 implements a failure detector of class �Q.

Proof. From Lemmas 7 and 8, for every correct process p, eventually p will be in the stable ring formed by correct pro-
cesses. Otherwise, p is incorrect, and by Lemma 7 eventually and permanently predcorr_succp

= corr_predp . By Observation 4,
p will eventually and permanently be included in Lcorr_succp . As a consequence, eventually and permanently p will be
included in the set of suspected processes of some correct process. This provides the weak completeness property of �Q.

By Observation 3, p is never included in Lp . Once the ring has stabilized, no correct process is included (in Task 2) in
the set Lp of any correct process p. Hence, once the ring has stabilized, no correct process will be present in any set of
suspected processes. This provides the eventual strong accuracy property of �Q. �
Theorem 6. Algorithm 3 is communication-optimal, i.e., eventually only c links are used forever.

Proof. From Lemma 8, for every correct process p, eventually and permanently succp will be set to p’s correct successor in
the ring and, by Task 1, p will send (alive, p) messages to it forever. No other periodical messages will be sent. Furthermore,
since no more suspicions will occur, no new suspicion (and hence sporadic probe or alive) messages will be sent. Thus, if
there are c correct processes in the system, just a number of c unidirectional links will be permanently used. �

A similar reasoning as the one made for the previous algorithm can be made for Algorithm 3 regarding the minimal
assumptions on communication reliability and synchrony required by the algorithm. In this case, in a given execution of
Algorithm 3, besides the reliable and eventually timely link from every correct process to its correct successor in the ring,
the link from every correct process to its correct predecessor in the ring must be reliable (but not eventually timely). The
rest of links can be asynchronous and/or lossy. This makes 2c reliable links, half of which must also be eventually timely
(i.e., the links that are used forever), out of the n(n − 1) links in the system.

4.2.2. Transforming �Q into �P
In this section we present a transformation of the �Q algorithm of the previous section into �P . The transformation

preserves the communication optimality and low sporadic communication overhead of Algorithm 3.
Algorithm 4, which implements �P , is obtained from Algorithm 3 by adding a set G p to every process p. G p is included

into the alive messages sent by p. In the algorithm, additions and removals of processes to L p are also applied to G p . To
build G p from the set Gpredp

received in Task 4, process p adds the processes between predp and p to Gpredp
(both predp

and p excluded). In other words, p relies on its predecessor for suspicions beyond its directly monitored neighborhood.

Correctness Proof. We show now that Algorithm 4 implements a failure detector of class �P and that it is also
communication-optimal. The key of the proof is to show that Algorithm 4 is a transformation of Algorithm 3 into �P

394 A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397

1
2

3
4
5

6
7

8

9

10

11

12

13
14
15
16
17

18
19
20
21
22

23

24
25

26
27

28
29
Algorithm 4: Communication-optimal �P using local one-to-one communication.
{Every process p executes the following}
Procedure main()

predp ← pred(p); {p’s estimation of its nearest correct predecessor in the ring}

succp ← succ(p); {p’s estimation of its nearest correct successor in the ring}
foreach q ∈ Π do �p(q) ← default time-out interval; {�p(q): duration of p’s time-out for q}
Lp ← ∅ ; G p ← ∅; {Lp provides the properties of �Q; G p provides the properties of �P }

|| Task 1: repeat periodically {Sending heartbeats}
if succp �= p then send (alive, p, G p) to succp ;

|| Task 2: repeat periodically {Checking time-outs}

if
(

predp �= p and p did not receive (alive,predp ,−)

during the last �p(predp) ticks of p’s clock

)
then {time-out}

Lp ← Lp ∪ {predp}; G p ← G p ∪ {predp}; {p suspects predp has crashed}

send (suspicion, p) to predp ;
update_pred_and_succ();

|| Task 3: when receive (suspicion, q) from some q {Processing SUSPICIONs}
Lp ← Lp ∪ {p, . . . , q} − {p, q}; G p ← G p ∪ {p, . . . , q} − {p, q};
update_pred_and_succ();
foreach r ∈ {p, . . . , q} − {p, q} do send (probe, p) to r;
send (alive, p, G p) to q;

|| Task 4: when receive (alive, q, Gq) from some q {Processing ALIVEs}
if q ∈ Lp then

Lp ← Lp − {q};
update_pred_and_succ();
�p(q) ← �p(q) + 1;

if q = predp then G p ← (Gq ∪ {predp, . . . , p}) − {predp, p};

|| Task 5: when receive (probe, q) from some q {Processing PROBEs}
send (alive, p, G p) to q;

Procedure update_pred_and_succ()
predp ← p’s nearest predecessor r in the ring such that r /∈ Lp ;
succp ← p’s nearest successor r in the ring such that r /∈ Lp ;
if predp �= p then Lp ← {predp , . . . , succp} − {predp , p, succp}

preserving communication optimality. Observe that in Task 2 and Task 3 exactly the same operations are applied to L p and
to G p . Finally, in Task 4, the global set of suspected processes G p is built by adding to Gpredp

the processes between predp

and p (both predp and p excluded).

Observation 6. p /∈ G p permanently for every process p.

Theorem 7. Algorithm 4 implements a failure detector of class �P .

Proof. Observe that, by the construction of the set G p in Tasks 2, 3, and 4, G p is equivalent to Lp in the range {predp, . . . , p}.
By Lemmas 7 and 8, and by Task 4 of p, eventually G p will include every incorrect process, providing the strong complete-
ness property of �P . By Observation 6 and again by Lemmas 7 and 8 and Task 4 of p, no correct process will be eventually
included in G p , preserving the eventual strong accuracy property of �P . �
Theorem 8. Algorithm 4 is communication-optimal, i.e., eventually only c links are used forever.

Proof. Follows directly from the fact that no additional message is sent in Algorithm 4 with respect to Algorithm 3. �
5. Performance analysis

In Subsection 1.2 we have defined a set of properties to be taken into account when designing failure detectors, namely
communication efficiency, low sporadic overhead and communication locality. In the light of these properties, in this section
we analyse the performance of the communication-optimal �P algorithms. We also include in the analysis Chandra–Toueg’s
algorithm [1] as a reference, as well as the simplest of the communication-efficient algorithms in [17], which considers the
same system model as the present contribution. The goal is to highlight the strengths and weakness of each approach and

A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397 395
Table 2
Performance analysis of �P algorithms. Sporadic overhead and detection latency figures are approximate (� denotes the cardinality of the local set of
suspected processes, usually � � n).

Algorithm Comm. efficiency
(# links used forever)

Sporadic overhead
(# extra messages)

Detection latency Comm. locality

Periodic Sporadic

Chandra–Toueg [1] c(n − 1) 0 Th No –
Comm.-efficient [17] n 0 cTh Yes –
Comm.-optimal Algorithm 2 c 2n2 Th Yes No
Comm.-optimal Algorithm 4 c 2� cTh Yes Yes

Fig. 4. Example of the shortcut mechanism to improve responsiveness.

set the trade-offs to be considered in the implementation of failure detectors for particular scenarios. Specifically, we focus
on the following performance parameters:

• Communication efficiency/optimality. Number of unidirectional links that are used forever.
• Sporadic communication overhead. Number of extra messages exchanged to manage an erroneous suspicion.
• Detection latency (or system responsiveness). Upon a crash, time elapsed until every alive process permanently suspects

the crashed process.
• Communication locality. Scope of the messages. An algorithm exhibits (periodic or sporadic) communication locality

when processes send (periodic or sporadic) messages mainly to their neighborhood.

Table 2 summarizes the performance of the algorithms. Note that sporadic communication locality is not applicable to
the algorithms in [1,17], since they do not have sporadic communication at all (sporadic overhead is null). Observe also
that Algorithm 4, besides being communication-optimal, has a low sporadic overhead due to its one-to-one communication
pattern, and has both periodic and sporadic communication locality. This is at the cost of a linear detection latency, in
contrast to the uniform detection latency of the algorithms using a one-to-all communication pattern.

In Table 2, detection latency is estimated on the basis of the term Th , which denotes the mean delay for sending a new,
periodic, heartbeat message, by which the information about suspected processes is relayed to the successor process in the
ring in the algorithm in [17] and in Algorithm 4. Assuming that the transmission delay of any message is negligible with
respect to Th , the value of Th can be estimated as one half of the periodicity of the task that sends periodic heartbeat
messages (Task 1 in the algorithms proposed in this paper).

The linear detection latency in Algorithm 4 is due to the fact that the information about a new suspicion has to circulate
around the whole ring to reach every alive process. Nevertheless, a mechanism to speed-up the detection latency, at the
price of losing sporadic communication locality, can be easily added. The mechanism consists in the suspecting process p
directly sending the suspicion message not only to the suspected process but also to a subset of processes Λ ⊂ Π , i.e.,
adding shortcuts in the ring. In general, if k = |Λ|, while the communication overhead is incremented in at most 2k mes-
sages, assuming that shortcuts have been uniformly distributed, an estimation of the maximum detection latency results
in (n

k+1)Th . In the limit, Λ = Π − {p}, and the detection latency is reduced to the minimum. The mechanism can be also
applied to the communication-efficient algorithm in [17].

Fig. 4 shows an example of the shortcut mechanism to improve responsiveness in Algorithm 4. Without shortcuts, a fail-
ure suspicion propagates by heartbeats and reaches all alive processes in approximately c Th time. One or more shortcuts
allow the suspicion to be propagated in parallel, reducing the detection latency. Of course, in case the suspicion is erro-
neous, such a mechanism makes the error to be propagated faster in the system. A way of avoiding this apparent drawback
consists in adding a complementary shortcut mechanism for the refutation of a recent, erroneous, suspicion. Observe that
neither of these suspicion/refutation shortcut mechanisms compromises the optimality of Algorithm 4, since eventually, i.e.,
when the ring formed by correct processes stabilizes, they are not used any more.

396 A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397
In general, a trade-off results between detection latency and communication overhead, being the latter either periodic
or sporadic. It is worth noting that parameters related to communication overhead have been expressed in terms of the
number of links and messages. Communication costs, however, strongly depend on network parameters as topology and link
delays, specifically in wide area networks, resulting in not uniform message transmission delays. This fact can be exploited
when using a ring arrangement as a pattern for communication. More precisely, communication costs associated to pairs
of processes provide a hint for the initial ring configuration. Periodic heartbeat communication will take advantage of this.
Furthermore, sporadic communication overhead, which is inherent to communication-optimal algorithms, results in practice
less harmful for algorithms with this kind of local communication than for algorithms with global communication. As we
have shown, the ability of using shortcuts in the formers provide an interesting basis to fit trade-offs between sporadic
communication overhead and detection latency.

Finally, observe that in Algorithm 4 we have ignored message size for simplicity, assuming that it is not a big issue. With
n processes we need log2 n bits per process identifier. Hence, the size of the lists of processes is bounded by n log2 n bits.
Alternatively, we could use a Boolean bit per process, sending always n bits (e.g., 0 not suspected, 1 suspected). Depending
on the average number of suspicions, we could choose in practice—even changing dynamically—the smallest value of the
two.

6. Conclusions

In this paper, we have explored communication efficiency, a performance measure that refers to the number of uni-
directional links that are used forever in an algorithm. We have shown that failure detector class �P requires at least
c unidirectional links to be used forever, c being the number of correct processes. Moreover, when at least one process
crashes, i.e., c < n, c links are also required for �S and Ω . We have proposed two ring-based communication-optimal �P
algorithms. Since these algorithms use exactly c unidirectional links forever, it can be derived that communication optimal-
ity for �P is achieved. Since �P trivially implements Ω , communication optimality can be considered achieved also for �S and Ω failure detectors when c < n.

One of the algorithms uses a Reliable Broadcast primitive to communicate suspicions and refutations, involving a
quadratic number of messages. Since this can be a drawback in some scenarios, e.g., very large networks, we have pro-
posed a second algorithm that uses exclusively one-to-one communication. This algorithm has some interesting properties
which make it suitable for distributed applications deployed over wide area networks: (1) communication optimality, i.e.,
only c links are used forever, (2) low sporadic communication overhead to manage failure suspicions, i.e., the number of
messages exchanged as a consequence of a suspicion is linear, and (3) communication locality, i.e., managing a failure sus-
picion at a process p only implies communicating with processes at p’s neighborhood in the ring. This is of particular
interest in networks where communication costs between pairs of processes are not uniform. If the logical ring of processes
is arranged regarding communication cost criteria, both communication overhead and delays of periodic heartbeats will be
minimized.

The second algorithm admits a flexible implementation. In its basic form, i.e., using exclusively local communication, it
exhibits a linear detection latency. However, a mechanism based on shortcuts can reduce it. Moreover, this mechanism can
be enabled or disabled without affecting the correctness of the algorithm. As a consequence, the mechanism can be applied
partially and be precisely tuned in order to fit trade-offs between network overhead and QoS parameters.

References

[1] T. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed systems, J. ACM 43 (2) (1996) 225–267.
[2] M. Fischer, N. Lynch, M. Paterson, Impossibility of distributed consensus with one faulty process, J. ACM 32 (2) (1985) 374–382.
[3] T. Chandra, V. Hadzilacos, S. Toueg, The weakest failure detector for solving consensus, J. ACM 43 (4) (1996) 685–722.
[4] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, On implementing omega in systems with weak reliability and synchrony assumptions, Distrib.

Comput. 21 (4) (2008) 285–314.
[5] F. Chu, Reducing Ω to �W , Inf. Process. Lett. 67 (6) (1998) 289–293.
[6] A. Fernández, E. Jiménez, M. Raynal, Eventual leader election with weak assumptions on initial knowledge, communication reliability, and synchrony,

in: Proceedings of the IEEE International Conference on Dependable Systems and Networks, DSN’2006, Philadelphia, Pennsylvania, 2006, pp. 166–178.
[7] M. Hutle, D. Malkhi, U. Schmid, L. Zhou, Chasing the weakest system model for implementing Ω and consensus, IEEE Trans. Dependable Secure

Comput. 6 (4) (2009) 269–281.
[8] E. Jiménez, S. Arévalo, A. Fernández, Implementing unreliable failure detectors with unknown membership, Inf. Process. Lett. 100 (2) (2006) 60–63.
[9] M. Larrea, A. Fernández, S. Arévalo, Optimal implementation of the weakest failure detector for solving consensus, in: Proceedings of the 19th IEEE

Symposium on Reliable Distributed Systems, SRDS’2000, Nurenberg, Germany, 2000, pp. 52–59.
[10] D. Malkhi, F. Oprea, L. Zhou, Omega meets Paxos: leader election and stability without eventual timely links, in: Proceedings of the 19th International

Symposium on Distributed Computing, DISC’2005, Krakow, Poland, in: Lect. Notes Comput. Sci., vol. 3724, Springer-Verlag, 2005, pp. 199–213.
[11] A. Mostéfaoui, E. Mourgaya, M. Raynal, C. Travers, A time-free assumption to implement eventual leadership, Parallel Process. Lett. 16 (2) (2006)

189–208.
[12] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, Stable leader election, in: Proceedings of the 15th International Symposium on Distributed

Computing, DISC’2001, Lisbon, Portugal, in: Lect. Notes Comput. Sci., vol. 2180, Springer-Verlag, 2001, pp. 108–122.
[13] M. Larrea, A. Fernández, S. Arévalo, Eventually consistent failure detectors, J. Parallel Distrib. Comput. 65 (3) (2005) 361–373.
[14] M. Larrea, S. Arévalo, A. Fernández, Efficient algorithms to implement unreliable failure detectors in partially synchronous systems, in: Proceedings

of the 13th International Symposium on Distributed Computing, DISC’99, Bratislava, in: Lect. Notes Comput. Sci., vol. 1693, Springer-Verlag, 1999,
pp. 34–48.

http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4368613A556E72s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib464C503A496D70s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4368613A576561s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib416775696C6572614446543038s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib416775696C6572614446543038s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4368753A526564s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib44534E30363A4665726E616E64657As1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib44534E30363A4665726E616E64657As1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4875746C654D535A3039s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4875746C654D535A3039s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4A696D656E657A3A69706C2D32303036s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4C61723A4F7074s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4C61723A4F7074s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4449534330353A4D616C6B6869s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4449534330353A4D616C6B6869s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4D6F73746566616F75693A50504C32303036s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4D6F73746566616F75693A50504C32303036s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4449534330313A416775696C657261s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4449534330313A416775696C657261s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4C61723A4576652D6A706463s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4C61723A456666s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4C61723A456666s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4C61723A456666s1

A. Lafuente et al. / Journal of Computer and System Sciences 81 (2015) 383–397 397
[15] M. Larrea, A. Fernández, S. Arévalo, On the implementation of unreliable failure detectors in partially synchronous systems, IEEE Trans. Comput. 53 (7)
(2004) 815–828.

[16] C. Dwork, N. Lynch, L. Stockmeyer, Consensus in the presence of partial synchrony, J. ACM 35 (2) (1988) 288–323.
[17] M. Larrea, A. Lafuente, I. Soraluze, R. Cortiñas, J. Wieland, Designing efficient algorithms for the eventually perfect failure detector class, J. Softw. 2 (4)

(2007) 1–11.
[18] M. Hutle, Failure detection in sparse networks, Ph.D. thesis, Vienna University of Technology, Wien, August 2005.
[19] W. Chen, S. Toueg, M. Aguilera, On the quality of service of failure detectors, IEEE Trans. Comput. 51 (5) (2002) 561–580.
[20] M. Hurfin, M. Raynal, A simple and fast asynchronous consensus protocol based on a weak failure detector, Distrib. Comput. 12 (4) (1999) 209–223.
[21] A. Mostéfaoui, M. Raynal, Solving consensus using Chandra–Toueg’s unreliable failure detectors: a general quorum-based approach, in: Proceedings

of the 13th International Symposium on Distributed Computing, DISC’99, Bratislava, in: Lect. Notes Comput. Sci., vol. 1693, Springer-Verlag, 1999,
pp. 49–63.

[22] A. Mostéfaoui, M. Raynal, Leader-based consensus, Parallel Process. Lett. 11 (1) (2001) 95–107.
[23] A. Schiper, Early consensus in an asynchronous system with a weak failure detector, Distrib. Comput. 10 (3) (1997) 149–157.
[24] F. Greve, M. Hurfin, R. Macedo, M. Raynal, Consensus based on strong failure detectors: a time and message-efficient protocol, in: Proceedings of

the 15th Parallel and Distributed Processing Workshop, IPDPS’2000, Cancun, Mexico, in: Lect. Notes Comput. Sci., vol. 1800, Springer-Verlag, 2000,
pp. 1258–1265.

[25] R. Guerraoui, M. Raynal, The information structure of indulgent consensus, IEEE Trans. Comput. 53 (4) (2004) 453–466.
[26] L. Lamport, The part-time parliament, ACM Trans. Comput. Syst. 16 (2) (1998) 133–169.
[27] R. Guerraoui, M. Kapalka, P. Kouznetsov, The weakest failure detector to boost obstruction-freedom, in: Proceedings of the 20th International Sympo-

sium on Distributed Computing, DISC’2006, Stockholm, Sweden, in: Lect. Notes Comput. Sci., vol. 4167, Springer-Verlag, 2006, pp. 399–412.
[28] W. Wu, J. Cao, J. Yang, M. Raynal, A hierarchical consensus protocol for mobile ad hoc networks, in: Proceedings of the 14th Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing, PDP’2006, Montbeliard-Sochaux, France, IEEE Computer Society, 2006, pp. 64–72.
[29] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, On implementing Ω with weak reliability and synchrony assumptions, in: Proceedings of the

22nd ACM Symposium on Principles of Distributed Computing, PODC’2003, Boston, Massachusetts, 2003, pp. 306–314.
[30] V. Hadzilacos, S. Toueg, Fault-tolerant broadcasts and related problems, Chapter 5 in: S.J. Mullender (Ed.), Distributed Systems, 2nd edition, Addison-

Wesley, 1993, pp. 97–146.
[31] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, Communication-efficient leader election and consensus with limited link synchrony, in: Pro-

ceedings of the 23rd ACM Symposium on Principles of Distributed Computing, PODC’2004, St. John’s, Newfoundland, Canada, 2004, pp. 328–337.
[32] A. Fernández, E. Jiménez, S. Arévalo, Minimal system conditions to implement unreliable failure detectors, in: Proceedings of the 12th IEEE Pacific Rim

International Symposium on Dependable Computing, PRDC’2006, Riverside, USA, University of California, 2006, pp. 63–72.

http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4C46413A494545455443s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4C46413A494545455443s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib44776F3A53796Es1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4C4C5343573A4A535732303037s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4C4C5343573A4A535732303037s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4875746C653A32303035s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4368656E32303032s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib44433A5261796E616C31393939s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4449534339393A5261796E616Cs1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4449534339393A5261796E616Cs1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4449534339393A5261796E616Cs1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib5261796E616C3A50504C32303031s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib44433A5363686970657231393937s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4950445053323030303A4772657665s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4950445053323030303A4772657665s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4950445053323030303A4772657665s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib7261636869643A6965656574633034s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib6C616D706F72743A7061786F733938s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4449534330363A4775657272616F7569s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib4449534330363A4775657272616F7569s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib50445030363A436F6E734D414E4554s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib50445030363A436F6E734D414E4554s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib504F444330333A416775696C657261s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib504F444330333A416775696C657261s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib48543A3933s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib48543A3933s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib504F444330343A416775696C657261s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib504F444330343A416775696C657261s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib416E746F6E696F3A5052444332303036s1
http://refhub.elsevier.com/S0022-0000(14)00097-X/bib416E746F6E696F3A5052444332303036s1

	Communication-optimal eventually perfect failure detection in partially synchronous systems
	1 Introduction
	1.1 Background and related work
	1.2 Implementing failure detectors
	1.3 Using communication-optimal P to solve consensus
	1.4 Summary of contributions
	1.5 Roadmap

	2 System model
	2.1 Reliable broadcast

	3 On communication optimality
	4 Communication-optimal implementations of P
	4.1 An algorithm using reliable broadcast
	4.2 An algorithm using one-to-one local communication
	4.2.1 Implementing Q
	4.2.2 Transforming Q into P

	5 Performance analysis
	6 Conclusions
	References

