
C

M
U

a

A
R
R
A
A

K
F
C
O
L
C
C

1

(
f
i
l
d
m
c
t
i
e
a
r
p
2

m
b
e
M

c

0
d

The Journal of Systems and Software 84 (2011) 2186– 2195

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

ommunication-efficient leader election in crash–recovery systems

ikel Larrea ∗, Cristian Martín1, Iratxe Soraluze
niversity of the Basque Country, UPV/EHU, 20018 San Sebastián, Spain

 r t i c l e i n f o

rticle history:
eceived 11 November 2010
eceived in revised form 6 June 2011
ccepted 6 June 2011
vailable online 17 June 2011

a b s t r a c t

This work addresses the leader election problem in partially synchronous distributed systems where
processes can crash and recover. More precisely, it focuses on implementing the Omega failure detector
class, which provides a leader election functionality, in the crash–recovery failure model. The concepts
of communication efficiency and near-efficiency for an algorithm implementing Omega are defined.
Depending on the use or not of stable storage, the property satisfied by unstable processes, i.e., those that
crash and recover infinitely often, varies. Two algorithms implementing Omega are presented. In the
eywords:
ault-tolerant distributed computing
onsensus
mega failure detector
eader election
rash–recovery
ommunication-efficient algorithm

first algorithm, which is communication-efficient and uses stable storage, eventually and permanently
unstable processes agree on the leader with correct processes. In the second algorithm, which is near-
communication-efficient and does not use stable storage, processes start their execution with no leader
in order to avoid the disagreement among unstable processes, that will agree on the leader with correct
processes after receiving a first message from the leader.

© 2011 Elsevier Inc. All rights reserved.
. Introduction

Unreliable failure detectors, proposed by Chandra and Toueg
1996), provide (possibly incorrect) information about process
ailures, allowing to solve fault-tolerant agreement problems
n asynchronous distributed systems, e.g., the consensus prob-
em (Pease et al., 1980) (a fundamental result in fault-tolerant
istributed computing is that consensus cannot be solved deter-
inistically in asynchronous systems prone to even a single process

rash (Fischer et al., 1985)). In this work, we address the implemen-
ation of a failure detector class called Omega (Chandra et al., 1996)
n the crash–recovery failure model. Informally, Omega provides an
ventual leader election functionality, i.e., eventually all processes
gree on a common and correct process. Several consensus algo-
ithms based on such a weak leader election mechanism have been
roposed (Guerraoui and Raynal, 2004; Lamport, 1998; Larrea et al.,
005; Mostéfaoui and Raynal, 2001).

Many algorithms implementing Omega in the crash failure
odel, i.e., in which crashed processes do not recover, have
een proposed (Aguilera et al., 2004; Chu, 1998; Fernández
t al., 2006a,b; Fernández and Raynal, 2007; Malkhi et al., 2005;
ostéfaoui et al., 2003, 2004, 2006a,b, 2007). Larrea et al. (2000)

∗ Corresponding author. Tel.: +34 943015084; fax: +34 943015590.
E-mail addresses: mikel.larrea@ehu.es (M. Larrea), martin.cristian@gmail.com,

martin@ikerlan.es (C. Martín), iratxe.soraluze@ehu.es (I. Soraluze).
1 Current address: Ikerlan Research Center, 20500 Arrasate-Mondragón, Spain.

164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2011.06.019
proposed an algorithm requiring all links to be eventually timely
(i.e., there is an unknown bound ı and an unknown time T, such that
if a message is sent at a time t ≥ T, then this message is received by
time t + ı). Aguilera et al. (2001) proposed an algorithm requiring
all links of some unknown correct process to be eventually timely.
Aguilera et al. (2003, 2008) also proposed several algorithms requir-
ing only the outgoing links from some unknown correct process
to be eventually timely. Jiménez et al. (2006) have proposed an
algorithm with unknown membership which requires that even-
tually all correct processes are reachable timely from some correct
process.

Failure detection has also been studied in the crash–recovery
failure model, i.e., in which crashed processes can recover (even
infinitely often). However, few specific algorithms implementing
Omega in this failure model have been proposed. Aguilera et al.
(2000) define an adaptation of the ♦S failure detector class to
the crash–recovery failure model, proposing an algorithm imple-
menting it in partially synchronous systems (Chandra and Toueg,
1996; Dwork et al., 1988). Martín et al. (2007, 2009) proposed sev-
eral algorithms implementing Omega in the crash–recovery failure
model that rely on the use of stable storage to keep the value of an
incarnation number associated with each process. Recently, Martín
and Larrea (2008) have proposed an algorithm for Omega which
does not use stable storage but requires a majority of correct pro-

cesses. In all these algorithms, every alive process sends messages
to the rest of processes. Consequently, the cost of these algorithms
in terms of the number of messages exchanged is high. It would be
interesting to have algorithms for Omega in which eventually only

dx.doi.org/10.1016/j.jss.2011.06.019
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:mikel.larrea@ehu.es
mailto:martin.cristian@gmail.com
mailto:cmartin@ikerlan.es
mailto:iratxe.soraluze@ehu.es
dx.doi.org/10.1016/j.jss.2011.06.019

ems a

o
t
p
a
e
r

f
c
O
s
u
e
p
w
a
a
r
a
a

c
d
f
c
p
s
r
c
a
o
t
a
b
a
c
p
i
s
b
e
p
t
p
a
c
p
m
w

w
a
m
d
c
b
f
d
s

2

o
o

M. Larrea et al. / The Journal of Syst

ne process, i.e., the elected leader, sends a message periodically to
he rest of processes. In this regard, Martín and Larrea (2010) have
roposed a simple Omega algorithm that relies on a nondecreasing
nd persistent local clock associated with each process, in which
ventually only the elected leader keeps sending messages to the
est of processes.

Apart from the seminal work of Aguilera et al. (2000), a
ew works dealing with failure detection and consensus in the
rash–recovery model have been published (e.g., Hurfin et al., 1998;
liveira et al., 1997, and more recently Freiling et al., 2009). The con-

ensus algorithms in Hurfin et al. (1998) and Oliveira et al. (1997)
se ♦S-like failure detectors that require unstable processes to be
ventually suspected forever, which is unrealistic since it involves
redicting the future. Also, all the algorithms use stable storage. The
ork of Freiling et al. (2009) focuses on failure detector classes P

nd ♦P, which are redefined for the crash–recovery model. Their
pproach to solve consensus consists in re-using existing algo-
ithms for the crash model in a modular way. To do so, they emulate

 crash system on top of a crash–recovery system to be able to run
 crash consensus algorithm.

In this work, we first define the concepts of communication effi-
iency and near-efficiency when implementing the Omega failure
etector class in crash–recovery systems. They are related to the
act that eventually either only one process, or only one among
orrect processes, sends messages forever, respectively. Then, we
ropose a communication-efficient Omega algorithm which uses
table storage, and a near-communication-efficient Omega algo-
ithm which does not use stable storage but requires a majority of
orrect processes. In this regard, and following the line of Martín
nd Larrea (2008), we replace the use of stable storage by the need
f a majority of correct processes in order to get all alive processes
o eventually agree on the same leader, even if some of them crash
nd recover infinitely often. A similar trade-off between using sta-
le storage or a correct majority has been discussed by Wiesmann
nd Défago (2006) on the implementation of end-to-end communi-
ation primitives. Depending on the use or not of stable storage, the
roperty that the algorithms satisfy regarding unstable processes,

.e., those that crash and recover infinitely often, varies. When stable
torage is used, unstable processes can agree with correct processes
y reading the identity of the leader from stable storage upon recov-
ry. On the other hand, when stable storage is not used unstable
rocesses must learn from some other process(es) the identity of
he leader upon recovery. As in Martín and Larrea (2008), we make
rocesses to be aware of being in this learning period by outputting

 special “no-leader” value upon recovery. Furthermore, the near-
ommunication-efficient Omega algorithm not using stable storage
roposed in this paper does not rely on any persistent clock, which
akes possible to implement Omega in a communication-efficient
ay as shown in Martín and Larrea (2010).

The rest of the paper is organized as follows. In Section 2,
e describe the system model and the two specific systems S1

nd S2 considered in this work, and give the definitions of com-
unication efficiency and near-efficiency for the Omega failure

etector class in crash–recovery systems. Sections 3 and 4 present a
ommunication-efficient Omega algorithm for system S1 using sta-
le storage and a near-communication-efficient Omega algorithm
or system S2 not using stable storage, respectively. In Section 5, we
iscuss about the relaxation of the communication reliability and
ynchrony assumptions. Finally, Section 6 concludes the paper.

. System model and communication efficiency definitions
We consider a system model composed of a finite and totally
rdered set � = {p1, p2, . . ., pn} of n > 1 processes that communicate
nly by sending and receiving messages. We also use p, q, r, etc.
nd Software 84 (2011) 2186– 2195 2187

to denote processes. Every pair of processes is connected by two
unidirectional communication links, one in each direction.

Processes can only fail by crashing. Crashes are not permanent,
i.e., crashed processes can recover. In every execution of the system,
� is composed of the following three disjoint subsets (Martín et al.,
2007):

• Eventually up, i.e., processes that eventually remain up forever.
We naturally include in this subset processes that never crash,
also called always up.
• Eventually down, i.e., processes that eventually remain crashed

forever.
• Unstable, i.e., processes that crash and recover an infinite number

of times.

By definition, eventually up processes are correct, while even-
tually down and unstable processes are incorrect. We assume that
the number of correct processes in the system in any execution is
at least one.

Each process has a local clock that can accurately measure inter-
vals of time. The clocks of the processes are not synchronized.
Processes are synchronous, i.e., there is an upper bound on the time
required to execute an instruction. For simplicity, and without loss
of generality, we assume that local processing time is negligible
with respect to message communication delays.

Communication links cannot create or alter messages, and are
not assumed to be FIFO. Concerning timeliness or loss properties,
we consider the following three types of links (Aguilera et al., 2003):

• Eventually timely links, where there is an unknown bound ı on
message delays and an unknown (system-wide) global stabiliza-
tion time T, such that if a message is sent at a time t ≥ T, then this
message is received by time t + ı. Note that if the message is sent
before T, then it is eventually lost or received at its destination.
• Lossy asynchronous links, where there is no bound on message

delay, and the link can lose an arbitrary number of messages
(possibly all). Note however that every message that is not lost is
eventually received at its destination.
• (Typed) Fair lossy links, where assuming that each message has

a type, if for every type infinitely many messages are sent, then
infinitely many messages of each type are received (if the receiver
process is correct).

2.1. Specific crash–recovery systems S1 and S2

We consider two specific systems, denoted S1 and S2, respec-
tively. System S1 assumes that processes have access to stable
storage. Regarding communication reliability and synchrony, S1
satisfies the following assumption:

(i) For every correct process p, there is an eventually timely link
from p to every correct and every unstable process.

The rest of links of S1, i.e., the links from/to eventually down
processes and the links from unstable processes, can be lossy asyn-
chronous. Fig. 1 presents a scenario of a system composed of five
processes which satisfies the assumptions of S1.

System S2 assumes that processes do not have access to any
form of stable storage. Alternatively, it is assumed that a majority
of processes are correct. Regarding communication reliability and

synchrony, S2 satisfies the following assumptions:

(i) For every correct process p, there is an eventually timely link
from p to every correct and every unstable process.

2188 M. Larrea et al. / The Journal of Systems a

F
o

(

p
a
a

2

f
u
c
u
a
c
d
i
a
b
t
R
a

F
o

ig. 1. Scenario of system S1: three processes eventually up, one eventually down,
ne unstable.

ii) For every unstable process u, there is a fair lossy link from u to
every correct process.

The rest of links of S2, i.e., the links from/to eventually down
rocesses and the links between unstable processes, can be lossy
synchronous. Fig. 2 presents a scenario of a system satisfying the
ssumptions of S2.

.2. The Omega failure detector class

Chandra et al. (1996) defined a failure detector class for the crash
ailure model called Omega. The output of the failure detector mod-
le of Omega at a process p is a single process q that p currently
onsiders to be correct (it is said that p trusts q). The Omega fail-
re detector class satisfies the following property: there is a time
fter which every correct process always trusts the same correct pro-
ess. Since this definition was made for the crash failure model, it
oes not say anything about unstable processes. Hence, if we keep

t as is for the crash–recovery failure model, unstable processes are
llowed to disagree at any time with correct processes, which can

e a drawback, e.g., making an attempt to solve consensus fail due
o the existence of several leaders (Lamport, 1998; Mostéfaoui and
aynal, 2001). In practice, it could be interesting that eventually
ll the processes that are up, either correct or unstable, agree on a

ig. 2. Scenario of system S2: three processes eventually up, one eventually down,
ne unstable.
nd Software 84 (2011) 2186– 2195

common (correct) leader process. In this regard, the quality of the
agreement of unstable processes with correct ones will depend on
the use or not of stable storage. Intuitively, the use of stable stor-
age allows unstable processes to agree from the beginning of their
execution (by reading the identity of the leader from stable stor-
age), while the absence of stable storage forces unstable processes
to communicate with some correct process(es) in order to learn the
identity of the leader. Hence, we consider the following two defi-
nitions for Omega in the crash–recovery failure model, for systems
with and without stable storage, respectively (Martín and Larrea,
2008; Martín et al., 2007):

Property 1 (Omega-crash–recovery, stable storage). There is a time
after which every process that is up, either correct or unstable, always
trusts the same correct process.

Regarding the behavior of unstable processes in order to satisfy
this property, in our first Omega algorithm every process will read
the identity of its leader from stable storage at the beginning of
the execution. In order to eventually agree permanently with cor-
rect processes, an unstable process u must have written definitely
the identity of the final leader in stable storage. Note that it will
suffice to write it once, provided it is not changed later. We will
assume that unstable processes remain alive long enough to write
definitely the identity of the final leader in stable storage, and we
have included in our algorithm a mechanism to ensure it with high
probability. Said this, there could be some unstable processes that
do not write definitely the identity of the final leader in stable stor-
age. The Omega property defined above does not apply to those
unstable processes.

Property 2 (Omega-crash–recovery, no stable storage). There is a
time after which (1) every correct process always trusts the same cor-
rect process �, and (2) every unstable process, when up, always trusts
either ⊥ (i.e., it does not trust any process) or �. More precisely, upon
recovery it trusts first ⊥, and — if it remains up for sufficiently long —
then � until it crashes.

As we will see, in our second Omega algorithm processes start
setting their leader to ⊥, and no assumption about how long an
unstable process u should be alive when it recovers is made. Said
this, u will only agree on the final leader � with correct processes if,
when up, it receives a message from �. Observe that this definition
of Omega for crash–recovery systems without stable storage is very
useful for leader-based protocols, e.g., consensus, since it allows
unstable processes to delay their participation in the protocol until
they really trust a process, thus ensuring eventual agreement and
making consensus solvable.

2.3. Communication efficiency definitions

We define now the concepts of communication-efficient and
near-communication-efficient implementations of the Omega fail-
ure detector class in crash–recovery systems.

Definition 1. An algorithm implementing the Omega fail-
ure detector class in the crash–recovery failure model is
communication-efficient if there is a time after which only one
process sends messages forever.

Definition 2. An algorithm implementing the Omega failure
detector class in the crash–recovery failure model is near-
communication-efficient if there is a time after which, among
correct processes, only one sends messages forever.
Intuitively, since the (correct) leader process in an Omega algo-
rithm must send messages forever in order to keep being trusted
by the rest of processes, we can derive that a communication-
efficient Omega algorithm is also near-communication-efficient.

ems a

T
c
u

e
s
(
S

3
S

i
a
a
l
l
i
i
a
a
t
o
v
e
a

c
t
T
l
t
R
r
t
w
t
t
R
q
t
a
R
s
a
T
T
l

p
T
i
c
f
o
i

t

r
i
fl
e

M. Larrea et al. / The Journal of Syst

he small difference between both definitions is that in a near-
ommunication-efficient Omega algorithm, besides the leader,
nstable processes can send messages forever.

In the following two sections, we propose a communication-
fficient Omega (Property 1) algorithm which uses stable
torage for system S1, and a near-communication-efficient Omega
Property 2) algorithm which does not use stable storage for system
2, respectively.

. A communication-efficient Omega algorithm for system
1

In this section, we present a communication-efficient algorithm
mplementing Omega (Property 1) in system S1 using stable stor-
ge. Fig. 3 presents the algorithm in detail. The process chosen
s leader by a process p, i.e., trusted by p, is held in a variable
eaderp. Every process p uses stable storage to keep the value of two
ocal variables: leaderp, initially set to p, and an incarnation number
ncarnationp, initially set to 0, which is incremented during initial-
zation and every time p recovers from a crash. Both incarnationp

nd leaderp are read from stable storage (from the INCARNATIONp

nd LEADERp stable storage variables, respectively) by p during ini-
ialization. Also, p has a time-out Timeoutp[q] with respect to every
ther process q (initialized to � + incarnationp, being � a constant
alue), and a Recoveredp vector to count the number of times that
ach process has recovered (initialized to 0 for every other process,
nd to incarnationp for p itself).

The algorithm works as follows. After the initializations, if pro-
ess p does not trust itself, then it resets a timer with respect
o leaderp. After that, p starts the three tasks of the algorithm. In
ask 1, p first waits � + incarnationp time units, after which it writes

eaderp in stable storage. Then, every � time units p checks if it
rusts itself, in which case p sends a LEADER message containing
ecoveredp to the rest of processes. Task 2 is activated whenever p
eceives a LEADER message from another process q (note that this
ask is active during p’s waiting of Task 1): p updates Recoveredp

ith Recoveredq, taking the highest value for each component of
he vector. After that, p checks if q is a better candidate than leaderp

o become p’s leader, which is the case if either (1) Recoveredp[q] <
ecoveredp[leaderp], or (2) Recoveredp[q] = Recoveredp[leaderp] and

 ≤ leaderp.1 In that case, p sets q as its leader and resets timerp

o Timeoutp[q] in order to monitor q (i.e., leaderp) again. Finally, p
lso checks if it deserves to be leader comparing Recoveredp[p] with
ecoveredp[leaderp]. If it is the case leaderp is set to p and timerp is
topped. This way, leaderp will be the process with the smallest
ssociated recovery value in Recoveredp among leaderp, q and p. In
ask 3, which is activated whenever timerp expires, p increments
imeoutp[leaderp] in order to avoid new premature suspicions on
eaderp, and resets leaderp to p.

As we will show, with this algorithm eventually every correct
rocess always trusts the same correct process �. Consequently, by
ask 1 eventually only one correct process sends messages forever,
.e., the algorithm is at least near-communication-efficient. Con-

erning the behavior of unstable processes, the wait instruction
ollowed by the write of leaderp in stable storage at the beginning
f Task 1 ensure with high probability that eventually p writes def-
nitely � in stable storage.2 Actually, in practice it is sufficient that

1 We use 〈Recoveredp[q], q〉 ≤ 〈Recoveredp[leaderp], leaderp〉 to denote it. Observe
hat the case where q = leaderp satisfies the relation.

2 A way to cope with processes not satisfying this assumption could consist in
eturning, together with the identity of the current leader, a Boolean flag indicating
f the process has already completed the waiting instruction of Task 1. Clearly, this
ag will be eventually and permanently true at correct processes, while it will be
ventually and permanently false at unstable processes.
nd Software 84 (2011) 2186– 2195 2189

every unstable process p writes at least once leaderp = � in stable
storage, provided that all subsequent writes (if any) correspond
to � too. Hence, the required number of writes in stable storage,
although unknown, is finite.

From this point, whenever p recovers, it will initialize leaderp to
� from stable storage. Moreover, the initializations of Timeoutp[�] to
� + incarnationp, and of Recoveredp[p] to incarnationp prevent unsta-
ble processes from disturbing the leader election, because they
ensure that eventually (1) every unstable process p does never
suspect the leader � (since p’s time-out with respect to � keeps
increasing forever, and hence eventually timerp never expires), and
(2) every unstable process p will never be elected as the leader in
Task 2 (since incarnationp, and hence Recoveredp[p], keeps increas-
ing forever). Hence, the algorithm is communication-efficient.

3.1. Correctness proof

We show now that the algorithm of Fig. 3 implements Omega
(Property 1) in system S1, and that it is communication-efficient.

Lemma 1. Any message (LEADER, p, Recoveredp), p ∈ �, eventually
disappears from the system.

Proof. A message m cannot remain forever in a link, since it
remains at most ı time in an eventually timely link if sent after
T (otherwise, i.e., if m is sent before T, then it is eventually lost or
received), and is eventually lost or received in a lossy asynchronous
link. Also, m cannot remain forever in the destination process, since
processes are assumed to be synchronous. Hence, m eventually
disappears from the system. �

For the rest of the proof we will assume that any time instant t
is larger than t1 > t0, where:

(1) t0 is a time instant that occurs after the stabilization time T (i.e.,
t0 > T), and after every eventually down process has definitely
crashed, every correct (i.e., eventually up) process has definitely
recovered, and every unstable process has an incarnation value
bigger than any correct process, i.e., ∀u ∈ unstable, ∀p ∈ correct:
incarnationu > incarnationp,

(2) and t1 is a time instant such that all messages sent before t0
have disappeared from the system (this eventually happens by
Lemma 1). In particular, this includes (a) all messages sent by
eventually down processes, (b) all messages sent by correct pro-
cesses before recovering definitely, and (c) all messages sent by
every unstable process u with Recoveredu[u] = incarnationu ≤
incarnationp, for every correct process p. This eventually hap-
pens, since by definition unstable processes crash and recover
an infinite number of times, while correct processes crash and
recover a finite number of times.

Let be � the correct process with the smallest value for its
incarnation� variable, i.e., the correct process that crashes and
recovers fewer times. If two or more correct processes have the
same final value for their incarnation variables, then let � be the
process with smallest identifier among them. We will show that
eventually and permanently, for every correct and every unstable
process p, leaderp = �.

Lemma 2. Eventually and permanently, leader� = �.

Proof. After time t1, the only way for process � to maintain
as leader another process q is by receiving a message (LEADER,
q, Recoveredq) such that Recoveredq[q] < Recovered�[�]. However,
it is simple to see that such a scenario cannot happen, since

any (LEADER, q, Recoveredq) message that � can receive neces-
sarily has either (1) Recoveredq[q] = incarnationq > incarnation� =
Recovered�[�], or (2) Recoveredq[q] = incarnationq = incarnation� =
Recovered�[�] and q > �. Hence, if at a given time leader� = q /= �,

2190 M. Larrea et al. / The Journal of Systems and Software 84 (2011) 2186– 2195

ent Om

t
q
R
b
t
t
t
l

L
a

P
�

L
l

P
r
R
f

Fig. 3. Communication-effici

hen either � will receive a (LEADER, q, Recoveredq) message from
 or timer� will eventually expire. If � receives a (LEADER, q,
ecoveredq) message from q, then by Task 2 of the algorithm �
ecomes the leader and stops timer�. Otherwise, if timer� expires,
hen by Task 3 of the algorithm � becomes the leader too. After
hat, � will not change its leader any more. As a result, even-
ually and permanently process � considers itself the leader, i.e.,
eader� = �. �

emma 3. Eventually and permanently, process � periodically sends
 (LEADER, �, Recovered�) message to the rest of processes.

roof. Follows directly from Lemma 2 and Task 1 of the algorithm.

emma 4. Eventually and permanently, for every correct process p,
eaderp = �.
roof. Follows from Lemma 2 for process �. Let be any other cor-
ect process p. By Lemma 3, � will periodically send a (LEADER, �,
ecovered�) message to the rest of processes, including p. By the
act that the communication link between � and p is eventually
ega algorithm in system S1.

timely, by Task 2 p will receive the message in at most ı time units.
Since by definition, for every correct process p, Recovered�[�] ≤
Recoveredp[p], � is a better candidate to be p’s leader than both p
itself and leaderp (in case leaderp /= �). Hence, p will set leaderp to �,
and will reset timerp to Timeoutp[�]. Observe that timerp can expire
a finite number of times on �, since by Task 3 every time it expires
p increments Timeoutp[�]. Hence, eventually by Task 2 p receives a
(LEADER, �, Recovered�) message from � periodically and timely, i.e.,
before timerp expires. After this happens, p will not change leaderp

to a value different from � any more. Observe also that the leader of
process p can be an eventually down process q whose incarnation
number is smaller than the incarnation number of every correct
process (including �). However, eventually q will definitely crash,
timerp will expire, and by Task 3 leaderp will be set to p so that when
p receives a (LEADER, �, Recovered�) message from � it will adopt �
as its leader. �
Lemma 5. Eventually and permanently, every correct process p /= �
does not send any more messages.

Proof. Follows directly from Lemma 4 and the algorithm. �

ems a

L
m

P
R
f
t
o
R
t
R
�
T
o
l
m
u

T
i
c

P

T
i

P

4
s

r
a
s
t
a
t
f
v
s
q

r
i
t
a
m
i
i
e
f
q
m
f
l
u
(
w
e
c
(
a
t
t
a
i

M. Larrea et al. / The Journal of Syst

emma 6. Eventually, every unstable process u does not send any
ore messages, and leaderu is � forever.

roof. By Lemma 3, � will periodically send a (LEADER, �,
ecovered�) message to the rest of processes, including u. By the
acts that (1) the communication link between � and u is eventually
imely, and (2) u waits � + incarnationu time units at the beginning
f Task 1, eventually by Task 2 u always receives a first (LEADER, �,
ecovered�) message from � before the end of the waiting instruc-
ion of Task 1. Upon reception of that message, and since necessarily
ecovered�[�] < Recoveredu[u] at process u at that instant, u adopts

 as its leader in Task 2. Moreover, by the fact that u initializes
imeoutu[�] to � + incarnationu, eventually timeru does not expire
n � any more. Also, at the end of the wait of Task 1, u will write

eaderu = � in stable storage. After this happens, u will not send any
ore messages, and the value of leaderu will be � forever, since

pon recovery u will read � as its leader from stable storage. �

heorem 1. The algorithm of Fig. 3 implements Omega (Property 1)
n system S1: there is a time after which every process that is up, either
orrect or unstable, always trusts the same correct process �.

roof. Follows directly from Lemmas 2, 4 and 6. �

heorem 2. The algorithm of Fig. 3 is communication-efficient: there
s a time after which only process � sends messages forever.

roof. Follows directly from Lemmas 3, 5 and 6. �

. A near-communication-efficient Omega algorithm for
ystem S2

In this section, we present a near-communication-efficient algo-
ithm implementing Omega (Property 2) in system S2, which
ssumes that processes do not have access to any form of stable
torage. In particular, when a process crashes all its variables loose
heir values. Fig. 4 presents the algorithm in detail, which requires

 majority of the processes in the system to be correct. Contrary to
he previous algorithm, where the variable leaderp was initialized
rom stable storage, leaderp is now initialized to the “no-leader” ⊥
alue. Also, since processes do not have an incarnation counter in
table storage, Timeoutp[q] is initialized to � for every other process
, and Recoveredp[p] is initialized to 1.

The algorithm works as follows. During initialization (and upon
ecovery), p sends a RECOVERED message to the rest of processes,
n order to inform them that it has recovered. After that, p starts
he three tasks of the algorithm. In Task 1, which is periodically
ctivated every � time units, if p trusts itself, then it sends a LEADER
essage containing Recoveredp to the rest of processes. Otherwise,

f leaderp =⊥ then p sends an ALIVE message to the rest of processes
n order to help choosing an initial leader. Task 2 is activated when-
ver p receives either a RECOVERED, an ALIVE or a LEADER message
rom another process q. If p receives a RECOVERED message from
, p increments Recoveredp[q]. Otherwise, if p receives an ALIVE
essage from q, then if leaderp =⊥ and p has received so far ALIVE

rom
n/2� different processes, p considers itself the leader, setting
eaderp to p. Finally, if p receives a LEADER message from q, then p
pdates Recoveredp with Recoveredq as in the previous algorithm
i.e., taking the highest value for each component of the vector), as
ell as its time-out with respect to q, Timeoutp[q], taking the high-

st value between its current value and Recoveredp[p]. After that, p
hecks if q deserves to become p’s leader, which is the case if either
1) leaderp =⊥ and Recoveredp[q] ≤ Recoveredp[p], or (2) leaderp /= ⊥
nd Recoveredp[q] ≤ Recoveredp[leaderp] (using process identifiers

o break ties). In that case, p sets q as its leader and resets timerp

o Timeoutp[q] in order to monitor q (i.e., leaderp) again. Finally, p
lso checks if it deserves to become the leader, which is the case
f leaderp continues being ⊥ or Recoveredp[p] ≤ Recoveredp[leaderp]
nd Software 84 (2011) 2186– 2195 2191

(using process identifiers to break ties). If it is the case, then p sets
leaderp to p and stops timerp.

In Task 3, whenever timerp expires, as in the previous algorithm
p increments Timeoutp[leaderp] in order to avoid new premature
suspicions on leaderp. But differently, now p resets leaderp to ⊥ and
empties the set of ALIVE messages received so far. This is done in
order to avoid several unstable processes to alternate forever being
one of them the leader of the rest, which could occur if they are
continuously crashing and recovering and their respective timers
always expire before receiving a LEADER message from the correct
leader �. Observe that resetting leaderp to ⊥ leads p to start sending
again ALIVE messages periodically by Task 1.

In this algorithm, all the processes set leaderp to ⊥ during ini-
tialization. Since a majority of the processes are correct, at least a
process p will receive a majority of ALIVE messages, setting leaderp

to p in Task 2 and starting to send LEADER messages by Task 1.
Since unstable processes crash and recover an infinite number of
times, ∀p ∈ correct, ∀u ∈ unstable: Recoveredp[u] is unbounded. How-
ever, eventually, when all the correct processes recover definitely,
the recovery counters for correct processes will not increase any
more, i.e., ∀p ∈ �, ∀q ∈ correct: Recoveredp[q] is bounded. This recov-
ery counter values will be propagated among correct processes in
the LEADER messages sent. The correct process, �, with the small-
est propagated recovery value will set leader� to � in Task 2, and
after that leader� will be � permanently. Every other correct pro-
cess p will receive LEADER messages from � periodically and will
adjust timerp so that leaderp = � permanently. Any unstable pro-
cess u will set leaderu to ⊥ every time it recovers and to � when it
receives a LEADER message from �. Thanks to the line Timeoutu[�]←
max(Timeoutu[�], Recoveredu[u]) of Task 2, eventually the timer u
sets on � will not expire any more, since Recovered�[u] is unbounded
and u will update Recoveredu[u] when it receives a LEADER message
from �. Therefore, for every unstable process u, initially leaderu =⊥
and then leaderu = � when u receives a LEADER message from �.

4.1. Correctness proof

We show now that the algorithm of Fig. 4 implements Omega
(Property 2) in system S2, and that it is near-communication-
efficient.

Lemma 7. Any message (RECOVERED, p), (LEADER, p, Recoveredp)
or (ALIVE, p), p ∈ �, eventually disappears from the system.

Proof. A message m cannot remain forever in a link, since it
remains at most ı time in an eventually timely link if sent after
T (otherwise, i.e., if m is sent before T, then it is eventually lost or
received), and is eventually lost or received in a lossy asynchronous
link or a fair lossy link. Also, m cannot remain forever in the des-
tination process, since processes are assumed to be synchronous.
Hence, m eventually disappears from the system. �

Observation 1. Since correct processes crash and recover a finite
number of times, and RECOVERED messages are only sent during ini-
tialization, ∀p ∈ �, ∀q ∈ correct: Recoveredp[q] is bounded.

We naturally assume that every unstable process u sends infinite
RECOVERED messages, i.e., infinitely often, whenever u recovers
from a crash, it executes the instruction which sends a RECOVERED
message to the rest of processes. Note that if eventually u does no
longer execute that instruction, then u is indistinguishable from an
eventually down process (and leaderu =⊥ forever when u is up).

Observation 2. Since unstable processes crash and recover an infi-

nite number of times, ∀p ∈ correct, ∀u ∈ unstable: Recoveredp[u] is
unbounded.

For the rest of the proof, we will consider a process as unstable
only if it completes the initialization of the algorithm an infinite

2192 M. Larrea et al. / The Journal of Systems and Software 84 (2011) 2186– 2195

cient

n
t
p
a

(

(

Fig. 4. Near-communication-effi

umber of times, including the sending of the RECOVERED message
o the rest of processes (otherwise, although formally unstable, the
rocess is considered eventually down). We will also assume that
ny time instant t is larger than t1 > t0, where:

1) t0 is a time instant that occurs after the stabilization time T
(i.e., t0 > T), and after every eventually down process has def-
initely crashed, every correct (i.e., eventually up) process has
definitely recovered, all RECOVERED messages sent by correct
processes have disappeared from the system (this eventually
happens by Lemma 7 and the fact that RECOVERED messages
are only sent during initialization), and the counter of the
number of times that every unstable process has recovered
at every correct process p is bigger than the counter of the
number of times that every correct process has recovered at p,
i.e., ∀p, q ∈ correct, ∀u ∈ unstable: Recoveredp[u] > Recoveredp[q]

(this eventually happens by Observations 1 and 2),

2) and t1 is a time instant such that all LEADER messages sent
before t0 have disappeared from the system (this eventually
happens by Lemma 7).
 Omega algorithm in system S2.

Lemma 8. Eventually for every correct process p and every unstable
process u, leaderp /= u permanently.

Proof. Let p and u be any correct process and any unstable process,
respectively. By Observations 1 and 2 eventually Recoveredp[p] <
Recoveredp[u] permanently. When this holds, if leaderp is still an
unstable process u, leaderp will be set to p at the end of Task 2 when
p receives a LEADER message from u. If p does not receive timely a
LEADER message from u, then timerp will expire and leaderp will be
set to ⊥ in Task 3. After that, p will not set leaderp to u any more.
Otherwise, if leaderp is different from an unstable process u, leaderp

will not be set to u in Task 2 any more, because p itself is a better
candidate to be the leader. �

Lemma 9. Eventually for every correct process p and every eventu-
ally down process q, leaderp /= q permanently.

Proof. Let p and q be any correct process and any eventually

down process, respectively. By definition, eventually q will crash
and will not recover. If when this occurs for some correct process
p leaderp = q, then timerp will expire and leaderp will be set to ⊥ in
Task 3. After that, leaderp /= q permanently. �

ems a

O
p
q

L
c

P
u
r
T
r
t
O
a
t
r
i
h
a
m
R
l
r

s
s
c
a
p
p
a
e
i
L
h
a
R
c
n
u
t
(
r
w

L

P
R
(
t
a
t
A
t
w
c
m
l

L
p

P
n
e
a

M. Larrea et al. / The Journal of Syst

bservation 3. By the algorithm, no process p can have another
rocess q as its leader without having received a LEADER message from
.

emma 10. There exists a time t such that for every t′ > t, for some
orrect process p, leaderp = p.

roof. By Lemma 8, eventually no correct process p has an
nstable process as its leader. By Lemma 9, eventually no cor-
ect process p has an eventually down process as its leader.
herefore, eventually leaderp =⊥, leaderp = q being q another cor-
ect process, or leaderp = p for every correct process p. Observe
hat if leaderp = q for two correct processes p and q, then by
bservation 3 q has already set leaderq = q. Observe also that
ll correct processes will not have permanently their leader set
o ⊥, because in that case at least a correct process p would
eceive a majority of ALIVE messages and would set leaderp = p
n Task 2. Therefore, eventually some correct process p will
ave leaderp = p. Once this occurs, considering Observations 1
nd 2, p only will change leaderp when it receives a LEADER
essage from another correct process q with Recoveredp[q] ≤

ecoveredp[p] (using process identifiers to break ties), setting
eaderp = q. By Observation 3, this means that there is another cor-
ect process q with leaderq = q. �

From the previous, we have that eventually there will be always
ome correct process p such that leaderp = p that sends LEADER mes-
ages to the rest of processes by Task 1 of the algorithm. Apart from
orrect processes, unstable processes can send LEADER messages
s well. Observe that after time t1 the recovery counters for correct
rocesses will not increase any more. Let K be the set of correct
rocesses which send LEADER messages to the rest of processes
fter time t1. By the algorithm, eventually the recovery counter for
very correct process q at every correct process p ∈ K, Recoveredp[q],
s set forever to the highest recovery counter for q propagated in
EADER messages. Observe that some correct process r /∈ K could
ave a higher recovery counter for q, Recoveredr[q], that is not prop-
gated. Let be � ∈ K the correct process such that Recoveredp[�] ≤
ecoveredp[q] (using process identifiers to break ties) for every
orrect processes p, q ∈ K. We will show that eventually and perma-
ently, (1) for every correct process p, leaderp = �, and (2) for every
nstable process u, initially leaderu =⊥ and then leaderu = �. Observe
hat for every correct process r /∈ K, Recoveredr[�] ≤ Recoveredr[r]
with l < r in case of tie), otherwise r would set leaderr to r at the
eception of a LEADER message from � in Task 2 and therefore r
ould be in K.

emma 11. Eventually and permanently leader� = �.

roof. By definition of �, eventually and permanently
ecovered�[�] ≤ Recovered�[q] for every correct process q ∈ K
using process identifiers to break ties). Therefore, if � sets leader�

o � in Task 2 � will not change it neither in Task 2 nor in Task 3
ny more, and hence leader� = � permanently. So we have to prove
hat eventually � sets leader� to �. If leader� is ⊥ and � receives
LIVE from
n/2� different processes, by Task 2 � will set leader�

o �. If � receives a LEADER message from an unstable process, �
ill set leader� to � at the end of Task 2. If neither of this previous

onditions are given before, by Lemma 10 � will receive a LEADER
essage from another correct process q ∈ K, and again � will set

eader� to � in Task 2. �

emma 12. Eventually and permanently leaderp = � for every correct
rocess p ∈ K.
roof. The lemma directly follows from Lemma 11 for p = �. Let be
ow p /= �, with p ∈ K. By Lemma 11 and Task 1 of the algorithm,
ventually � sends LEADER messages permanently. By Lemmas 8
nd 9, eventually p does not choose an unstable or an eventually
nd Software 84 (2011) 2186– 2195 2193

down process as its leader. Whenever p receives a LEADER mes-
sage from �, p sets its leader to � in Task 2, since by definition
of � Recoveredp[�] ≤ Recoveredp[q] for every correct process q ∈ K
(using process identifiers to break ties). After that, every time timerp

expires, p will increment Timeoutp[�] and will set leaderp =⊥. Even-
tually p will receive another LEADER message from � and will set
leaderp to � again. Observe that timerp can expire a finite number
of times on �, since by Task 3 every time it expires p increments
Timeoutp[�], and the link from � to p is eventually timely. Hence,
eventually by Task 2 p receives a LEADER message from � period-
ically and timely, i.e., before timerp expires. After this happens, p
will not change leaderp to a value different from � any more. �

Lemma 13. Eventually and permanently leaderp = � for every correct
process p.

Proof. The lemma directly follows from Lemma 12 for p ∈ K. Let be
now p a correct process such that p /∈ K. Eventually, when Lemma 12
holds, among correct processes only � sends LEADER messages and
by Lemmas 8 and 9, eventually p does not choose an unstable or an
eventually down process as its leader. Therefore, when p receives
a LEADER message from � it sets leaderp to � in Task 2. Observe that
p will not set leaderp to p, since otherwise p would send a LEADER
message and p would be in K. After that, every time timerp expires,
p will increment Timeoutp[�] and will set leaderp =⊥. Eventually p
will receive another LEADER message from � and will set leaderp to
� again. Observe that timerp can expire a finite number of times on
�, since by Task 3 every time it expires p increments Timeoutp[�],
and the link from � to p is eventually timely. Hence, eventually by
Task 2 p receives a LEADER message from � periodically and timely,
i.e., before timerp expires. After this happens, p will not change
leaderp to a value different from � any more. �

Lemma 14. Eventually, every unstable process will stop sending
LEADER messages forever.

Proof. Eventually an unstable process u will not set leaderu to u
and will not send LEADER messages any more. There are two cases
to consider:

(a) An unstable process u could set leaderu to u when, having
leaderu =⊥, u receives ALIVE from
n/2� different processes.
Observe that eventually, when Lemma 13 holds, every correct
process p will have leaderp /= ⊥ permanently, and therefore,
correct processes, a majority of the processes in the system, stop
sending ALIVE messages definitely, and hence an unstable pro-
cess u will never receive ALIVE from
n/2� different processes.

(b) An unstable process u could also change leaderu from ⊥ to
u in Task 2 after receiving a LEADER message from a pro-
cess q, if Recoveredu[u] < Recoveredu[q] or Recoveredu[u] =
Recoveredu[q] and u < q. Observe that eventually, when
Lemma 12 holds, by Observations 1 and 2, this only might
occur if u receives a LEADER message from another unstable
process v before receiving a LEADER message from �. In this
case, if Recoveredu[u] ≤ Recoveredu[v] (using process identifiers
to break ties), then u will set leaderu to u and will start to
send LEADER messages. However, several unstable processes
will not alternate forever being one of them the leader of the
rest. Observe that if unstable processes which are up remain
up sufficiently long, they will receive a LEADER message from �
and they will take � as their leader and no unstable process u
will set leaderu to u any more. Besides, if all unstable processes
put their leader to ⊥ or to � at the same time no unstable pro-
cess u will set leaderu to u any more. Therefore, the leadership

alternance among unstable processes only may occur if there is
always at least an unstable process u up with leaderu set to u that
sends LEADER messages that make another unstable process v
set leaderv to v after which u crashes. But with this purpose, the

2 tems and Software 84 (2011) 2186– 2195

L
h
l

P
b
H
u
�
v
R
R
m
c
b
a
w
l
u
c

T
i
a
c
o
u

P

T
t
m

P
r

c
p
e
s
m

5
a

t
m
c
t
i
m
a
d

194 M. Larrea et al. / The Journal of Sys

unstable process u such that leaderu is u will change from an
unstable process with a higher recovery counter to another with
a lower recovery counter (using process identifiers to break
ties). At the end, when w, the unstable process with the smallest
recovery counter, sets leaderw to w and sends LEADER messages,
no other unstable process will become leader. Therefore, when
w crashes, the timers that unstable processes with w as their
leader have set on w will expire (if they do not crash before)
and they will set their leader to ⊥ in Task 3. After that, no other
unstable process will send LEADER messages again.

�

emma 15. Eventually, every unstable process upon recovery will
ave leaderu =⊥ first and — if it remains up for sufficiently long — then

eaderu = � until it crashes.

roof. Eventually, when Lemmas 12 and 14 hold, process � will
e the unique process sending LEADER messages in the system.
ence, whenever an unstable process u recovers, if it remains
p for sufficiently long, it will receive a LEADER message from
, and it will update Recoveredu from Recovered�, as well as the
alue of Timeoutu[�]. On the one hand, by Observations 1 and 2,
ecoveredu[u] > Recoveredu[�] when u updates Recoveredu from
ecovered�. On the other hand, Timeoutu[�] will be updated with the
aximum value between Timeoutu[�] and Recoveredu[u]. This way,

onsidering that Recoveredu[u] increases forever for every unsta-
le process u, Timeoutu[�] will be such that timeru will not expire
ny more (since the link from � to u is eventually timely). Thus,
hen u recovers, if it receives a message from �, u will change its

eader from ⊥ to � and � will remain as u’s leader until u crashes. If
 crashes before receiving the LEADER message from �, leaderu will
ontinue being ⊥. �

heorem 3. The algorithm of Fig. 4 implements Omega (Property 2)
n system S2: there is a time after which (1) every correct process
lways trusts the same correct process �, and (2) every unstable pro-
ess, when up, always trusts either ⊥ (i.e., it does not trust any process)
r �. More precisely, upon recovery it trusts first ⊥, and — if it remains
p for sufficiently long — then � until it crashes.

roof. Follows directly from Lemmas 13 and 15. �

heorem 4. The algorithm of Fig. 4 is near-communication-efficient:
here is a time after which, among correct processes, only � sends
essages forever.

roof. Follows directly from Lemma 13 and Task 1 of the algo-
ithm. �

Finally, observe that the algorithm of Fig. 4 is not
ommunication-efficient, since besides the leader �, unstable
rocesses also send messages forever. Interestingly, eventually
very time an unstable process u recovers, if it remains up for
ufficiently long, as soon as it sets leaderu = � it stops sending
essages until it crashes.

. Relaxing the communication reliability and synchrony
ssumptions

In the algorithms presented in this work, it is possible to relax
he assumptions on communication reliability and synchrony, by

eans of the use of message relaying, i.e., the first time a pro-
ess p receives a message m, before delivering it p resends m to
he rest of processes (a small optimization consists in not send-

ng m neither to its original sender nor to the process from which

 has been received, if different from the original sender). This
pproach requires messages to be uniquely identified, in order to
etect duplicates. A usual way to do it is to add a pair (sender id,
Fig. 5. Relaxed scenario of system S2: three processes eventually up, one eventually
down, one unstable.

sequence number) to every message. In the crash–recovery fail-
ure model, uniqueness of the sequence number requires to store
it in stable storage. An alternative consists in adding a timestamp
given by the sender’s clock, assuming that clocks continue running
despite the crash of processes.

According to the above, the algorithm of Fig. 3 works under the
following weaker assumption:

(i’) For every correct process p, there is an eventually timely path
from p to every correct and every unstable process.

Similarly, the algorithm of Fig. 4 works under the following
weaker assumptions:

(i’) For every correct process p, there is an eventually timely path
from p to every correct and every unstable process.

(ii’) For every unstable process u, there is a fair lossy link from u to
some correct process.

Fig. 5 presents a scenario which satisfies the weaker assump-
tions required by the algorithm of Fig. 4. A consequence of the
use of message relaying is that the algorithms will no longer
be (near-)communication-efficient sensu stricto, i.e., they remain
(near-)communication-efficient only regarding the number of (cor-
rect) processes that send “new” messages forever.

6. Conclusion

In this paper, we have studied the leader election problem in
distributed systems where processes can crash and recover. The
concepts of communication efficiency and near-efficiency for an
algorithm implementing the Omega failure detector class have
been defined. Depending on the use or not of stable storage, the
property satisfied by unstable processes varies. Then, two Omega
algorithms have been presented, one of which is communication-
efficient and relies on the use of stable storage, while the other is
near-communication-efficient and does not rely on stable storage
but on a majority of correct processes.

We believe that Omega, as defined in this paper, can be use-
ful to solve consensus in the crash–recovery model, in particular

because its definition avoids the disagreement among unstable
processes and correct processes. However, designing efficient con-
sensus protocols based on Omega in the crash–recovery model
remains an open research field. In this regard, we think that existing

ems a

l
a
a

t
r
p
l
a
i
w
c
a
a

A

t
i
B
t

R

A

A

A

A

A

C

C

C

D

F

F

F

F

F

G

Iratxe Soraluze received her MS and PhD degrees in Computer Science from the
M. Larrea et al. / The Journal of Syst

eader-based consensus protocols for the crash model can be
dapted to the crash–recovery model with the help of the Omega
lgorithms proposed in this paper.

Compared to the state of the art in implementing Omega in
he crash failure model, the algorithms presented in this paper
ely on stronger synchrony assumptions, e.g., they require every
air of correct processes to be connected by an eventually timely

ink. Our aim has been to keep algorithms relatively simple, but
t the same time to achieve communication efficiency as defined
n this paper. Said this, we believe that it could be possible to

eaken the synchrony assumptions while preserving communi-
ation efficiency. However, determining the weakest synchrony
ssumptions to implement Omega efficiently in crash–recovery is
n open research line.

cknowledgements

The authors would like to thank the anonymous referees for
heir helpful comments. Research partially supported by the Span-
sh Research Council (MCeI), under grant TIN2010-17170, the
asque Government, under grants IT395-10 and S-PE10UN55, and
he Comunidad de Madrid, under grant S2009/TIC-1692.

eferences

guilera, M., Chen, W., Toueg, S., 2000. Failure detection and consensus in the
crash–recovery model. Distributed Computing 13 (2), 99–125.

guilera, M., Delporte-Gallet, C., Fauconnier, H., Toueg, S., October 2001. Stable
leader election. In: Proceedings of the 15th International Symposium on Dis-
tributed Computing (DISC’2001), Springer-Verlag, Lisbon, Portugal, October
2001, LNCS 2180, pp. 108–122.

guilera, M., Delporte-Gallet, C., Fauconnier, H., Toueg, S., 2003. On implementing �
with weak reliability and synchrony assumptions. In: Proceedings of the 22nd
ACM Symposium on Principles of Distributed Computing (PODC’2003), Boston,
MA, July 2004, pp. 306–314.

guilera, M., Delporte-Gallet, C., Fauconnier, H., Toueg, S., 2004. Communication-
efficient leader election and consensus with limited link synchrony. In:
Proceedings of the 23rd ACM Symposium on Principles of Distributed Comput-
ing (PODC’2004), St. John’s, Newfoundland, Canada, July 2004, pp. 328–337.

guilera, M., Delporte-Gallet, C., Fauconnier, H., Toueg, S., 2008. On implementing
omega in systems with weak reliability and synchrony assumptions. Distributed
Computing 21 (4), 285–314.

handra, T., Hadzilacos, V., Toueg, S., 1996. The weakest failure detector for solving
consensus. Journal of the ACM 43 (July (4)), 685–722.

handra, T., Toueg, S., 1996. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM 43 (March (2)), 225–267.

hu, F., 1998. Reducing ̋ to ♦W. Information Processing Letters 67 (September (6)),
289–293.

work, C., Lynch, N., Stockmeyer, L., 1988. Consensus in the presence of partial
synchrony. Journal of the ACM 35 (April (2)), 288–323.

ernández, A., Jiménez, E., Arévalo, S., 2006a. Minimal system conditions to imple-
ment unreliable failure detectors. In: Proceedings of the 12th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC’2006), University
of California, Riverside, USA, December 2006, pp. 63–72.

ernández, A., Jiménez, E., Raynal, M., 2006b. Eventual leader election with weak
assumptions on initial knowledge, communication reliability, and synchrony.
In: Proceedings of the IEEE International Conference on Dependable Systems
and Networks (DSN’2006), Philadelphia, PA, June 2006, pp. 166–178.

ernández, A., Raynal, M., 2007. From an intermittent rotating star to a leader.
In: Proceedings of the 11th International Conference on Principles of Dis-
tributed Systems (OPODIS’2007), Springer-Verlag, Guadeloupe, French West
Indies, December 2007, LNCS 4878, pp. 189–203.

ischer, M., Lynch, N., Paterson, M., 1985. Impossibility of distributed consensus with
one faulty process. Journal of the ACM 32 (April (2)), 374–382.

reiling, F., Lambertz, C., Majster-Cederbaum, M., 2009. Modular consensus
algorithms for the crash–recovery model. In: Proceedings of the 10th Inter-

national Conference on Parallel and Distributed Computing, Applications
and Technologies (PDCAT’2009), Higashi Hiroshima, Japan, December 2009,
pp. 287–292.

uerraoui, R., Raynal, M., 2004. The information structure of indulgent consensus.
IEEE Transactions on Computers 53 (April (4)), 453–466.
nd Software 84 (2011) 2186– 2195 2195

Hurfin, M., Mostéfaoui, A., Raynal, M., 1998. Consensus in asynchronous systems
where processes can crash and recover. In: Proceedings of the 17th IEEE Sym-
posium on Reliable Distributed Systems (SRDS’1998), West Lafayette, IN, USA,
October 1998, pp. 280–286.

Jiménez, E., Arévalo, S., Fernández, A., 2006. Implementing unreliable failure detec-
tors with unknown membership. Information Processing Letters 100 (2), 60–63.

Lamport, L., 1998. The part-time parliament. ACM Transactions on Computer Sys-
tems 16 (May (2)), 133–169.

Larrea, M., Fernández, A., Arévalo, S., 2000. Optimal implementation of the weak-
est failure detector for solving consensus. In: Proceedings of the 19th IEEE
Symposium on Reliable Distributed Systems (SRDS’2000), Nurenberg, Germany,
October 2000, pp. 52–59.

Larrea, M., Fernández, A., Arévalo, S., 2005. Eventually consistent failure detectors.
Journal of Parallel and Distributed Computing 65 (March (3)), 361–373.

Malkhi, D., Oprea, F., Zhou, L., 2005. Omega meets paxos: leader election and stability
without eventual timely links. In: Proceedings of the 19th International Sympo-
sium on Distributed Computing (DISC’2005), Springer-Verlag, Krakow, Poland,
September 2005, LNCS 3724, pp. 199–213.

Martín, C., Larrea, M., 2008. Eventual leader election in the crash–recovery fail-
ure model. In: Proceedings of the 14th Pacific Rim International Symposium
on Dependable Computing (PRDC’2008), Taipei, Taiwan, December 2008, pp.
208–215.

Martín, C., Larrea, M., 2010. A simple and communication-efficient Omega algo-
rithm in the crash–recovery model. Information Processing Letters 110 (3),
83–87.

Martín, C., Larrea, M., Jiménez, E., 2007. On the implementation of the Omega
failure detector in the crash–recovery failure model. In: Proceedings of the
ARES 2007 Workshop on Foundations of Fault-tolerant Distributed Computing
(FOFDC’2007), Vienna, Austria, April 2007, pp. 975–982.

Martín, C., Larrea, M., Jiménez, E., 2009. Implementing the Omega failure detector
in the crash–recovery failure model. Journal of Computer and System Sciences
75 (May (3)), 178–189.

Mostéfaoui, A., Mourgaya, E., Raynal, M., 2003. Asynchronous implementation
of failure detectors. In: Proceedings of the IEEE International Conference on
Dependable Systems and Networks (DSN’2003), San Francisco, CA, June 2003,
pp. 351–360.

Mostéfaoui, A., Mourgaya, E., Raynal, M., Travers, C., 2006a. A time-free assump-
tion to implement eventual leadership. Parallel Processing Letters 16 (June (2)),
189–208.

Mostéfaoui, A., Rajsbaum, S., Raynal, M., Travers, C., 2007. From omega to Omega: A
simple bounded quiescent reliable broadcast-based transformation. Journal of
Parallel and Distributed Computing 67 (January (1)), 125–129.

Mostéfaoui, A., Raynal, M., 2001. Leader-based consensus. Parallel Processing Letters
11 (March (1)), 95–107.

Mostéfaoui, A., Raynal, M., Travers, C., 2004. Crash–resilient time-free eventual
leadership. In: Proceedings of the 23rd IEEE Symposium on Reliable Dis-
tributed Systems (SRDS’2004), Florianópolis, Brazil, October 2004, pp. 208–
217.

Mostéfaoui, A., Raynal, M., Travers, C., 2006b. Time-free and timer-based assump-
tions can be combined to obtain eventual leadership. IEEE Transactions on
Parallel and Distributed Systems 17 (July (7)), 656–666.

Oliveira, R., Guerraoui, R., Schiper, A., 1997. Consensus in the crash–recover model.
Technical Report TR-97/239. Swiss Federal Institute of Technology, Lausanne,
July 1997.

Pease, M., Shostak, R., Lamport, L., 1980. Reaching agreement in the presence of
faults. Journal of the ACM 27 (April (2)), 228–234.

Wiesmann, M., Défago, X., 2006. End-to-end consensus using end-to-end chan-
nels. In: Proceedings of the 12th Pacific Rim International Symposium on
Dependable Computing (PRDC’2006), Riverside, CA, USA, December 2006,
pp. 341–350.

Mikel Larrea received his MS degree in Computer Science from the Swiss Federal
Institute of Technology in 1995, and his PhD degree in Computer Science from the
University of the Basque Country in 2000. He is currently an associate professor
of Computer Science at the University of the Basque Country. His research inter-
ests include distributed algorithms and systems, fault tolerance and ubiquitous
computing.

Cristian Martín received his MS and PhD degrees in Computer Science from the
University of the Basque Country in 2002 and 2011, respectively. He is currently a
researcher at the Ikerlan Research Center. His research interests include distributed
and ubiquitous systems, and fault tolerance.
University of the Basque Country in 1999 and 2004, respectively. She is currently
an assistant professor of Computer Science at the University of the Basque Country.
Her research interests include distributed algorithms and systems, fault tolerance
and ubiquitous computing.

	Communication-efficient leader election in crash–recovery systems
	1 Introduction
	2 System model and communication efficiency definitions
	2.1 Specific crash–recovery systems S1 and S2
	2.2 The Omega failure detector class
	2.3 Communication efficiency definitions

	3 A communication-efficient Omega algorithm for system S1
	3.1 Correctness proof

	4 A near-communication-efficient Omega algorithm for system S2
	4.1 Correctness proof

	5 Relaxing the communication reliability and synchrony assumptions
	6 Conclusion
	Acknowledgements
	References

