
An Evaluation of Communication-Optimal �P Algorithms ∗

Mikel Larrea, Iratxe Soraluze, Roberto Cortiñas, Alberto Lafuente
The University of the Basque Country

20018 San Sebastián, Spain
{mikel.larrea, iratxe.soraluze, roberto.cortinas, alberto.lafuente}@ehu.es

Abstract

This paper presents an evaluation of several
communication-optimal algorithms implementing the
�P class of failure detectors. The first algorithm is
based on a Reliable Broadcast primitive, involving a
quadratic number of messages to manage a suspicion.
The second algorithm uses exclusively one-to-one com-
munication, involving a linear number of messages to
manage a suspicion, but with a higher latency to propa-
gate the suspicion to the rest of processes. A third algo-
rithm reduces this latency using an additional one-to-all
communication mechanism. We evaluate the quality of
service provided by these algorithms, in terms of the ca-
pability of the failure detector to provide right answers
and the reaction time after a failure.

1. Introduction

Unreliable failure detectors, proposed by Chandra
and Toueg [4], have been used to address the consen-
sus problem [11] and several related problems in asyn-
chronous crash-prone distributed systems. In this pa-
per, we mainly focus on the Eventually Perfect failure
detector class, denoted �P , which satisfies (1) strong
completeness: eventually every process that crashes is
permanently suspected by every correct process, and (2)
eventual strong accuracy: there is a time after which cor-
rect processes are not suspected by any correct process.

Consensus can also be solved with a weaker failure
detector class called Eventually Strong, denoted �S,
which satisfies strong completeness and eventual weak
accuracy: there is a time after which some correct pro-
cess is not suspected by any correct process. Specifi-
cally, a particular failure detector called Ω, equivalent to

∗Research partially supported by the Spanish Research Coun-
cil, grants TIN2007-67353-C02-02 and TIN2006-15617-C03-01, the
Basque Government, grant S-PE06IK01, and the Comunidad de
Madrid, grant S-0505/TIC/0285.

�S, has been proved to be the weakest failure detector
to solve consensus [3]. The Ω failure detector provides
eventual agreement on a common leader among all non-
faulty processes in a system. Specific algorithms for im-
plementing Ω and/or �S have been proposed in the lit-
erature [1, 2, 8]. However, note that since �P is strictly
stronger than �S, any implementation of �P trivially
implements �S. Observe also that �P can also be eas-
ily transformed into Ω, e.g., by choosing as leader the
non-suspected process with lowest identifier. Also, for
certain problems [7] and consensus protocols [12] fail-
ure detector �P is required. These facts lead us to look
for �P based solutions.

In [9] it has been proposed a family of heartbeat-
based algorithms which implement �P using a logical
ring arrangement of processes. In these algorithms, ev-
ery process p tries to determine its correct successor in
the ring, i.e., the process to which p should send heart-
beats forever, and also its correct predecessor in the ring,
i.e., the process from which p should receive heartbeats
forever. The algorithms are communication-efficient [1],
i.e., eventually only n unidirectional links carry mes-
sages forever. Recently, it has been proposed in [10]
a communication-optimal implementation of �P , in
which eventually only C unidirectional links carry mes-
sages forever, being C the number of correct processes
in the system.

The first algorithm presented in this paper is the
communication-optimal implementation of �P pro-
posed in [10], where every process communicates sus-
picions (and refutations) to the rest of processes using
a Reliable Broadcast primitive [4], i.e., a reliable form
of one-to-all communication. A characteristic of the al-
gorithm is that, due to the use of Reliable Broadcast, the
number of messages exchanged when a suspicion occurs
is quadratic. This can be a serious drawback in some
scenarios, e.g., very large networks, in which traffic-load
is a critical issue.

As a second algorithm, we propose a communication-
optimal implementation of �P which uses exclusively



one-to-one communication, even for communicating
suspicions and refutations. In this algorithm, informa-
tion about suspicions will be included into heartbeat
messages and propagated around the ring. Since Reli-
able Broadcast is not used, the overhead to manage sus-
picions is reduced considerably. A drawback of this al-
gorithm is its linear crash detection time. We reduce
it by defining a new algorithm that introduces sporadic
one-to-all communication.

We evaluate the performance of these three
communication-optimal implementations of �P in
terms of QoS measures, comparing them to Chandra-
Toueg’s all-to-all based �P algorithm.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the system model considered in this
work. In Section 3, we present the three communication-
optimal algorithms implementing �P . In Section 4, we
analyze the complexity and evaluate the performance of
the algorithms. Finally, Section 5 concludes the paper.

2. System model

We consider a distributed system composed of a fi-
nite set Π of n processes, Π = {p1, p2, . . . , pn}, that
communicate only by sending and receiving messages.
Every pair of processes (pi, pj) is connected by two uni-
directional and reliable communication links pi → pj

and pj → pi.
Processes can only fail by crashing, that is, by pre-

maturely halting. Moreover, crashes are permanent, i.e.,
crashed processes do not recover. In every run of the
system we identify two complementary subsets of Π: the
subset of processes that do not fail, denoted correct, and
the subset of processes that do fail, denoted crashed.
We use C to denote the number of correct processes in
the system in the run of interest, which we assume is at
least one, i.e., C = |correct| ≥ 1.

We consider that processes are arranged in a logi-
cal ring. Without loss of generality, process pi is pre-
ceded by process pi−1, and followed by process pi+1.
As usual, p1 follows pn in the ring. In general, we will
use the functions pred(p) and succ(p) respectively to
denote the predecessor and the successor of a process p
in the ring.

Concerning timing assumptions, we consider a par-
tially synchronous model [4, 6] which stipulates that,
in every run of the system, there are bounds on rela-
tive process speeds and on message transmission times,
but these bounds are not known and they hold only af-
ter some unknown but finite time (called GST for Global
Stabilization Time). Actually, the bounds must exist and
hold only for the C links that eventually form the ring
of correct processes, i.e., the links from every correct

process to its correct successor in the ring.
Finally, in the algorithms presented in this paper we

assume that a local clock that can measure real-time in-
tervals is available to each process. Clocks are not syn-
chronized.

3. Communication-optimal implementa-
tions of �P

3.1. Reliable Broadcast based optimal �P

We describe here a first communication-optimal al-
gorithm that implements �P using Reliable Broad-
cast [10].

Algorithm 1: Communication-optimal �P using Reliable
Broadcast.

{Every process p executes the following}
Procedure update pred and succ()(1)

if ∀r : Balancep(r) > 0 then(2)

predp ← p(3)

succp ← p(4)

else(5)

predp ← p’s nearest predecessor r in the ring(6)

such that Balancep(r) ≤ 0
succp ← p’s nearest successor r in the ring such(7)

that Balancep(r) ≤ 0

predp ← pred(p)(8)

succp ← succ(p)(9)

forall q ∈ Π do(10)

∆p(q)← default time-out interval(11)

Balancep(q)← 0(12)

cobegin(13)

|| Task 1: repeat periodically(14)

if succp �= p then(15)

send (ALIV E, p) to succp(16)

|| Task 2: repeat periodically(17)

if (predp �= p) and p didn’t receive (ALIV E, predp)(18)

during the last ∆p(predp) ticks of p’s clock then
r-broadcast (SUSPICION , p, predp)(19)

|| Task 3: when r-deliver(SUSPICION, q, r)(20)

Balancep(r)← Balancep(r) + 1(21)

update pred and succ()(22)

if r = p then(23)

r-broadcast (REFUTATION , p)(24)

|| Task 4: when r-deliver(REFUTATION, q)(25)

Balancep(q)← Balancep(q)− 1(26)

∆p(q)← ∆p(q) + 1(27)

update pred and succ()(28)

coend(29)

As shown in Algorithm 1, each process sends heart-
beats to its successor in the ring, and monitors its pre-
decessor by hearing heartbeats from it. Every process p
uses a Balancep variable for every process q, account-
ing suspicions and refutations for q. If Balancep(q) >
0, with q �= p, then p suspects q; else, q is trusted



by p. This way, Balancep provides the properties of
�P . Every process p starts sending periodically an
(ALIV E, p) message to its successor in the ring, de-
noted by the variable succp (Task 1). Also, every
process p waits for periodical (ALIV E, predp) mes-
sages from its predecessor in the ring, denoted by the
variable predp. If p does not receive such a mes-
sage on a specific time-out interval of ∆p(predp), then
p suspects that predp has crashed, and r-broadcasts
a (SUSPICION , p, predp) message (Task 2). In
Task 3, when p r-delivers a (SUSPICION , q, r)
message, p increments Balancep(r) and calls the
update pred and succ procedure. Besides this, if r =
p, i.e., p has been erroneously suspected by q, p r-
broadcasts a (REFUTATION , p) message. In Task 4,
when p r-delivers a (REFUTATION , q) message, p
decrements Balancep(q), increments ∆p(q), and calls
the update pred and succ procedure. Variables predp

and succp are updated from Balancep to the nearest
predecessor and the nearest successor in the ring hav-
ing a non-positive balance respectively. If all the com-
ponents of the Balancep vector are positive, then p sets
both predp and succp to p.

3.2. One-to-one communication based
optimal �P

In this section, we propose a second communication-
optimal algorithm implementing �P , that uses one-to-
one communication exclusively. As shown in Algo-
rithm 2 every process p uses a Suspectedp list to pro-
vide the properties of �P . Every process p starts send-
ing periodically an (ALIV E, p, Suspectedp) message
to its successor in the ring, denoted by the variable
succp (Task 1). Also, every process p waits for peri-
odical (ALIV E, predp, −) messages from its prede-
cessor in the ring, denoted by the variable predp. If
p does not receive such a message on a specific time-
out interval of ∆p(predp), then p suspects that predp

has crashed, includes predp in its list Suspectedp, and
sends a (SUSPICION , p, predp) message to predp

(Task 2). As we will see, if predp has not crashed, it
will reply to p with a (REFUTATION , predp) mes-
sage. Finally, p calls the update pred and succ pro-
cedure, which updates its predp and succp variables to
its nearest unsuspected predecessor and successor in the
ring, respectively.

In Task 3, when a process p receives a
(SUSPICION , q, p) message for some q, p knows
that it has been erroneously suspected by q, and hence
p sends a (REFUTATION , p) message to q. Also,
p sets succp to q. In Task 4, when a process p receives
a (REFUTATION , q) message for some q, p knows

Algorithm 2: Communication-optimal �P using exclusively
one-to-one communication.

{Every process p executes the following}
Procedure update pred and succ()(1)

predp ← p’s nearest predecessor r in the ring such that(2)

r /∈ Suspectedp

succp ← p’s nearest successor r in the ring such that(3)

r /∈ Suspectedp

predp ← pred(p)(4)

succp ← succ(p)(5)

forall q ∈ Π do(6)

∆p(q)← default time-out interval(7)

Suspectedp ← ∅(8)

cobegin(9)

|| Task 1: repeat periodically(10)

if succp �= p then(11)

send (ALIV E, p, Suspectedp) to succp(12)

|| Task 2: repeat periodically(13)

if (predp �= p) and p didn’t receive (ALIV E, predp,(14)

−) during the last ∆p(predp) ticks of p’s clock then
Suspectedp ← Suspectedp ∪ {predp}(15)

send (SUSPICION , p, predp) to predp(16)

update pred and succ()(17)

|| Task 3: when receive (SUSPICION , q, p) for some q(18)

send (REFUTATION , p) to q(19)

succp ← q(20)

|| Task 4: when receive (REFUTATION , q) for some q(21)

Suspectedp ← Suspectedp − {q}(22)

∆p(q)← ∆p(q) + 1(23)

update pred and succ()(24)

|| Task 5: when receive (ALIV E, predp,(25)

Suspectedpredp ) from predp

forall q ∈ Π except predp and p do(26)

if q ∈ Suspectedpredp and q /∈ Suspectedp(27)

then
Suspectedp ← Suspectedp ∪ {q}(28)

send (SUSPICION , p, q) to q(29)

update pred and succ()(30)

coend(31)

that it erroneously suspected q, and hence p removes
q from its list Suspectedp, increments ∆p(q) in order
to avoid future erroneous suspicions, and calls the
update pred and succ procedure.

Since suspicions are not broadcast to all processes
in Task 2, we need a mechanism allowing processes
to learn about suspicions made by other processes.
Task 5 implements such a mechanism, and is activated
whenever a process p receives an (ALIV E, predp,
Suspectedpredp) message from predp. For every pro-
cess q in the system except predp and p, p verifies
if q is suspected by predp but not by p, in which
case p includes q in its list Suspectedp, and sends a
(SUSPICION , p, q) message to q. Finally, p calls
the update pred and succ procedure.

A drawback of this one-to-one approach is that the
suspicion messages are not sent until the suspected



list piggybacked into heartbeat messages is received by
Task 5, resulting in a higher latency for the detection of
a crashed process by the rest of processes. We address
this issue in the following subsection.

3.3. One-to-all communication to reduce
the detection latency

We present here a modification to Algorithm 2 that
reduces the detection latency of real failures by send-
ing additional messages upon suspicions. We will eval-
uate the improvement of the modified algorithm in Sec-
tion 4.2. The modification, presented in Algorithm 3,
affects Task 2 and introduces a new task (Task 6).

Algorithm 3: Reducing the detection latency using one-to-all
communication of suspicions.

{Every process p executes the following}
. . .
cobegin

. . .
|| Task 2: repeat periodically

if (predp �= p) and p didn’t receive (ALIV E, predp,
−) during the last ∆p(predp) ticks of p’s clock then

Suspectedp ← Suspectedp ∪ {predp}
send (SUSPICION , p, predp) to predp

(=>) send (SUSP TO ALL, p, predp) to all
except predp and p
update pred and succ()

. . .

(=>) || Task 6: when receive (SUSP TO ALL, q, r) for some
r �= p for some q

(=>) Suspectedp ← Suspectedp ∪ {r}
(=>) send (SUSPICION , p, r) to r
(=>) update pred and succ()

coend

In Task 2, when p suspects that predp has crashed,
besides sending the (SUSPICION , p, predp) mes-
sage to predp (Line 16), p also sends a message
(SUSP TO ALL, p, predp) to all processes except
predp and p. This new type of message is han-
dled in Task 6. There, when a process p receives a
(SUSP TO ALL, q, r) message for some q, p in-
cludes r in Suspectedp, sends a (SUSPICION , p,
r) to verify if r has crashed, and calls the procedure
update pred and succ. Observe that if r has really
crashed then the suspicion will be permanent, because
r will not send any REFUTATION message to p.

It is simple to see that the proposed modifica-
tion speeds-up the detection of real failures, since the
rest of processes will send almost simultaneously the
SUSPICION message to the suspected process, while
in Algorithm 2 the SUSPICION messages are sent
following the ring by means of Task 5. On the other
hand, in the case of an erroneous suspicion the pro-
posed modification introduces an additional overhead

of approximately 3n messages (SUSPICION and
REFUTATION ).

The modification does not affect neither the correct-
ness of the algorithm nor its communication optimal-
ity, since after the stabilization of the ring no more
SUSPICION or SUSP TO ALL messages will be
sent.

4. Analysis and performance evaluation

4.1. Complexity analysis

Table 1 summarizes the communication costs of the
communication-optimal algorithms presented in this pa-
per, in terms of the number of unidirectional links used
forever (which corresponds eventually to the number of
regular heartbeat messages exchanged periodically) and
the number of messages needed to manage an erroneous
suspicion. Chandra-Toueg’s all-to-all algorithm is also
included for comparative purposes.

Periodic cost Sporadic cost (#msgs
Algorithm (#links used forever) to manage a suspicion)

Algorithm 1 C 2n2

Algorithm 2 C 2n
Algorithm 3 C 3n
Chandra-Toueg [4] C(n− 1) 0

Table 1. Communication costs of different
algorithms implementing �P .

As it can be observed, Algorithms 2 and 3, while
communication-optimal, have a linear overhead for
managing an erroneous suspicion. The benefits obtained
with respect to the quadratic communication-optimal
Algorithm 1 are evident, and can be explained by the fact
that now suspicions and refutations are managed follow-
ing one-to-one (Algorithm 2) one-to-all (Algorithm 3)
communication patterns, respectively. As explained in
the introduction, Algorithm 1 uses a reliable one-to-all
communication pattern, which considering the imple-
mentation of Reliable Broadcast, results in practice in
an all-to-all pattern.

4.2. Performance evaluation

Besides communication optimality, there are QoS
measures that are of interest when evaluating the perfor-
mance of failure detector algorithms. We have consid-
ered here two different performance measures to com-
pare the algorithms presented. The first measure is re-
lated to the accuracy of the information provided to
querying processes. In particular, we focus on the query
accuracy probability, defined as the probability that a



failure detection module which is queried by its asso-
ciated process gives the right answer. This measure is
based on [5], but has been extended in this work to sce-
narios with more than two processes. The second mea-
sure tries to quantify how fast the failure detector reacts.
This has been measured by the time interval between the
crash of a process and the time in which the rest of the
processes suspect it in a permanent way.

To test the comparative performance of the
algorithms, we have used the ns-2 simulator
(http://www.isi.edu/nsnam/ns/). In Table 2 we show
the simulation settings for a typical local area network
scenario. The simulation generates message delays at
random with a uniform distribution. However, we have
set minimum and maximum message bounds. Appar-
ently, this contradicts our partially synchronous system
model. Nevertheless, the algorithms do not exploit
the knowledge of the maximal message delay when
initializing the timeouts. This allows us to generate
erroneous suspicions under the same conditions for
both algorithms. Moreover, from a practical point of
view the setting of a maximum message delay allows to
determine the duration of the simulations.

Parameter Value

Minimum message delay 0.001
Maximum message delay 0.005
Periodicity of ALIV E messages 0.5
Initial timeouts 0.5
Timeout increment 0.001

Table 2. Simulation settings (in seconds).

The tests have been carried out for a number of nodes
going from 3 to 24, using the settings of Table 2. The
bad answer probability has been measured executing the
algorithm during 2000 seconds, that has been empiri-
cally proved to be sufficient for comparative purposes.
In fact, after this time the simulations have either stabi-
lized or are near stabilization. We assume that no pro-
cess crashes during the 2000 seconds. This assumption
does not really lose any generality. On the one hand, in
our algorithms erroneous suspicions are actually more
complex to handle than real crashes. On the other hand,
although a crash during the execution of the Reliable
Broadcast may delay the delivery of the message, the
probability of such a failure in practice is very low. Also,
this delay is really small in a LAN, thus our assumption
has not any impact in the accuracy of the failure detec-
tor. The crash detection time has been measured in a
longer execution, introducing a crash in a time instant
(2500 seconds) in which the system is stabilized. In both
cases, every simulation has been executed a sufficiently
large number of times.

Figures 1 and 2 show the average results obtained.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 24 12 6 3

ba
d 

an
sw

er
 p

ro
ba

bi
lit

y

# processes

Algorithm 1 (RBcast)
Algorithm 2 (one-to-one)
Algorithm 3 (one-to-all)
Chandra-Toueg

Figure 1. Query accuracy, expressed as
bad answer probability (percentage).

 0

 1

 2

 3

 4

 5

 6

 24 12 6 3

de
te

ct
io

n 
la

te
nc

y

# processes

Algorithm 1 (RBcast)
Algorithm 2 (one-to-one)
Algorithm 3 (one-to-all)
Chandra-Toueg

Figure 2. Crash detection latency (in sec-
onds).

In Figure 1, for clarity, values express the complement
of the right answer probability, i.e., the probability that
a failure detection module gives a wrong answer. The
bad answer probability is low for all the communication
optimal algorithms, and does not increase with the num-
ber of processes. Although Algorithm 2 uses less mes-
sages to manage suspicions, the bad answer probability
is lower for this algorithm than for Algorithm 1. This re-
sult is due to the fact that in Algorithm 2 when a process
suspects its predecessor in the ring the rest of processes
do not receive any information about the new suspicion
most of the times. In fact, in practice the refutation mes-
sage from a suspected process q usually arrives to the
suspecting process p before the next heartbeat message
is sent by p. This reduces the number of false suspicions
in the system and makes the bad answer probability near



negligible. For Chandra-Toueg’s algorithm the bad an-
swer probability is negligible too, at the cost of using
an all-to-all communication pattern periodically and for-
ever.

In Figure 2, it can be observed that Algorithm 2 has a
higher crash detection latency than the other algorithms.
Even worse, the detection latency increases linearly with
the number of processes, hence the algorithm does not
scale well for a large number of processes. The same
mechanism that makes Algorithm 2 more accurate when
false suspicions occur makes it slower for real crashes. If
we consider the improvement presented in Algorithm 3,
we observe that the crash detection latency is constant
in this case and similar to the crash detection latency
of Algorithm 1. Note that Reliable Broadcast involves
a quadratic number of messages to manage suspicions,
while the improvement used to reduce the crash detec-
tion latency of Algorithm 3 keeps the extra messages lin-
ear. Going back to Figure 1, it can be observed that the
bad answer probability of Algorithm 3 is slightly higher
because it takes a bit longer to correct false suspicions.
In order to get an optimal performance, it could be inter-
esting to switch from Algorithm 2 to Algorithm 3 once
the system is considered stabilized.

5. Conclusion

In this paper, we have analysed three communication-
optimal algorithms implementing the �P failure detec-
tor class. The first algorithm uses Reliable Broadcast
to communicate suspicions and refutations, involving a
quadratic number of messages. The second algorithm
uses one-to-one communication exclusively, involving a
lower overhead to manage suspicions. The third algo-
rithm consists in adding sporadic one-to-all communi-
cation to the second one, in order to improve the crash
detection time.

We have evaluated the performance of the algorithms
in terms of two QoS measures: one of them is related to
the accuracy of the information provided by the failure
detector and the other concerns the crash detection time.
Although the algorithm using one-to-one communica-
tion is better in terms of accuracy, it does not scale well
when the crash detection latency is considered. That’s
the reason why we have proposed the third algorithm,
that uses some extra messages when a suspicion occurs,
reducing the crash detection latency from linear to con-
stant. This new algorithm also involves a linear number
of messages to manage a suspicion.

An interesting aspect regarding the second and third
algorithms presented in this paper is that they could be
used together, switching from the second to the third
once the system is considered stabilized.

References

[1] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Stable leader election. In Proceedings of the
15th International Symposium on Distributed Comput-
ing (DISC’2001), pages 108–122, Lisbon, Portugal, Oc-
tober 2001. LNCS 2180, Springer-Verlag.

[2] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Communication-efficient leader election and
consensus with limited link synchrony. In Proceedings
of the 23rd ACM Symposium on Principles of Distributed
Computing (PODC’2004), pages 328–337, St. John’s,
Newfoundland, Canada, July 2004.

[3] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. Journal of the
ACM, 43(4):685–722, July 1996.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM,
43(2):225–267, March 1996.

[5] W. Chen, S. Toueg, and M. K. Aguilera. On the quality
of service of failure detectors. IEEE Transactions on
Computers, 51(5):561–580, 2002.

[6] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288–323, April 1988.

[7] R. Guerraoui, M. Kapalka, and P. Kouznetsov. The
weakest failure detector to boost obstruction-freedom.
In Proceedings of the 20th International Symposium
on Distributed Computing (DISC’2006), pages 399–
412, Stockholm, Sweden, September 2006. LNCS 4167,
Springer-Verlag.

[8] M. Larrea, A. Fernández, and S. Arévalo. Optimal im-
plementation of the weakest failure detector for solv-
ing consensus. In Proceedings of the 19th IEEE Sym-
posium on Reliable Distributed Systems (SRDS’2000),
pages 52–59, Nurenberg, Germany, October 2000.

[9] M. Larrea, A. Lafuente, I. Soraluze, R. Cortiñas, and
J. Wieland. Designing efficient algorithms for the even-
tually perfect failure detector class. Journal of Software,
2(4):1–11, October 2007.

[10] M. Larrea, A. Lafuente, I. Soraluze, R. Cortiñas, and
J. Wieland. On the implementation of communication-
optimal failure detectors. In Proceedings of the Third
Latin-American Symposium on Dependable Computing
(LADC’2007), pages 25–37, Morelia, Mexico, Septem-
ber 2007. LNCS 4746, Springer-Verlag.

[11] M. Pease, R. Shostak, and L. Lamport. Reaching agree-
ment in the presence of faults. Journal of the ACM,
27(2):228–234, April 1980.

[12] W. Wu, J. Cao, J. Yang, and M. Raynal. A hierarchi-
cal consensus protocol for mobile ad hoc networks. In
Proceedings of the 14th Euromicro International Con-
ference on Parallel, Distributed, and Network-Based
Processing (PDP’2006), pages 64–72, Montbeliard-
Sochaux, France, February 2006. IEEE Computer So-
ciety.


