
2.5.1 Primary-backup replication

We describe the principle of this technique, and ignore failures for a while.

client //• •

q1 (primary) //• • • • •

q2 (backup) //• •

q3 (backup) //• •

/o/o/o/o/o/o /o/o/o

/o/o/o/o/o/o

/o/o/o

/o/o/o

invocation

��...............

update
��,,,,,,,,

ack

II��������

update
��999999999999999999999

ack

II�����������������

response

GG���������������

replicas
of object q

The principle is the following:

• q1: primary copy; q2, q3: backups

• the client sends its invocation to the primary q1

• q1 receives the invocation and performs the operation. At the end of the
operation, the change of the state of q1 is forwarded to q2 and q3 (“update”
message). The “ack” is sent by the backups after they have updated their
states. The primary sends the response to the client after having received
“ack” from all backups.

If the primary does not crash, then order and atomicity are ensured.

• the order is defined by the primary.

• atomicity is ensured because the update is forwarded to all the backups and
“ack” is awaited by the primary before sending the response.

The crash of a backup is easy to handle. The crash of the primary is more difficult
to handle. There are three cases to distinguish:

72

client //• •

q1 (primary) //• •
2

• • •
3

q2 (backup) //• •

q3 (backup) //• •

/o/o/o/o/o/o
1��...............

��,,,,,,,, II��������

��999999999999999999999 II�����������������

GG���������������

1. The primary crashes before sending the “update” message. In this case, the
client will time-out waiting for the response, and must re-send the invoca-
tion to the new primary.

2. The primary crashes while sending the “update” message and before send-
ing the response. This is the most difficult case to handle.

• Atomicity has to be guaranteed: the “update” message has to be re-
ceived by all or by none of the backups.

• The client must send the invocation to the new primary, but the oper-
ation must not be performed twice. Solution: every invocation has a
unique InvID and the “update” message carries the pair (InvID, response).
If a server qi receives an invocation with InvID, it first checks whether
the pair (InvID, response) is available. If yes, the invocation is not
processed, and response is sent immediately to the client. Otherwise,
the invocation is processed.

3. Crash of the primary after sending the response. In this case a new primary
has to be selected.

Selection of a new primary and ensuring atomicity in Case 2 is discussed later.

Remark Crash detection is usually based on timeouts, and this mechanism may
lead to mistakes, i.e., to suspect a process to have crashed, while the pro-
cess actually did not crashed. The order and atomicity properties must be
ensured in spite of unreliable failure detection. This makes the problem
very difficult. We come back on this issue later.

73

2.5.2 Active replication

client //• • • •

q1 //• •

q2 //• •

q3 //• •

/o/o/o /o

/o/o/o/o/o/o/o/o

/o/o/o/o/o/o/o/o

/o/o/o/o/o/o/o/o

invocation

��//////////////

��99999999999999999999999999

��====================================== GG��������������

GG����������������������

response

GG�������������������������������

With active replication, the client sends its invocation to all replicas:

• All replicas handle the invocation and send the response.

• The client waits for the first response (all responses are identical).

With active replication, the crash of a replica is transparent to the client. How-
ever, active replication requires an adequate communication primitive called Total
Order Broadcast or Atomic Broadcast, which ensures the order and atomicity
properties. The primitive is also called ABCAST. All the complexity of active
reaplication is hidden in the implementation of Atomic Broadcast.

2.5.3 Comparison between primary-backup and active repli-
cation

• Active replication uses more CPU resources (as all replicas handle the in-
vocation).

• In case of a crash (of the primary), the latency for the client between the
invocation and the reception of the response is longer with primary-backup
replication (timeout of the client, which must re-send the invocation).

• Active replication requires the operations to be deterministic! This is not
the case with primary-backup replication.

74

