
Secure Failure Detection in TrustedPals?

Roberto Cortiñas1, Felix C. Freiling2, Marjan Ghajar-Azadanlou3, Alberto
Lafuente1, Mikel Larrea1, Lucia Draque Penso2, and Iratxe Soraluze1

1 The University of the Basque Country, San Sebastián, Spain
2 Department of Computer Science, University of Mannheim, Germany

3 Department of Computer Science, RWTH Aachen University, Germany

Abstract. This paper presents a modular redesign of TrustedPals, a
smartcard-based security framework for solving secure multiparty com-
putation (SMC). TrustedPals allows to reduce SMC to the problem of
fault-tolerant consensus between smartcards. Within the redesign we in-
vestigate the problem of solving consensus in a general omission failure
model augmented with failure detectors. To this end, we give novel def-
initions of both consensus and the class of 3P failure detectors in the
omission model and show how to implement 3P and have consensus in
such a system with some weak synchrony assumptions. The integration of
failure detection into the TrustedPals framework uses tools from privacy
enhancing techniques such as message padding and dummy traffic.

1 Introduction

Consider a set of parties who wish to correctly compute some common function
F of their local inputs, while keeping their local data as private as possible, but
who do not trust each other, nor the channels by which they communicate. This
is the problem of Secure Multi-party Computation (SMC) [22]. SMC is a very
general security problem, i.e., it can be used to solve various real-life problems
such as distributed voting, private bidding and auctions like Ebay, sharing of
signature or decryption functions and so on. Unfortunately, solving SMC is—
without extra assumptions—very expensive both in terms of communication
(number of messages) and time (number of synchronous rounds).

TrustedPals [3] is a smartcard-based implementation of SMC which allows
much more efficient solutions to the problem. Conceptually, TrustedPals consid-
ers a distributed system in which processes are locally equipped with tamper
proof security modules (see Fig. 1). In practice, processes are implemented as
a Java desktop application and security modules are realized using Java Card
Technology enabled smartcards [5]. Roughly speaking, solving SMC between
processes is achieved by having the security modules jointly simulate a trusted
third party (TTP), as we now explain.

? Work by the Spanish authors was supported by the Spanish Research Council, under
grant HA2005-0078. Work by the German authors was supported by DAAD PPP
Programme Acciones Integradas Hispano Alemanas.

security

module

untrusted host

security

module

untrusted host

Fig. 1. Processes with tamper proof security modules.

To solve SMC in the TrustedPals framework, the function F is coded as a
Java function and is distributed within the network in an initial setup phase.
Then processes hand their input value to their security module and the frame-
work accomplishes the secure distribution of the input values. Finally, all security
modules compute F and return the result to their process. The network of se-
curity modules sets up confidential and authenticated channels between each
other and operates as a secure overlay within the distribution phase. Within
this secure overlay, arbitrary and malicious behavior of an attacker is reduced to
rather benign faulty behavior (process crashes and message omissions). Trusted-
Pals therefore allows to reduce the security problem of SMC to a fault-tolerant
synchronization problem [3], namely that of consensus.

To date, TrustedPals assumed a synchronous network setting, i.e., a setting in
which all important timing parameters of the network are known and bounded.
This makes TrustedPals sensitive to unforeseen variations in network delay and
therefore not very suitable for deployment in networks like the Internet. In this
paper, we explore how to make TrustedPals applicable in environments with less
synchrony. More precisely, we explore the possibilities to implement TrustedPals
in a modular fashion inspired by results in fault-tolerant distributed comput-
ing: We use an asynchronous consensus algorithm and encapsulate (some weak)
timing assumptions within a device known as a failure detector [4].

The concept of a failure detector has been investigated in quite some detail
in systems with merely crash faults [13]. In such systems, correct processes (i.e.,
processes which do not crash) must eventually permanently suspect crashing
processes. There is very little work on failure detection and consensus in message
omissions environments. In fact, it is not clear what a sensible definition of a
failure detector (and consensus) is in such environments because the notion of

a correct process can have several different meanings (e.g., a process with no
failures whatsoever or a process which just does not crash but omits messages).

Related Work. Delporte, Fauconnier and Freiling [8] were the first to investigate
non-synchronous settings in the TrustedPals context. Following the approach of
Chandra and Toueg [4] (and similar to this paper) they separate the trusted
system into an asynchronous consensus layer and a partially synchronous failure
detection layer. They assume that transient omissions are masked by a piggy-
backing scheme. The main difference however is that they solve a different ver-
sion of consensus than we do: Roughly speaking, message omissions can cause
processes to communicate only indirectly, i.e., some processes have to relay mes-
sages for other processes. Delporte, Fauconnier and Freiling [8] only guarantee
that all processes that can communicate directly with each other solve con-
sensus. In contrast, we allow also those processes which can only communicate
indirectly to successfully participate in the consensus. As a minor difference, we
focus on the class 3P of eventually perfect failure detectors whereas Delporte,
Fauconnier and Freiling [8] implement the less general class Ω. Furthermore,
Delporte, Fauconnier and Freiling [8] do not describe how to integrate failure
detection within the TrustedPals framework: A realistic adversary who is able
to selectively influence the algorithms for failure detection and consensus can
cause their consensus algorithm to fail.

Apart from Delporte, Fauconnier and Freiling [8], other authors also inves-
tigated solving consensus in systems with omission faults. Unpublished work by
Dolev et al. [10, 9] also follows the failure detector approach to solve consensus,
however they focus on the class 3S(om) of failure detectors. Babaoglu, Davoli
and Montresor [19] also follow the path of 3S to solve consensus in partitionable
systems.

Recently, solving SMC without security modules has received some atten-
tion focusing on two-party protocols [17, 18]. In systems with security modules,
Avoine and Vaudenay [2] examined the approach of jointly simulating a TTP.
This approach was later extended by Avoine et al. [1] who show that in a sys-
tem with security modules fair exchange can be reduced to a special form of
consensus. They derive a solution to fair exchange in a modular way so that
the agreement abstraction can be implemented in diverse manners. Benenson et
al. [3] extended this idea to the general problem of SMC and showed that the
use of security modules cannot improve the resilience of SMC but enables more
efficient solutions for SMC problems. All these papers assume a synchronous
network model.

Correia et al. [6] present a system which employs a real-time distributed
security kernel to solve SMC. The architecture is very similar to that of Trust-
edPals as it also uses the notion of architectural hybridization [21]. However, the
adversary model of Correia et al. [6] assumes that the attacker only has remote
access to the system while TrustedPals allows the owner of a security module to
be the attacker. Like other previous work [3, 2, 1] Correia et al. [6] also assume
a synchronous network model at least in a part of the system.

Our work on TrustedPals can also be regarded as building failure detectors
for arbitrary (Byzantine) failures which has been investigated previously (see for
example Kihlstrom, Moser and Melliar-Smith [15] and Doudou, Garbinato and
Guerraoui [11]). In contrast to previous work on Byzantine failure detectors, we
use security modules to avoid the tar pits of this area.

Contributions. In this paper we present a modular redesign of TrustedPals us-
ing consensus and failure detection as modules. More specifically, we make the
following technical contributions:

– We give a novel definition of 3P in the omission model and we show how to
implement 3P in a system with weak synchrony assumptions in the spirit
of partial synchrony [12].

– We give a novel definition of consensus in the omission model and give an
algorithm which uses the class 3P to solve consensus. The algorithm is an
adaptation of the classic algorithm by Chandra and Toueg [4] for the crash
model.

– We integrate failure detection and consensus securely in TrustedPals by em-
ploying message padding and dummy traffic, tools known from the area of
privacy enhancing techniques.

Paper Outline. This paper is structured as follows: In Sect. 2 we give an overview
over and motivate the system model of TrustedPals. In Sect. 3 we define and
implement the failure detector 3P in the omission failure model. We then use
this failure detector to solve consensus in Sect. 4. In Sect. 5 we describe how to
integrate failure detection and consensus securely in the TrustedPals framework.
For lack of space, the correctness proofs of the algorithms as well as more details
on the security evaluation can be found elsewhere [7].

2 System Model and Architecture

2.1 Untrusted and Trusted System

To be able to precisely reason about algorithms and their properties in the Trust-
edPals system we now formalize the system assumptions within a hybrid model,
i.e., the model is divided into two parts (see Fig. 2). The upper part consists
of n processes which represent the untrusted hosts. The lower part equally con-
sists of n processes which represent the security modules. Because of the lack
of mutual trust between untrusted hosts, we call the former part the untrusted
system. Since the security modules trust each other we call the latter part the
trusted system. Each host is connected to exactly one security module by a direct
communication link.

Summarizing, there are two different types of processes: processes in the
untrusted system and processes in the trusted system. For brevity, we will use
the unqualified term process if the type of process is clear from the context.

host

h1

host

h2

security

module

s2

security

module

s1

security

module

s3

host

h3

untrusted system

trusted system

Fig. 2. The untrusted and trusted system.

Within the untrusted system each pair of hosts is connected by a pair of unidi-
rectional communication links, one in each direction. Since the security modules
also must use these links to communicate, the trusted system can be considered
as an overlay network which is a network that is built on top of another network.
Nodes in the overlay network can be thought of as being connected by virtual or
logical links. In practice, for example, smartcards could form the overlay network
which runs on top of the Internet modeled by the untrusted processes. Within
the trusted system we assume the existence of a public key infrastructure, which
enables two communicating parties to establish confidentiality, message integrity
and user authentication without having to exchange any secret information in
advance.

We assume reliable channels, i.e., every message inserted to the channel is
eventually delivered at the destination. We assume no particular ordering rela-
tion on channels.

2.2 Timing Assumptions

We assume that a local clock is available to each host, but clocks are not syn-
chronized within the network. Security modules do not have any clock, they just
have a simple step counter, whereby a step consists of receiving a message from
other security modules, executing a local computation, and sending a message
to other security modules. Passing of time is checked by counting the number of
steps executed.

Since trusted and untrusted system operate over the same physical commu-
nication channel, we assume the same timing behavior for both systems. Both
systems are assumed to be partially synchronous meaning that eventually bounds
on all important network parameters (processing speed differences, message de-
livery delay) hold. The model is a variant of the partial synchrony model of
Dwork, Lynch and Stockmeyer [12]. The difference is that we assume reliable
channels.

We say that a message is received timely if it is received after the bounds on
the timing parameters hold. Omission of such a message can be reliably detected
using timeout-based reasoning.

2.3 Failure Assumptions

The model is hybrid because we have distinct failure assumptions for both sys-
tems. The failure model we assume in the untrusted system is the Byzantine
failure model [16]. A Byzantine process can behave arbitrarily. In the trusted
system we assume the failure model of general omission, which we now explain.

The concept of omission faults, meaning that a process drops a message
either while sending (send omission) or while receiving it (receive omission), was
introduced by Hadzilacos [14] and later generalized by Perry and Toueg [20]. The
failure model used for the trusted system is that of general omission, in which
processes can crash and experience either send-omissions or receive omissions.
We allow the possibility of transient omissions, i.e., a process may temporarily
drop messages and later on reliably deliver messages again.

A process (untrusted host or security module) is correct if it does not fail.
A process is faulty if it is not correct. We assume a majority of processes to
be correct both in the untrusted and in the trusted system. Note that a faulty
security module implies a faulty host but a faulty host not necessarily implies a
faulty security module.

The motivation behind this hybrid approach is that the system runs in an
environment prone to attacks, but the assumptions on the security modules and
the possibility to establish secure channels reduce the options of the attacker in
the trusted system to attacks on the liveness of the system, i.e., destruction of
the security module or interception of messages on the channel.

2.4 Classes of Processes in the Trusted System

The omission model in the trusted system implies the possibility of both transient
send omissions and receive omissions. Given two processes, p and q, if a single
message m sent from p to q is not delivered by q, the following question arises:
has p suffered a send omission, or has q suffered a receive omission? Formally, one
of the two processes is incorrect, but it is not possible to determine which one.
Observe that considering both processes p and q incorrect can be too restrictive.
This leads us to reconsider the different classes of processes in the omission
model with respect to the common correct/incorrect classification. In particular,
processes suffering a limited number of omissions, e.g., processes that do not

suffer omissions with some correct process, will be considered as good, since they
can still participate in a distributed protocol like consensus.

On the basis of this motivation, we consider the following two classes of
processes:

Definition 1. A process p is in-connected if and only if:

(1) p is a correct process, or
(2) p does not crash and there exists a process q such that q is in-connected and

all messages sent by q to p are eventually received timely by p (i.e., q does not
suffer any send-omission with p, and p does not suffer any receive-omission
with q).

Definition 2. A process p is out-connected if and only if:

(1) p is a correct process, or
(2) p does not crash and there exists a process q such that q is out-connected and

all messages sent by p to q are eventually received timely by q (i.e., p does not
suffer any send-omission with q, and q does not suffer any receive-omission
with p).

Observe that correct processes are both in-connected and out-connected. Ob-
serve also that the definitions of in-connected and out-connected processes are
recursive. Intuitively, there is a timely path with no omissions from every cor-
rect process to every in-connected process. Also, there is a timely path with no
omissions from every out-connected process to every correct process, and hence
to every in-connected process.

Fig. 3. Examples for classes of processes.

Fig. 3 shows an example. In the figure, arcs represent timely links with no
omissions (they are not shown for the majority of correct processes). Processes
p and q are out-connected, while process s is in-connected, and processes r
and v are both in-connected and out-connected. Finally, process u is neither
in-connected nor out-connected.

2.5 The TrustedPals Architecture

Fig. 4 shows the layers and interfaces of the proposed modular architecture for
TrustedPals. A message exchange is performed on the transport layer, which
is under control of the untrusted host. The failure detector and the security
mechanisms for message encryption etc. run in the TrustedPals layer. In the
consensus layer runs the consensus algorithm. On the application layer, which
again is under the control of the untrusted host, protocols like fair exchange
operate.

Consensus

TrustedPals

Application

Failure Detector

protocol messages failure detector messages

Transport

on the smartcard

partially under

control

of the process

under control

of the process

Fig. 4. The architecture of our system.

3 Failure Detection in TrustedPals

Based on the two new classes of processes defined in the previous section, we
redefine now the properties that 3P must satisfy in the omission model. While
the common correct/faulty classification of processes is well addressed by means
of a list of suspected processes, in the omission model we will consider two lists
of processes, one for the in-connected processes and the other one for the out-
connected processes. If a process p has a process q in its list of in-connected (out-
connected) processes, we say that p considers q as in-connected (out-connected).
The 3P class of failure detectors in the omission model satisfies the following
properties:

– Strong Completeness. Eventually every process that is not out-connected
will be permanently considered as not out-connected by every in-connected
process.

– Eventual Strong Accuracy. Eventually every process that is out-connected
will be permanently considered as out-connected by every in-connected pro-
cess.

– In-connectivity. Eventually every process that is in-connected will perma-
nently consider itself as in-connected.

Figs. 5, 6 and 7 present an algorithm implementing 3P. The algorithm pro-
vides to every process p a list of in-connected processes, InConnectedp, and
another list of out-connected processes, OutConnectedp. For every in-connected
process p, these lists will have the information required to satisfy the properties
of 3P. In particular, the list OutConnectedp will eventually and permanently
contain exactly all the out-connected processes. Regarding the InConnectedp list,
it will eventually and permanently contain p itself.

In order to detect message omissions, messages carry a sequence number.
Besides, every process p uses a matrix Mp of n× n elements. In the beginning,
all processes are supposed to be correct, so every element in the matrix has a
value of 1. If all messages sent from a process q to a process p are received timely
by p, Mp[p][q] will be maintained to 1. Otherwise, process p will set Mp[p][q] to
0. In this way, the matrix will have the information needed to calculate the lists
of in-connected and out-connected processes.

Actually, M represents the transposed adjacency matrix of a directed graph,
where the value of the element M [p][q] shows if there is an arc from q to p. We
can derive from powers of the adjacency matrix if there is a path with no omis-
sion of any length between every pair of processes. Observe that in the given
algorithm a process does not monitor itself and, as a consequence, the elements
of the main diagonal of the matrix are always set to 1. Taking this into account,
the n-th power of the adjacency matrix, Ap = (Mp)n, gives us the information we
need to obtain the sets of in-connected and out-connected processes. A process
p is in-connected if it is able to receive all the messages (either directly or indi-
rectly) from at least d (n+1)

2 e processes. Similarly, a process p is out-connected
if at least d (n+1)

2 e processes are able to receive (either directly or indirectly) all
the messages sent by p. The lists of in-connected and out-connected processes
are computed in the update In Out Connected lists() procedure, which is called
every time a value of the matrix Mp is changed.

In Task 1 (line 14), a process p periodically sends a heartbeat message to the
rest of processes. When a message is sent, the sequence number associated to the
destination is incremented. Observe that the matrix Mp is sent in the heartbeat
messages.

In Task 2 (line 21), if a process p does not receive the next expected message
from a process q in the expected time, the value of Mp[p][q] is set to 0.

In Task 3 (line 28), received messages are processed. The messages a process
p receives from another process q are delivered following the sequence num-
ber next receivep[q]. Every process p has a buffer for every other process q to
store unordered messages received from q. If p receives a message from q with
a sequence number different from the expected one, this message is inserted in
Bufferp[q] and the message is not delivered yet (line 42). A message is delivered

Procedure main()(1)

InConnectedp ← Π(2)

OutConnectedp ← Π(3)

forall q ∈ Π − {p} do(4)

∆p(q)← default time-out interval {∆p(q) denotes the duration of p’s time-out(5)

interval for q}
next sendp[q]← 1 {sequence number of the next message sent to q}(6)

next receivep[q]← 1 {sequence number of the next message expected from q}(7)

Bufferp[q]← ∅(8)

forall q ∈ Π do(9)

forall u ∈ Π do(10)

Mp[q][u]← 1 {Mp[q][u] = 0 means that q has not received at least one message(11)

from u}
V ersionp[q]← 0 {V ersionp contains the version number for every row of Mp}(12)

UpdateV ersion← false(13)

|| Task 1: repeat periodically(14)

if UpdateVersion then {p’s row has changed}(15)

V ersionp[p]← V ersionp[p] + 1(16)

UpdateV ersion← false(17)

forall q ∈ Π − {p} do(18)

send (ALIV E, p, next sendp[q], Mp, V ersionp) to q {sends a heartbeat}(19)

next sendp[q]← next sendp[q] + 1 {p updates its sequence number for q}(20)

|| Task 2: repeat periodically(21)

if

(
p did not receive (ALIV E, q, next receivep[q], Mq , V ersionq)
from q 6= p during the last ∆p(q) ticks of p’s clock

)
then

(22)

{the next message in the sequence has not been received timely}
∆p(q)← ∆p(q) + 1(23)

if Mp[p][q] = 1 then(24)

Mp[p][q]← 0 {the potential omission is reflected in Mp}(25)

UpdateV ersion← true(26)

call update In Out Connected lists()(27)

|| Task 3: when receive (ALIV E, q, c, Mq , V ersionq) for some q(28)

if c = next receivep[q] then {it is the next message expected from q}(29)

call deliver next message(q, Mq , V ersionq) {the message is delivered}(30)

next receivep[q]← next receivep[q] + 1(31)

while (ALIV E, q, next receivep[q], Mq, V ersionq) ∈ Bufferp[q] do(32)

call deliver next message(q, Mq , V ersionq)(33)

remove (ALIV E, q, Mq , next receivep[q], V ersionq) from Bufferp[q](34)

next receivep[q]← next receivep[q] + 1(35)

if Bufferp[q] = ∅ then(36)

Mp[p][q]← 1 {so far p has received all messages from q}(37)

UpdateV ersion← true(38)

if Mp has changed then(39)

call update In Out Connected lists()(40)

else(41)

insert (ALIV E, q, c, Mq , V ersionq) into Bufferp[q](42)

Fig. 5. 3P in the omission model: main algorithm.

when it is the next expected message, either because it has been just received
(line 30) or it is inside the buffer (line 33). If the delivered message was in the
buffer, it is removed from there. Having delivered the next expected message
from a process q, if the buffer is empty it means that there is no message left

Result: InConnectedp and OutConnectedp lists

Procedure update In Out Connected lists()(43)

Ap ← (Mp)n {Ap is the n-th power of the Mp matrix}(44)

forall u, v ∈ Π do(45)

if Ap[u][v] > 0 then(46)

Ap[u][v]← 1(47)

In← ∅(48)

Out← ∅(49)

forall q ∈ Π do(50)

if (
∑n−1

i=0
Ap[q][i] ≥ d (n+1)

2 e) then(51)

In← In ∪ {q}(52)

if (
∑n−1

i=0
Ap[i][q] ≥ d (n+1)

2 e) then(53)

Out← Out ∪ {q}(54)

InConnectedp ← In(55)

OutConnectedp ← Out(56)

Fig. 6. 3P in the omission model: procedure update In Out Connected lists().

Input: q: process from which the message has been received; Mq : q’s knowledge about the
system; V ersionq : version number of each row of Mq

Result: update of Mp matrix and V ersionp vector

Procedure deliver next message()(57)

forall v ∈ Π do {q’s row of Mq is systematically copied into Mp}(58)

Mp[q][v]←Mq [q][v](59)

forall u ∈ Π − {p, q} do(60)

if V ersionq [u] > V ersionp[u] then {q’s information about u is more recent than(61)

p’s}
forall v ∈ Π do(62)

Mp[u][v]←Mq [u][v](63)

V ersionp[u]← V ersionq [u](64)

Fig. 7. 3P in the omission model: procedure deliver next message().

from q, so Mp[p][q] is set to 1. This way, process p fills its corresponding row in
the matrix indicating if all the messages it expected from every other process
have been received timely.

The procedure deliver next message() is used to update the adjacency matrix
Mp using the information carried by the message. In the procedure, process p
copies into Mp the row q of the matrix Mq received from q. This way, p learns
about q’s input connectivity. With respect to every other process u, a mechanism
based on version numbers is used to avoid copying old information about u’s
input connectivity. Process p will only copy into Mp the row u of Mq if its
version number is higher.

4 3P-based Consensus in TrustedPals

In the consensus problem, every process proposes a value, and correct processes
must eventually decide on some common value that has been proposed. In the
crash model, every correct process is required to eventually decide some value.

This is called the Termination property of consensus. In order to adapt consensus
to the omission model, we argue that only the Termination property has to be
redefined. This property involves now every in-connected process, since, despite
they can suffer some omissions, in-connected processes are those that will be
able to decide.

The properties of consensus in the omission model are the following:

– Termination. Every in-connected process eventually decides some value.
– Integrity. Every process decides at most once.
– Uniform agreement. No two processes decide differently.
– Validity. If a process decides v, then v was proposed by some process.

Figs. 8 and 9 present an algorithm solving consensus using 3P in the omis-
sion model. It is an adaptation of the well-known Chandra-Toueg consensus
algorithm. Instead of explaining the algorithm from scratch, we just comment
on the modifications required to adapt the original algorithm:

– In Phase 2, the current coordinator waits for a majority of estimates while it
considers itself as in-connected in order not to block. Only in case it receives
a majority of estimates a valid estimate is sent to all. If it is not the case,
the coordinator sends a NEXT message indicating that the current round
cannot be successful.

– In Phase 3, every process p waits for the new estimate proposed by the cur-
rent coordinator while p considers itself as in-connected and the coordinator
as out-connected in order not to block. Also, p can receive a NEXT message
indicating that the current round cannot be successful. In case p receives
a valid estimate, it replies with a ack message. Otherwise, p sends a nack
message to the current coordinator.

– In Phase 4, if the current coordinator sent a valid estimate in Phase 2, it
waits for replies of out-connected processes while it considers itself as in-
connected in order not to block. If a majority of processes replied with ack,
the coordinator R-broadcasts a decide message.

When a process p sends a consensus message m to another process q, the fol-
lowing approach is assumed: (1) p sends m to all processes, including q, except p
itself, and (2) whenever p receives for the first time a message m whose destina-
tion is another process q different from p, p forwards m to all processes (except
the process from which p has received m and p itself). Clearly, this approach
can take advantage of the underlying all-to-all implementation of the 3P failure
detector.

The correctness proof of the algorithm can be found in [7].

5 Integrating Failure Detection and Consensus Securely

As depicted in Fig. 4, the TrustedPals layer receives messages from the consen-
sus protocol and from the failure detector. If an untrusted host could distinguish
protocol messages from failure detector messages he could intercept all former

{Every process p executes the following}
Procedure propose(vp)(1)

estimatep ← vp {estimatep is p’s estimate of the decision value}(2)

statep ← undecided(3)

rp ← 0 {rp is p’s current round number}(4)

tsp ← 0 {tsp is the last round in which p updated estimatep, initially 0}(5)

{Rotate through coordinators until decision is reached}
while statep = undecided do(6)

rp ← rp + 1(7)

cp ← (rp mod n) + 1 {cp is the current coordinator}(8)

Phase 1: {All processes p send estimatep to the current coordinator}(9)

send (p, rp, estimatep, tsp) to cp(10)

Phase 2:(11) {
The current coordinator tries to gather d (n+1)

2 e estimates. If it succeeds,
it proposes a new estimate. Otherwise, it sends a NEXT message to all

}
if p = cp then(12)

wait until(13) (
(p ∈ Π − InConnectedp) or

(for d (n+1)
2 e processes q: received (q, rp, estimateq, tsq) from q)

)
if for d (n+1)

2 e processes q: received (q, rp, estimateq, tsq) from q then(14)

successp ← TRUE(15)

msgsp[rp]← {(q, rp, estimateq, tsq) | p received(16)

(q, rp, estimateq, tsq) from q}
t← largest tsq such that (q, rp, estimateq, tsq) ∈ msgsp[rp](17)

estimatep ← select one estimateq such that (q, rp, estimateq, t)(18)

∈ msgsp[rp]
send (p, rp, estimatep) to all(19)

else(20)

successp ← FALSE(21)

send (p, rp, NEXT) to all(22)

Phase 3: {All processes wait for the new estimate proposed by the coordinator}(23)

wait until(24) (
(p ∈ Π − InConnectedp) or
received [(cp, rp, estimatecp) or (cp, rp, NEXT)] from cp or
(cp ∈ Π −OutConnectedp)

)
if received (cp, rp, estimatecp) from cp then(25)

estimatep ← estimatecp(26)

tsp ← rp(27)

send (p, rp, ack) to cp(28)

else(29)

send (p, rp, nack) to cp(30)

Phase 4:(31) {
If the current coordinator sent a valid estimate in Phase 2, it waits for replies of

out-connected processes while it considers itself as in-connected. If d (n+1)
2 e

processes replied with ack, the coordinator R-broadcasts a decide message

}
if (p = cp) and (successp = TRUE) then(32)

wait until

[
(p ∈ Π − InConnectedp) or

for all process q:

(
received (q, rp, ack) or
received (q, rp, nack) or
q ∈ Π −OutConnectedp

)]
(33)

if for d (n+1)
2 e processes q:received (q, rp, ack) then(34)

R-broadcast(p, rp, estimatep, decide)(35)

Fig. 8. Solving consensus in the omission model using 3P: main algorithm.

{If p R-delivers a decide message, p decides accordingly}
when R-deliver(q, rq, estimateq, decide) do(36)

if statep = undecided then(37)

decide(estimateq)(38)

statep ← decided(39)

Fig. 9. Solving consensus in the omission model using 3P: adopting the decision.

smartcard

protocol

failure detector

scrambler

Fig. 10. Smartcard with scrambler.

messages while leaving the latter untouched. This would result in a failure de-
tector working properly but a consensus protocol to block forever. In order to
prevent such malicious actions we piggyback the protocol messages on the failure
detector messages, which are sent in regular time intervals. To make sure that
the adversary can not distinguish the packets with the protocol message piggy-
backed from the ones without protocol message, packets will have the same size,
i.e., failure detector messages are padded and protocol messages are divided into
a predefined length. It might be inefficient for small messages to be padded or
large packets split up in order to get a message of the desired size. However, it is
necessary to find an acceptable tradeoff between security and performance such
that a message size provides better security in expense of worse performance.

We assume a scrambler which receives the protocol and failure detector mes-
sages and outputs equal looking messages of the same size in regular time in-
tervals (see Fig. 10). It proceeds as follows. Whenever a protocol message has
to be sent, it will be piggybacked on the failure detector message. If there is
no protocol message ready to be sent, the packet’s payload will be filled with
random bits. In order to be efficient, the predefined size of the messages sent
will be kept as small as possible. If a protocol message is too big, it will be di-
vided, using a fragmentation mechanism, and piggybacked into multiple failure

detector messages. Since the protocol is asynchronous, even long delays can be
tolerated as long as the failure detector works correctly.

Cryptography is applied to prevent and detect cheating and other malicious
activities. We use a public key cryptosystem for encryption. Each message m
in our model will be signed and then encrypted in order to reach authenticity,
confidentiality, integrity, and non-repudiation.

The source and destination address are encrypted because this enables the
receiver of a message to check whether the received message was intended for
it or not and who the sender was. Thus, a malicious process cannot change the
destination address in the header of a message from its security module and
send it to an arbitrary destination without being detected. To detect a message
deletion or loss, each message which is sent gets an identification number, where
the fragment offset field determines the place of a particular fragment in the
original message with same identification number.

As an example for the scrambler’s function, consider the situation where
the scrambler takes a protocol message m, whose size is three times the size
of a failure detector message, from the queue of protocol messages to be sent.
The scrambler divides the protocol message in three parts and assigns the next
available sequence number to each part. Also each part gets a fragment offset.
The first message part gets the fragment offset 1, the second message part gets
the fragment offset 2, and the last message part gets the fragment offset 3. Next,
the sequence number, all other fields, and the first message part all together are
signed with the private key of the sender. After that, the signature is encrypted.
Then, the next failure detector message is taken from the queue of failure detector
messages to be sent and the encrypted message part is inserted into the failure
detector message payload. Now, the first message part is ready to be sent in the
next upcoming interval. The same is applied to the second and third part of the
protocol message.

References

1. G. Avoine, F. Gärtner, R. Guerraoui, and M. Vukolic. Gracefully degrading fair
exchange with security modules. In Proceedings of the Fifth European Dependable
Computing Conference, pages 55–71. Springer-Verlag, April 2005.

2. G. Avoine and S. Vaudenay. Optimal fair exchange with guardian angels. In In-
ternational Workshop on Information Security Applications (WISA), LNCS, vol-
ume 4, 2003.

3. Z. Benenson, M. Fort, F. Freiling, D. Kesdogan, and L. D. Penso. Trustedpals:
Secure multiparty computation implemented with smartcards. In 11th Euro-
pean Symposium on Research in Computer Security (ESORICS), pages 306–314.
Springer-Verlag, September 2006.

4. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

5. Z. Chen. Java Card Technology for Smart Cards - 1st Edition. Addison-Wesley
Professional, 2000.

6. M. Correia, P. Veŕıssimo, and N. F. Neves. The design of a COTS-Real-time
distributed security kernel. In F. Grandoni and P. Thévenod-Fosse, editors, De-
pendable Computing - EDCC-4, 4th European Dependable Computing Conference,
Toulouse, France, October 23-25, 2002, Proceedings, volume 2485 of Lecture Notes
in Computer Science, pages 234–252. Springer, 2002.

7. R. Cortiñas, F. C. Freiling, M. Ghajar-Azadanlou, A. Lafuente, M. Larrea, L. D.
Penso, and I. Soraluze. Secure Failure Detection in TrustedPals. Technical Report
EHU-KAT-IK-07-07, The University of the Basque Country, July 2007. Available
at http://www.sc.ehu.es/acwlaalm/.

8. C. Delporte-Gallet, H. Fauconnier, and F. C. Freiling. Revisiting failure detection
and consensus in omission failure environments. In Proceedings of the International
Colloquium on Theoretical Aspects of Computing (ICTAC05), Hanoi, Vietnam,
Oct. 2005.

9. D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. Failure detectors in omission
failure environments. Technical Report TR96-1608, Cornell University, Computer
Science Department, Sept. 1996.

10. D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. Failure detectors in omission
failure environments. In Proceedings of the 16th Annual ACM Symposium on Prin-
ciples of Distributed Computing, page 286. Springer-Verlag, July 1997.

11. A. Doudou, B. Garbinato, and R. Guerraoui. Encapsulating failure detection:
from crash to Byzantine failures. In Proceedings of the Int. Conference on Reliable
Software Technologies, Vienna, May 2002.

12. C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, April 1988.

13. F. C. Freiling, R. Guerraoui, , and P. Kouznetsov. The failure detector abstraction.
Technical report, Department for Mathematics and Computer Science, University
of Mannheim, 2006.

14. V. Hadzilacos. Issues of Fault Tolerance in Concurrent Computations. PhD thesis,
Harvard University, 1984. also published as Technical Report TR11-84.

15. K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Byzantine fault detectors
for solving consensus. The Computer Journal, 46(1), 2003.

16. L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, July 1982.

17. P. MacKenzie, A. Oprea, and M. Reiter. Automatic generation of two-party com-
putations. In SIGSAC: 10th ACM Conference on Computer and Communications
Security. ACM SIGSAC, 2003.

18. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — A secure two-party
computation system. In Proceedings of the 13th USENIX Security Symposium.
USENIX, Aug. 2004.

19. Özalp Babaoglu, R. Davoli, and A. Montresor. Group communication in partition-
able systems: Specification and algorithms. IEEE Trans. Softw. Eng., 27(4):308–
336, 2001.

20. K. J. Perry and S. Toueg. Distributed agreement in the presence of processor and
communication faults. IEEE Transactions on Software Engineering, 12(3):477–482,
March 1986.

21. P. Sousa, N. F. Neves, and P. Veŕıssimo. Proactive resilience through architectural
hybridization. In Proceedings of the 2006 ACM Symposium on Applied Computing,
pages 686–690. Springer-Verlag, April 2006.

22. A. C. Yao. Protocols for secure computations. In Proceedings of the Twenty-
Third Annual Symposium on Foundations of Computer Science, pages 160–164.
Springer-Verlag, November 1982.

