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Abstract  
 
In this paper we discuss environments for the full-
system simulation of multicomputers. These are 
composed of a large collection of modules that 
simulate the compute nodes and the network, plus 
glue elements that perform communication and 
synchronization. We present our own environment 
based on Simics and INSEE. We reuse as many 
Simics modules as possible to reduce the effort of 
hardware modeling, and simulate standard 
machines running unmodified operating systems. 
We explain how experiments reveal unforeseen 
interactions among all modules and components, 
providing results that are difficult to interpret. 
Another important issue is the synchronization 
among simulators: a trade-off has to be found 
between simulation speed and accuracy of results. 

1. Introduction 

The design of a supercomputer is a complex task 
that comprises the selection and design of multiple 
components, such as computing elements, storage, 
interconnection network, access elements and the 
software it uses, from the operating system to high 
performance libraries and parallel applications. 
Depending on budget and availability, elements 
can be designed from scratch; often, however, off-
the-shelf components are reused, either directly or 
modified to fulfill tasks different to those they 
were designed for. 

During the preliminary phases of design of a 
supercomputer, elements are tested and evaluated 
separately, in order to assess (and, if possible, 
improve) their performance. These evaluations are 
carried out using synthetic loads, based on 
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statistical distributions, which allow for fast 
simulations, but may not be truly representative of 
actual workloads. Simulation speed is important in 
this phase, in order to be able to explore a wide 
range of options to help in the decision-making 
process, choosing the more promising alternatives. 

In subsequent design phases the simulated 
model grows in complexity, and more realistic 
evaluations are performed, mixing a complex 
model of the component under evaluation with 
simpler models of the rest of the system, usually 
working with traces obtained in actual machines. 
Traces are more realistic than synthetic 
workloads, but may comprise some characteristics 
of the system in which they were taken that are 
not valid in the system under evaluation. 

When system components have been chosen, 
a validation of the whole design is required to 
confirm that the behavior is as expected, and to 
check that there are no undesirable interactions 
between components that may have passed 
unnoticed before due to the simplicity of models 
and simulations. This validation is usually done 
with full-system simulators made from scratch or, 
in most cases, using different simulators for each 
component of the system, and doing some glue 
work to put them to work together. 

Our interest is mainly focused on 
Interconnection Networks for distributed memory 
parallel systems, a kind of specific-purpose 
network that allows compute nodes to interchange 
messages with high throughput and low latency – 
something that is required to run efficiently 
parallel applications. In the rest of this paper we 
will use “IN” as the acronym for interconnection 
network, and multicomputer as a shorter way of 
naming distributed memory parallel computers.   

In this paper we describe the components that 
take part in a full-system simulation of a 
multicomputer, and our proposal that mixes two 
very different simulators, Interconnection 
Network Simulation and Evaluation Environment 
[16] (INSEE for short) in charge of the IN, and 
Simics [7], used to simulate the compute nodes. 



  
 
We also discuss several other approaches to 
interface these two classes of simulators, and 
problems that may arise when doing full-system 
simulation, some due to reutilization of 
components of the simulated hosts, and some due 
to unexpected interactions between modules. 
Moreover, we will explain the complexity of fine-
tuning all components and their interfaces, in 
order to find a trade-off between simulation 
accuracy and resource usage (simulation time). 

The rest of the paper is organized as follows. 
In section 2 we review related work. Section 3 
explains the elements that can take part in a full-
system simulation of a multicomputer, as well as 
some approaches to glue together an IN simulator 
with the simulators of the compute nodes. Section 
4 is about options to synchronize these simulators. 
Section 5 describes our simulation environment. 
Section 6 describes some experimental work done 
with this environment, and identifies some issues 
detected. Finally, in section 7 we enumerate the 
conclusions of this work. 

2. Related work 

There are many other research groups around the 
world interested in full-system simulation. 
However most of them are only interested in 
either the performance evaluation of workloads on 
servers, or in the assessment of a particular micro-
architectural improvement. We can find several 
full-system simulators in [9]. 

When evaluating parallel computers, models 
used for the IN are often too simplistic. Most tools 
implement networking systems based on Ethernet, 
which is valid for most of the usual performance 
evaluations of server systems that run OLTP (On-
Line Transaction Processing) workloads. As far as 
we know, none of them implement a sophisticated 
IN such as those used in high-performance 
clusters or massively parallel processors. 

It would be possible to integrate sophisticated 
IN models inside available full-system simulation 
tools; however, IN simulators are already there as 
standalone tools (SICOSYS  [14], the Chaos 
Router Simulator  [2], FlexSim [17] and many 
others). Instead of starting from scratch, designing 
a sophisticated Simics module of the target IN, it 
would be easier for designers to make available 
tools collaborate. For example, SICOSYS can 
interface with RSIM [13] to do full-system 

simulation of shared-memory parallel computers, 
providing an accurate timing model. However, 
this setup consumes a huge amount of resources 
(memory, CPU time) and only allows for the 
simulation of tens (a few hundreds at most) of 
interconnected compute nodes. 

GEMS [8] and SIMFLEX [4] are based on 
Simics. The Simics environment provides the 
system simulation, and the other tools provide an 
accurate timing model which allows doing a high-
fidelity performance evaluation of systems. This is 
required because Simics timing is a very simple 
mechanism in which all instructions and memory 
accesses take the same time. These tools in 
combination do accurate performance evaluation 
of shared-memory parallel computers via full-
system simulation. They have detailed 
multiprocessor memory systems but lack detailed 
I/O models and multiple-system capability. 

As we can see, these tools are heavyweight, 
and focus on shared-memory machines. Our 
interest is on multicomputers, and we already use 
INSEE as a simulation environment to evaluate 
proposals for the INs used in this kind of 
architectures. The interaction of INSEE with 
Simics, the tool of choice to provide full-system 
simulation of computing elements, provides a 
great environment to experiment with cluster and 
MPP technologies. 

3. Interfacing IN and node simulators 

There are many possible approaches to perform 
full-system simulation of multicomputers. In Fig. 
1 we can observe a collection of components that 
take part into the simulation. Some of them are 
pure software, some others are also software, but 
simulate pieces of hardware.  

One instance of an IN simulator simulates the 
flow of packets through a network. Several 
instances of node simulators simulate in detail the 
operation of the compute elements.  The elements 
that are of interest for our purposes are: (1) A NIC 
that interfaces with the IN; actually, this is a 
software module that simulates the NIC. (2) A 
driver, in kernel space, for that NIC. (3) A 
protocol stack, in kernel space, providing higher-
level access to the IN. (4) A library on top of that 
stack, providing the MPI API and run-time. (5) A 
process of a parallel application. 



  

 
Additionally, the simulation environment 

includes a synchronization module that make all 
simulators advance in synchrony, and a traffic 
manager module that allows the interchange of 
information (packets) between node and IN 
simulators, making format translations if required 

Now we focus on the different mechanisms 
available to implement the traffic manager. 
Synchronization will be discussed later. 

3.1. Substitution of the NIC driver 

The first option is to substitute the NIC driver 
with another one that intercepts network traffic 
and passes it directly to the Traffic Manager. The 
main advantage of this option is that we can reuse 
the NIC model that comes with the full-system 
simulator, and also the Linux protocol stack. 
However, this approach has the disadvantage of 
requiring us to program a network driver for 
Linux that must register itself in the kernel as a 
general network driver. Furthermore, this driver 
must interact properly with the used protocol stack 
because otherwise it would be impossible to reuse 
it. Note that the main trick here would be to have 
a driver running in a simulated machine interact 
with an external module running in the simulation 
environment. 

3.2. Substitution of the NIC simulated module 

Another option would be to implement our own 
NIC module, adding capabilities to interact with 
the Traffic Manager (sending and receiving 
packets) but mimicking the operations of the 
original one. Using this option we can reuse 
protocol stack and NIC driver. However, we need 
to implement all the details of the simulated 
hardware, with all its control registers and low 
level accesses (writes in memory mapped 
registers, interruption handling, DMA accesses, 

etc.) Neither this option nor the previous one 
requires us to manipulate or re-implement the 
protocol stack. 

Usually full-system simulation environments 
come with default hardware and drivers for that 
hardware, like Ethernet NICs. Support for other 
INs such as Myrinet, Infiniband or the torus 
network of the Bluegene/L [1] is not readily 
available. These environments provide 
mechanisms to add new, user-designed hardware 
modules, than can be integrated into the 
simulators. If we have an accurate description of a 
certain NIC, and we program a module that 
simulates this NIC, we could reuse existing 
software (drivers and protocol stacks) designed to 
run on actual hardware. For example, if we 
implement a very realistic Myrinet card module, 
we could re-use the GM drivers and the MPICH 
over GM MPI implementation. However, due to 
the difficulty of doing this accurate hardware 
modeling, this approach is often rejected, and 
multicomputer experimentation is done using 
default hardware (Ethernet) and protocol stacks 
(TCP/IP-over-Ethernet), drastically simplifying 
setting up the experiments. 

3.3. Substitution of the full protocol stack 

The third and most complex option is to program 
the NIC module for the simulator, the driver to 
run in Kernel space, and a full protocol stack – 
including a MPI implementation – on top of it. 
The NIC module would interface with the Traffic 
Manager, and the driver would take advantage of 
the (simulated) high-speed IN. The obvious 
advantage of this option is that we would have full 
control of the IN; experiments could be done 
evaluating the hardware, the software, the MPI 
implementation, or a combination. Results would 
be very realistic—but only if we are able to 
provide good-quality, bug-free software. This is, 
in fact, the drawback of this option: the 
implementation effort is huge, and difficult to 
reuse. Any improvement in the simulated 
hardware propagates upwards: it may require 
driver changes, and probably MPI changes in 
order to take advantage of it. We need, thus, to 
find a trade-off between programming effort and 
flexibility. Reutilization of components allows us 
to use in our experiments good quality, well-
proven software, but at the cost of using off-the-

 
Fig. 1. Elements taking part in a full-system simulation 

of a multicomputer 



  
 
shelf components. The accurate simulation of a 
completely new proposal for an IN would require 
implementing the components that would be 
required if the network hardware were real, plus a 
detailed model of that hardware. 

4. Synchronization mechanisms 

In the previous sections we explained how full-
system simulation of multicomputers is carried 
out via combination of a collection of different 
simulators. These simulators are separate software 
entities that have different views of the passing of 
(simulated) time. This means that they have 
different simulation clocks, with different time 
units. They can even have different mechanisms 
to make those clocks advance. For example, 
Simics is event-driven and time is measured in 
CPU cycles (whose translation to actual time 
depend on the CPU speed), while INSEE is cycle-
driven and its unit of time is a more abstract cycle 
(time needed to route and move a phit from the 
input ports to an output port). Obviously, 
mechanisms are required to coordinate and 
synchronize those clocks, so that simulators for 
nodes and IN advance at the same pace, as if a 
global clock was in use. The synchronization 
module takes care of this task. 

The synchronization model can be strict or 
relaxed. Strict models are unapproachable, in 
terms of execution time, when performing a full-
system simulation of a multicomputer, because 
they make exploitation of available parallelism (in 
the simulation platform) almost impossible. Thus, 
we only consider more relaxed models. In this 
discussion we consider only two simulators: one 
that takes care of nodes, and another one for the 
IN. However, discussed mechanisms can be 
extended to consider several, concurrent 
simulators for the nodes. 

One synchronization alternative is to allow the 
simulators to advance in lock-step mode. The 
nodes simulator advances for a given amount of 
time (let us call it slice) and then stops. The IN 
simulator starts its execution and simulates the 
same amount of time (an equivalent one, if a 
translation of time units is required). It then stops 
and the nodes simulator resumes its operation. 
Note that both simulators never run in parallel. 

When a message is generated at a node, it is 
stored (with a timestamp) at an interfacing queue. 

Later, the IN simulator will simulate the same 
time slice. It will process the queue, taking care of 
this injection, at the right time. When the IN 
signals that a message has to be delivered to a 
compute node, again this event is stored at an 
interfacing queue. However, we have a problem 
here: that queue will not be processed until the 
next slice. The nodes simulator cannot process a 
message from the past, so all messages received 
during a given slice will be processed at the 
beginning of the next slice. In other words, 
messages will suffer, due to this relaxed 
synchronization approach, a false delay, ranging 
from 0 to the duration of the slice. 

The other alternative is by exploiting 
parallelism in the simulation environment. We can 
let both simulators advance in parallel, without 
interchanging information. After consuming a 
slice, both simulators exchange lists of events. 
The nodes simulator passes the list of messages 
generated at the slice just consumed, to be 
processed by the network, and the IN simulator 
passes the list of messages that have arrived to the 
destination nodes. 

Note how this approach introduces two 
artificial delays: injection is delayed until the 
beginning of the next slice. Delivery, as in the 
previous option, is also delayed. Again, the 
importance of these delays depends on the slice 
duration. A second effect is that message 
injections in the IN is done in bursts, at the 
beginning of each slice, which may impose 
unnecessary contention. 

In both models, a very short slice length 
would provide maximum fidelity, but at the cost 
of stopping simulators very often. A long slice 
substantially accelerates experimentation, but 
introduces artificial delays that can have 
important, negative effects on our measurements. 

5. A proposal for full-system simulation 
of multicomputers 

We have chosen Simics [7] as the tool to 
simulate the compute nodes that interchange 
packets through a network. From the options 
described in Section 3, we have chosen the second 
one: we have substituted the module that models 
an Ethernet NIC (a DEC21143), using another one 
almost identical, but capable of communicating 
with an external Traffic Manager module. 



  

 
INSEE provides a flexible environment to 

perform simulations of IN. It consists of two main 
modules: a cycle-driven, functional simulator of 
interconnection networks (FSIN), and a traffic-
generation module (TrGen). The later module 
allows us to feed simulations with three different 
kinds of workloads: synthetic traffic patterns 
defined by statistical distributions, traces obtained 
from actual parallel application executions and 
full-system simulations as described in this paper. 

In our experiments we will present results for 
64-node rings. We will explain later the reasons to 
make this unusual choice. The network is 
composed of a collection of routers, each of one is 
connected to a two neighboring routers and to a 
compute node. Fig. 2 represents a model of these 
routers. Each physical channel of the router is 
shared by three virtual channels (VCs): an Escape 
channel (governed by the bubble routing rules 
 [15]), and two adaptive channels.  

Note that a ring has just one minimal path 
from source to destination, so packets cannot 
adapt. Thus, the only difference between the 

Escape VC and the other two is that accesses to 
the adaptive VCs are not restricted by the bubble 
rules. Each node is able to simultaneously 
consume several packets arriving to the reception 
port. There are two injection ports, and the 
interface should perform a pre-routing decision: 
packets moving towards the X+ axis are stored in 
the I+ injection port, and those towards X– go to 
the I– injection port. Transit and injection queues 
are able to store 4 packets of 16 phits (unit of 
transit through the wires) each. Phit length is 4 
bytes, so the link bandwidth is 32 bits per cycle. 

Regarding the simulation of the compute 
nodes, we use 8 instances of Simics, each one 
simulating 8 nodes. Each node runs a full Red Hat 
7.3 operating system, and can be configured to use 
some MPI implementations [12]. For this work we 

chose MPICH [10] because it is widely used and 
supports several protocol stacks, depending on the 
underlying IN (Ethernet, Infiniband, Myrinet, …). 
As we use an Ethernet-like simulated NIC, we use 
the P4/TCP/IP/Ethernet protocol stack. 

In a real multi-computer the flow of 
information between two application processes is 
as follows. Whenever a node wants to send a 
message to another, this message passes through 
several software layers to build one or many 
adequately formatted packets. First, the message 
is segmented and encapsulated in kernel space by 
a protocol stack (in our case TCP/IP/Ethernet). 
Then the driver of the NIC injects the generated 
packets into the network interface card that, in 
turn, injects the packets into the IN. When a 
packet arrives from the IN to a NIC, the driver is 
signaled and a process to obtain the original 
message (maybe reassembly several packets) is 
performed, in order to deliver the message to the 
right application process.  

In our environment everything is as described 
here, with a few exceptions. See, in Fig. 3, the 
collection of components taking part in the 
simulation. The network is not a real Ethernet. 
Instead, it is simulated by FSIN. The hardware 
module that simulates the DEC21143 fast 
Ethernet NIC receives a collection of packets 
(actually, Ethernet frames) that are used, with the 
help of the Traffic Manager, as workload for 
FSIN. The interchange of workload is performed 
using an actual network because INSEE and 
Simics run on different machines.  

Packets are received by the TrGen module in 
INSEE that is in charge of providing the workload 
for FSIN. TrGen puts a received packet into the 
right injection queue at the corresponding FSIN 
router. Then, FSIN simulates the way that packet 
travels through the network, sharing its resources 
with other packets, and delivers it to the 
appropriate destination router. When this happens, 
the packet is sent back to TrGen, which uses the 
Traffic Manager to inject it into the NIC at the 
destination node. When a packet is injected at a 
(simulated) NIC, this arrival causes an 
interruption that is attended by the NIC driver. 
The rest of the process that end with a message 
being received by an application process is exactly 
the same that happens with a real multicomputer. 

The synchronization among all the Simics 
instances and INSEE is done at two levels. Simics 

  
Fig. 2. Model of router simulated by FSIN for 1D 

networks, with a detailed view of the X+ input port 
showing the 3 virtual channels that share its link. 



  
 

incorporates its own synchronization mechanism, 
which is used to coordinate the eight computers 
simulated by each Simics instance. This is done in 
round-robin fashion: each node runs for a specific 
number of cycles, then the next node and so on. 

The second level of synchronization is among 
Simics instances and INSEE, in a lock-step way, 
using a client-server model. Each instance of 
Simics includes a synchronization client, and 
INSEE includes a synchronization server. We can 
see these two modules in Fig. 3. A 
synchronization client allows a Simics instance to 
run for a pre-defined number of cycles (slice). 
After completing the slice, the Simics instance 
(thus, all the nodes simulated by it) stops, and a 
timestamp signal is sent to the synchronization 
server. During a slice, computing nodes can send 
messages to other nodes, but those are stored in a 
synchronization queue. 

 When the synchronization server has received 
timestamp signals from all the Simics instances, 
INSEE runs for a number of FSIN cycles (a slice), 
routing and sending the received messages to their 
corresponding destinations, before sending, via 

multicast, a continue signal to all the clients – 
which allows the Simics instances to resume their 
executions. 

Remember that this synchronization 
mechanism allows network injections to be 
simulated precisely, but deliveries are artificially 
delayed until the start of the next slice. The main 
difficulty here is to find a trade-off between the 
high execution speed provided by long slices and 
the accuracy obtained from short ones. 

6. Experimental work 

The environment described in the previous section 
has been used to study the effects of network-
based congestion control in the execution speed of 
MPI parallel applications. Congestion may appear 
when the utilization of resources inside the IN is 
close to its limits; its negative effects include 
throughput and delay degradation. If no action is 
taken when congestion appears, it soon spreads 
through the whole network. Congestion control 
techniques usually limit packet injection as soon 
as the network presents signs of congestion. There 
are different ways of diagnosing these signs and 
techniques to avoid congestion, based on global 
knowledge like in [18], distributed like RECN [3] 
or based on information of the local router buffers 
like LBR [5]. The torus network of the IBM 
BlueGene/L [1] includes a mechanism that works 
prioritizing in-transit traffic—we call this IPR (In-
transit Priority Restriction). 

In an initial set of experiments, we evaluated 
several of these congestion control mechanisms 
for INs using trace-based traffic, obtaining some 
predictions of performance improvements. Then, 
we used our full-system simulation of IN to 
validate these predictions – see [12] for the full 
details. In particular, we studied the effects of IPR 
on a ring of 64 nodes with multiple injection 
sources. The number of nodes (64) is a 
consequence of the availability of resources to 
obtain actual traces and run the full-system 
simulation environment. The choice of topology, a 
ring (instead of a more reasonable 8x8 torus) is 
because we want to study network congestion, and 
a ring is more prone to congestion than a 2D 
torus—for the same number of nodes. 

Trace-based and full-system simulation were 
performed using the A class of NAS Parallel 
Benchmarks [11] (NPB), a well-known, allegedly 

  
Fig. 3. Elements of our full-system simulation 

environment that simulates an MPI application running 
on top of an INSEE (simulated) network. 
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Fig. 4. Relative times to complete a run of NPB’s BT, 

CG and IS, and 99% confidence intervals. 



  

 
representative set of parallel application 
workloads often used to assess the performance of 
parallel systems. The details of the full-system 
simulation were as follows. The system was 
composed by 64 Intel Pentium-4 processors, 
running at 200 MHz (1 Simics cycle = 5 ns), with 
64 MB of RAM. The slice is 200 INSEE cycles, 
equivalent to 1000 Simics cycles; this results in a 
link bandwidth of 1280 Mb/s, approximately the 
speed of a Gigabit Ethernet. 

We can see in Fig. 4 the relative average times 
predicted by trace-driven simulation and the 
unexpected results in our full-system simulator. 
99% confidence intervals are also plotted. These 
were much better than those predicted by traces. 

We analyzed the causes of this mismatch, and 
found it in some undesirable interactions between 
host-based congestion control (performed by the 
TCP implementations at the hosts, see Figure 2) 
and the network based congestion control we were 
evaluating, in this case IPR. Our trace-based 
simulation did not include TCP, so these 
interactions were not taken into account.  

Without IPR, application execution times 
were negatively affected by TCP’s wrong 
estimation of buffers, retransmissions and slow 
start protocol [6], that made the whole execution 
very slow in saturated networks. In contrast, when 
IPR was applied, jitter was reduced, and this helps 
TCP to determine its timeout and buffer values, so 
there were less retransmissions and slow starts. 

Thus, IPR caused two overlapped effects: (1) 
For most applications, it accelerated the flow of 
packets through the IN. (2) In all cases, it helped 
TCP, allowing the applications to reach higher 
throughput. This second effect was unexpected, 
and was way more significant than the first, 
explaining the mismatch in our predictions.  

We can conclude that the reutilization of 
components may look as a good idea, because it 
reduces the time of setting-up an evaluation 
environment and reduces programming errors, but 
the price to pay may be too high: it may introduce 
unforeseen interactions that can magnify, hide or 
even invalidate the results obtained. 

As we explained in the previous sections, 
another issue when gluing together two different 
simulators is to fine-tune the synchronization 
among them. In particular, we need to define the 
slice duration. We ran some additional 
experiments to explore this issue. The IN was the 

same described before and in  [12], using again 
MPICH/TCP/IP/Ethernet as the protocol stack. 
However, we used a slower network. Results are 
shown in Fig. 4. In the first row there were a set of 
experiments tuned to run the benchmarks 
executing 200 INSEE cycles per 10000 Simics 
cycles. Experiments on second row were tuned to 
run 20 INSEE cycles per 1000 Simics cycles – 
meaning that simulators synchronized 10 times 
more often, but the network speed was 128Mb/s in 
both cases because they kept the same relation 
between Simics cycles and INSEE cycles in every 
step of execution. 

This difference in synchronization frequency 
had an impact on obtained results, due to the 
additional delays introduced by the lock-step 
synchronization. In the 10000:200 case, a packet 
generated at a node may need to wait up to 9999 
Simics cycles before being injected into the 
network. This resulted in significant delay 
variations. In the 1000:20 experiments, the worst-
case additional delay was reduced to 999 Simics 
cycles – thus jitter was reduced too. We already 
know that TCP is very sensitive to jitter, and we 
observed it in the results. 10000:200 experiment 
rows took much more simulated time than their 
analogous 1000:20 experiments. 

It is important to point out that 10000:200 
experiments were faster (about 5 times) in terms 
of actual time (not simulated time) because they 
synchronize less often. But the price to pay for 
being faster was a lower fidelity in timing, which 
resulted in a worst performance of TCP. 

Despite all problems listed above, our full-
system simulator has allowed us to validate, after 
careful fine-tuning, our expectations about the 
performance of congestion control, that were 
tested previously with other methods like 
synthetic traffic or trace-based simulation – 
techniques that are significantly faster but are 
considered less accurate. 

7. Conclusions 

Full-system simulation is a very complex issue, 
more so when trying to simulate not a computer, 

Slice duration BT CG IS 
10000:200 base 4.64s 5.96s 4.21s 
1000:20 base 2.51s 2.83s 2.87s 

Table 1. Simulated execution times with different set of 
synchronization parameters. 



  
 
but a collection of networked machines – 
especially if the network and the interfaces differ 
from the traditional LAN devices available from 
simulation environments. It is also a very 
resource-consuming task. The simulation of a 
cluster of computers may require an actual 
machine with similar characteristics to the one 
under study, and the execution of applications will 
be several orders of magnitude slower. 

As we have shown, full-system simulation of 
multicomputers requires a large collection of 
interrelated (software) components, which have in 
many cases to be done from scratch, or re-used 
from those provided by the simulation 
environment being used. The reutilization allows 
for important reductions of implementations effort 
and errors, but implies some risks of using, for a 
given purpose, components designed for different 
(although related) purposes, and may lead to 
inaccurate or even invalid simulation results. 

The synchronization between compute nodes 
and IN simulators also requires a very careful 
design. A trade-off has to be found between 
execution speed and simulation fidelity. 

Our experience has shown that there are many 
factors that can interfere in the quality of results: 
selection of protocol stacks, including MPI 
implementation, drivers, synchronization 
modules… In fact, there are so many of these, that 
sometimes is almost impossible to detect the 
isolated effects of a given architectural proposal. 
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