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Abstract 

 
Any simulation-based evaluation of an 

interconnection network proposal requires a good 
characterization of the workload. Synthetic traffic 
patterns based on independent traffic sources are 
commonly used to measure performance in terms of 
average latency and peak throughput. As they do not 
capture the level of self-throttling that occurs in most 
parallel applications, they can produce inaccurate 
throughput estimates at high loads. Thus, workloads 
that resemble the varying levels of synchronization of 
actual applications are needed to study the 
performance of interconnection networks. One 
approach is to use simple, burst-synchronized synthetic 
workloads that emulate the self-throttling of many 
parallel applications. To validate this approach, we 
compare the gains achieved by a restrictive injection 
mechanism under this workload with those obtained 
using traces from the NAS Parallel Benchmarks. This 
study confirms that the burst-synchronized traffic 
model provides reasonable performance estimates, 
which could be improved by taking into account 
dependency chains between messages. 

 
 

1. Introduction 
 

The interconnection network (IN) is a key element 
of any parallel computer, more so when executing 
communication-intensive applications. Network 
performance has been evaluated using many 
techniques, including: network simulation with 
synthetic loads, analytical models, trace-driven 
simulation and full-system simulation. Traditionally, 
network simulators measure performance under a well-
known range of synthetic traffic patterns such as 
uniform, hot-spot and permutations. These patterns 
model worst-case scenarios of little locality and 
unbalanced usage of network resources [4]. Analytical 
models have been proposed for simple networks but 

they rely on unrealistic assumptions, such as uniform 
traffic or infinite injection and delivery queues, so they 
have limited use. A full system simulation, in which 
traffic is provided by an execution-driven simulator 
such as Simics [16], provides more meaningful results 
but limits the evaluation to small networks.  

Congestion is a well-known problem in standard 
computer networks [8], but most INs in the literature 
(most with a standard size of 256 nodes) did not 
exhibit throughput degradation at loads beyond 
saturation. Such network proposals had single injection 
queues and, when the network is small, the head-of-
line blocking at injection is enough to throttle the 
network and control congestion [7]. This is not the case 
for large networks with multiple injection sources such 
as IBM’s BlueGene/L [2], which are prone to suffer 
from congestion at heavy loads. Consequently, new 
congestion control techniques have been proposed and 
evaluated for wormhole [1,15] and virtual cut-through 
INs [9,11,14]. Most of these works carry out 
evaluations using synthetic traffic patterns that assume 
that nodes generate traffic independently of each other. 
Although they ignore the different levels of coupling 
and synchronization that exist in parallel applications, 
synthetic loads seemed to provide reasonable 
indicators of network performance for a range of 
parallel benchmarks [12].  Note that most parallel 
applications will apply some level of self-throttling as 
nodes synchronize and may stop sending new 
messages as they wait for messages delayed by 
congestion. Thus, any evaluation of an IN at heavy 
loads, and in particular any evaluation of a congestion 
control technique, should be done under loads that 
reflect the synchronization and coupling among 
application processes. 

In [6] burst-synchronized synthetic traffic was 
proposed to make a fair evaluation of the congestion 
control technique IPR (In-transit Priority Restriction), 
the one used in the torus network of the IBM 
BlueGene/L [2]. In this paper we will consider another 
congestion control technique called Local Buffer 



Restriction (LBR), which uses local information to 
regulate the admission of new traffic. We will compare 
results obtained using burst-synchronized loads with 
those obtained by applying actual loads taken from 
traces of the NAS Parallel Benchmarks (NPB). If the 
synthetic loads reflect the synchronized nature of 
parallel applications, both results should lead to the 
same conclusions regarding LBR, and we would have a 
means to evaluate very large systems. Note the main 
goal of the work is not to evaluate LBR but to find out 
if burst-synchronized loads are a good approximation 
of real loads. 

The rest of this paper is organized as follows. 
Section 2 discusses related work. Section 3 describes 
the experimental, simulation-based workbench. Section 
4 compares and contrasts the results of the different 
experiments. Finally, Section 5 summarizes the 
findings of this work. 
 
2. Motivation and Related Work 
 

Most IN studies rely solely on synthetic traffic 
patterns, which include uniform traffic, hot spot traffic 
and permutations [4]. The figures of merit are latency 
at low loads and peak network throughput. The need to 
characterize network workload and produce better 
synthetic models was identified long time ago [3], 
although there has been little progress since. Instead of 
developing new synthetic loads, some IN studies 
combine the standard evaluation with real workload 
evaluation [12]. Other studies use synthetic loads that 
mimic the bursty nature of network traffic [14] 
extending the standard packet generation, which 
followed a Poisson or Bernoulli distribution, with a 
sequence of ON/OFF states, so that packets are 
generated only during the ON state. Besides, most 
studies normalized the applied load to the network 
bisection limit, so that the networks were not tested for 
loads beyond their theoretical capacity. As most 
network proposals sustained their maximum 
throughput after saturation, the evaluation of the 
network at heavy loads was not considered of interest 
until recently. However, congestion is a problem for 
large INs with multiple injection sources, and 
congestion control mechanisms are tested at loads 
beyond saturation [1,9,14] in order to see if they 
prevent traffic bursts from degrading network 
performance.  

Synthetic loads used to evaluate congestion control 
techniques fail into two categories: static loads, which 
use the same pattern and injection rate over the time 
each experiment runs, and dynamic loads which 
alternate between phases of high and low injection 
rates. For static loads, only the steady-state 

performance is studied, and the figure of merit is 
average sustained throughput. For dynamic loads the 
figure of merit is total execution time, which is a better 
indication of the network ability to cope with 
communication intensive phases. 

The evaluation of congestion control techniques 
using static loads has shown that unbalanced traffic 
loads may result in network unfairness at saturation 
[6]: some nodes have less chance to inject traffic than 
others. The source of this unfairness is the unbalanced 
utilization of resources, derived from the traffic 
pattern. The more in-transit packets a router has to 
manage, the less opportunity it has to inject its own 
traffic. Besides, an unbalanced load distribution results 
in the formation of persistent zones of congestion at 
high loads. In this context, average throughput as 
reported in [1,8,15] is not representative of application 
loads, because “fast” injecting nodes will eventually 
wait for the slow ones to catch up. Therefore, in order 
to obtain useful performance figures at heavy loads, a 
static synthetic traffic pattern should reproduce the 
level of coupling that exists amongst traffic sources in 
actual parallel applications.  

Non-static loads reflect the fact that communication 
in many parallel applications is not constant over time, 
so that an intensive communication phase (with high 
traffic volume) will be followed by a computation 
intensive phase (with low traffic volume), Recent 
studies using non-static traffic patterns include [1,14] 
in which traffic is uniform but load alternates between 
low and high phases, and [15] in which each high 
phase uses a different pattern. As mentioned before, 
the figure of merit is total execution time. As the high 
phases will exhibit network unfairness, a computing 
node located in a less clogged area will be able to 
advance to the next phase ahead of the rest, an unlikely 
scenario in a parallel application. In other words, 
although non-static synthetic loads reflect the temporal 
variations that occur in application loads, they still fail 
to model the synchronization and coupling amongst 
application nodes.  

Burst-synchronized traffic deals with this issue by 
modeling the barrier synchronization primitives used in 
many parallel applications, either explicitly (in the 
form of collective operations) or implicitly. This 
synchronized traffic has been sparingly used in studies 
focused on injection issues [3,6], claiming that it 
represents realistic workloads, but there is no formal 
study confirming or denying this fact. Our work tries to 
fill this gap by comparing the insights obtained from 
synthetic loads with those from actual workloads taken 
from application traces.  

 



3. Experimental Setup 
 
3.1 The Simulation Environment 
 

Experiments have been performed using the 
evaluation environment described in [13]. It consists of 
an IN simulator and a traffic-generation module, which 
provides traffic from one of these sources: synthetic 
generation, traffic as recorded in traces or interfacing 
with Simics [16] to perform a full system simulation 
[11].  

We perform most of our experiments using a small 
network of only 64 nodes. This is because the trace-
capture setup imposes us limits that are close to this 
value (due to availability of resources in a production 
machine, and to the sizes of the trace files). As 
bisection bandwidth does not increase linearly with the 
radix, networks with large radix reach saturation at 
lower injection rates, and they are more likely to suffer 
overloads during intensive communication phases. 
Thus we focus our study on 64-node rings, instead of 
using 8x8 tori. The ring is adequate to experiment with 
congestion, and results with this topology can be 
extended to multidimensional Ins, because congestion 
causes messages to rely on the escape sub-network, in 
which they must traverse the x-ring first.  

The models of routers used in the experiments are 
depicted in Fig. 1. Each physical channel in the router 
is split into three virtual channels (VCs): an Escape 
channel (governed by the bubble routing rules [12]), 
and two adaptive channels. Note that a ring network 
has just one minimal path from source to destination, 
so packets cannot adapt. Thus, the only difference 
between the Escape VC and the other two is that access 
to the “adaptive” VCs is not restricted by the bubble 
rules. In the case of 2D tori, packets in adaptive VCs 
can use any minimal path to reach their destinations.  

Each node is able to simultaneously consume 
several packets arriving to the reception port. There are 
two injection ports, and the interface should perform a 
pre-routing decision: packets moving towards the X+ 
axis are stored in the I+ injection port, and those 
towards X– go to the I– injection port. Transit and 
injection queues are able to store 4 packets of 16 phits 
each. Phit length is 4 bytes (32 bits). 

Each experiment has been repeated 10 times, using 
different random seeds. We measure execution times in 
terms of simulation “cycles”. As these times vary 
between patterns or benchmarks we have represented 
the average value (obtained from 10 simulation runs) 
normalized to the Base case.  

Regarding synthetic traffic we use UN (uniform) 
and HR (hot-region). In both cases destinations are 
chosen randomly;  in the case of HR [2], 1/4 of the 

traffic goes to the first 1/8 nodes, and the remaining 
traffic is uniform. 
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Fig. 1. Models of the simulated routers, (a) 
router for rings, and (b) router for 2D tori, with 
a detailed view of the X+ input port showing 
the 3 virtual channels that share its link  
 

Traces used in this work have been obtained from 
clusters of commodity PCs and from the Mare 
Nostrum, running some of the NAS Parallel 
Benchmarks (NPB) [10]. To obtain these traces we 
modified the trace capture tool included in MPICH, in 
order to register all the point-to-point operations—
including those that implement the collective 
operations [13]. As we want the network to become the 
bottleneck, we provided workload to the simulator as 
fast as we can, regardless of the timestamps found in 
the traces. However, in order to preserve the causal 
relationship among messages, we maintained the order 
shown between arrivals and new injections: when the 
trace file indicated that a message was received at a 
given node, injection of packets from that node sent 
later in the trace is delayed until that message arrives. 
This way, we measure the number of network cycles 
that, in the simulated network, are necessary to 
complete all the interchanges of messages stored in the 
trace files. 



3.2   Congestion Control Techniques 
 

As congestion is caused by overloading the network 
with too many packets, congestion control techniques 
deal with it by limiting packet injection as soon as the 
network exhibits signs of being congested. They differ 
in the way congestion is diagnosed.  

Global methods estimate congestion by examining 
the status of the whole network (for example, the 
number of packets held in the routers, as in [15]); thus 
a mechanism is needed to gather and distribute that 
information. Local methods are simpler because each 
node restricts its own injection based on its own 
congestion level. Multiple congestion control methods 
are evaluated in [8]. As this is not a work on 
congestion control, we consider only one simple local 
method that has shown good performance, LBR. 

Most routers split each physical link into several 
VCs in such a way that the combination of an escape 
sub-network with one or more adaptive sub-networks 
provides deadlock-free adaptive routing [5]. The LBR 
mechanism has been designed specifically for adaptive 
routers that rely on Bubble Flow Control to avoid 
deadlock in the escape sub-network [12]. A previous 
study showed how the bubble restriction also provides 
congestion control for the escape sub-network [7]. 
LBR extends this mechanism to the rest of the VCs. 
That is, a packet can only be injected into an adaptive 
VC if such action leaves room for at least B packets in 
the transit buffer associated to that VC. Parameter B 
indicates the buffer space reserved for in-transit traffic. 
In other words, congestion is estimated by the current 
buffer occupancy. We can vary the degree of 
restriction in the injection by modifying this parameter. 
In this work we use B=3 (out of 4-packet buffer), so 
packets are injected in an adaptive channel only when 
its queue is empty or almost empty. 
 
4 Analysis of the Experiments 

 
4.1 Experiments using Burst-Synchronized 

Traffic 
 
The utilization of burst-synchronized traffic to 

model application loads was proposed in [6]. With this 
traffic, each node tries to inject a burst of b packets as 
fast as the network is able to accept them; then the 
node stops. Nodes will start injecting another burst 
only when all the packets of the previous one have 
been consumed. The figure of merit in these 
experiments is the time to consume a burst. We have 
considered a collection of values for b, trying to 
emulate different degrees of coupling among 
application processes, from 10 (the most tightly-

coupled) to 10.000 (the most loosely-coupled). For 
applications that synchronize using barriers, we can 
interpret b to be the number of packets sent between 
two barriers. Note that, in a VCT network, long 
messages are packetized, so a long message generates a 
burst of packets to be injected in the network. 
Therefore, message size and b are directly related. 

Execution times have been normalized to the time 
of the Base case (LBR deactivated). The time relation 
between base case and LBR is plotted in Fig. 2 for both 
random traffic and hot-region traffic. We can see that 
LBR is effective in reducing the time the network 
requires to deliver one burst. As expected, the gains 
increase with the number of packets sent per burst. 
LBR is more effective in the 2D network, as adaptive 
routing increases pressure on network resources and 
causes higher contention than in the 64-ring 
counterpart. Thus, the evaluation of LBR using a 64-
ring give us a conservative estimate of the gains 
achieved by LBR on multidimensional network with 
similar radix. 

 
4.2 Experiments Using Application Traces 

 
We now explore the relationship between b and the 

problem size of the NPB. This suite can be compiled 
and run for a variety of problem sizes, denoted S, W, 
A, B, C and D—where S is the smallest and D is the 
largest. Larger problems use larger data structures, and 
this entails interchanges of larger messages, although 
the pattern of interchanges remains the same. There is, 
though, an exception to this rule: for LU, as the 
problem size increases, the number of messages 
interchanged also increases, in addition to its size. 

For a second set of experiments, we have generated 
traces for a variety of problem sizes for all the NPB, 
and processed them through the network simulator. We 
have used the official sizes defined for the applications, 
and added some intermediate cases when necessary 
(for example, the difference in problem size from S to 
W for IS is too wide, so we have added those cases 
denoted as “T”). Figures 3(a) and 3(b) show the results 
obtained for IS and CG respectively. Compare with the 
curves in Fig. 2 for the synthetic patterns UN and HR. 
Again, as the problem grows, the benefits of LBR are 
more visible. Although congestion control can be 
counterproductive in some cases (CG), its penalty is 
small. 

 
4.3 Analysis of Application Traces 
 

Results from previous sections predict that LBR is 
clearly beneficial in some applications, but may have a 
negative impact in others.  
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Fig. 2. Performance of 1D and 2D tori dealing with bursts of uniform and hot-region traffic. 
Normalized times to consume a burst, and trend lines (X axis is logarithmic). 
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Fig. 3. Relationship between problem size and efficiency of LBR for benchmarks IS (a), CG (b) and 
LU (c). Measured values and trend lines. Scale in the X axis is logarithmic. Y axis represents the 
time to consume the applied workload, relative to the base case without LBR. 
 



We have related this to the problem size and to the 
burst size b in our synthetic model, but we have also 
observed that this approach is not valid for all cases. In 
this section we analyze the traces of CG and LU (size 
A, 64 processors), obtained in the Mare Nostrum, to 
better understand the relationship between the traffic 
patterns and the effect of congestion control. 

CG is the only application of the NPB suite that 
does not benefit from congestion control—just the 
opposite. A visualization of the trace of CG.A.64 (see 
Fig. 4) shows that this application consists of a series 
of iterations, each of them with these phases:  

(1) An interchange of messages: each node sends and 
receives 7 messages. The first 4 are long (~14 
KB) and the remaining 3 are very short (8 B). The 
first two long messages go to nodes nearby, while 
the remaining two must traverse longer distances. 
The first short message goes to a distant node, 
while the remaining two go to nearby nodes.  

(2) A short computation phase.  
(3) A second interchange of three very short 

messages, between nearby nodes.  
(4) A longer computation phase. 

In short, this benchmark exhibits long 
communication-synchronization chains: a message is 
sent only when triggered by the reception of another 
one. These chains are of length 7 in phase 1, and of 
length 3 in phase 3. The number of messages 
traversing the network simultaneously is never very 
large, and in most cases they go to close destinations. 
Any delay injecting a given message (for example, to 
prioritize in-transit traffic, as LBR does) results in 
additional delays injecting messages than depend on it. 
We can expect to obtain maximum benefit from 
congestion control in communication-intensive phases 
with a mixture of short-distance and long-distance 
packets, without interdependencies. CG does not fulfill 
these requirements, so the observed performance drop. 

LU is the application that benefits most from 
congestion control. However, we expected more 
improvements for larger problem sizes, and this does 
not happen. The traces help us understanding the 
reasons. A study of the trace of LU.A.64 shows that 
this application also consists of a series of iterations, 
each of which has 7 phases: 

 (1) A cascade of short, chained messages (600 B) 
initiated at node #0, flowing downward to the 
remaining nodes; messages go to destinations at 
distance 1 or 8.  

(2) A similar, upward cascade, started at node #63.  
(3) A computation phase.  
(4) An interchange of a long message (~40 KB) with 

a neighbor.  
(5) A computation phase.  

(6) Another interchange of a long message, with a 
node at distance 8.  

(7) A computation phase. 
 

Fig. 5 illustrates the 7 phases for LU.A.16. The size 
was reduced to 16 for the sake of clarity, but the 
patterns are similar for LU.A.64. Phases 1 and 2 are 
very demanding in terms of network utilization, and 
they take a sizeable portion of the total running time. In 
those phases there are dependency chains, of length 7, 
among messages. All messages in each chain go to 
distance 1 or 8. As LBR prioritizes the in-transit 
traffic, messages to distance 1 are injected after those 
going to distance 8 have passed trough, thus the total 
time for these phases is increased greatly. It is 
important to remark that when the problem size 
increases, both the message size and the number of 
chains in the cascades increase. 

In phase 4 only neighbor-to-neighbor links are used, 
so network routers do not observe passing-by traffic. In 
this phase, dependency chains are of length 2. Phase 6 
is similar to 4, having chains of length 2, but message 
destinations are at distance 8. This results in conflicts 
between in-transit traffic and injected traffic.   

Congestion control techniques are very effective in 
accelerating phase 6; in fact, a micro-benchmark that 
reproduces only this phase reports gains using LBR 
over a 40%. However, they are harmful in phases 1 and 
2—a micro-benchmark for this phase reports drops of a 
20%. When the problem size of LU is increased, phase 
6 does not experiment further acceleration, but phases 
1 and 2 are longer in number of messages and, thus, the 
negative impact of congestion control is more 
noticeable. This explains the results of Fig. 3c, 
showing performance decreases for larger problem 
sizes. 

The conclusion of this section is that a simple, 
burst-synchronized traffic model may not adequately 
describe the characteristics of any possible application, 
but can do so for some phases of the application. We 
need to improve the model to include the dependency 
chains that are present in actual applications and that 
interact negatively with congestion control 
mechanisms.  

 
5 Conclusions 

Synthetic workloads are useful during the initial 
design stages of an IN, as they allow exploring the 
network design space and providing initial 
performance estimates. For large networks, the 
synthetic model should take into account, at least, the 
self- throttling that real applications have implicit.  
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Fig. 4. Visualization of a portion of the traces for CG.A.64 (a): a yellow block (state) in the timeline 
represents a “send”, pink means “receive”, and cyan means “wait”. The remaining is 
computation time. Arrows represent messages.  
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Fig. 5. Visualization of a portion of the LU.A.16  trace: in the last phase of data interchanges 
messages are sent to distance 4, whilst in the LU.A.64 this distance is 8. (yellow block (state) 
represents a “send”, pink means “receive”, and cyan means “wait”. The remaining is 
computation time. 

 



We propose the utilization of burst-synchronized 
traffic that, although still simple, models application 
behavior better than the traffic generated by 
independent sources. Scientific applications advance in 
alternating phases of computation and communication-
synchronization. In our model, a burst represents a 
phase of intensive packet interchanges followed by 
synchronization primitives such as a barrier. The burst 
size b indicates the number of packets sent by each 
node in each phase. 

We have used this traffic to evaluate a local 
congestion control mechanism (Local Buffer 
Restriction), after showing that the utilization of 
independent sources may provide misleading results. 
Using burst-synchronized traffic, LRB shows its 
potential to accelerate message interchange in a VCT 
network. This benefit is larger for larger values of b. In 
order to validate this result, we have performed 
additional experiments using real traffic, taken from 
traces of the NPB (class A, 64 nodes). For most of the 
experiments, congestion control shows its good 
performance, confirming our findings. Furthermore, 
the class (problem size) of the NPB is directly related 
to b and, again, larger problems benefit more from 
congestion control.  

There are some exceptions, though, to this rule. For 
some applications, congestion control is 
counterproductive and, for some others, obtained 
results are not as good as we could expect, especially 
for large problems. This is because the applications, or 
some phases within them, have long chains of 
dependencies between messages. This behavior is not 
adequately characterized by burst-synchronized traffic, 
which models all traffic interchanges inside a phase as 
independent communication events. 

In summary, this study has proven that the 
utilization of burst-synchronized traffic is a reasonable, 
although not perfect, alternative to the utilization of 
actual traffic, and can help in the evaluation of large 
networks for which the use of real traffic loads is not 
viable. Future lines of work include the introduction in 
this model of some sort of “reactiveness” to describe 
message chains, and also a method to find the best 
value of b that characterizes a given application. 

 
References 
[1] E. Baydal, P. Lopez and J. Duato, “A Family of 
Mechanisms for Congestion Control in Wormhole 
Networks” IEEE Trans. on Parallel and Distributed Systems, 
V. 16, N. 9, Sept. 2005, pp 772-784.  
[2] M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, 
P. Heidelberger, S. Singh, B. Steinmacher-Burrow, T. 
Takken, P. Vranas. “Design and Analysis of the BlueGene/L 
Torus Interconnection Network” IBM Research Report 
RC23025 Dec. 2003. 

[3] T. Callahan and S.C. Goldstein, “NIFDY: A Low 
Overhead, High Throughput Network Interface”, in Proc. 
22nd Annual Int. Symp. on Computer Architecture (ISCA), 
Italy, June 1995. 
[4] W.J. Dally, B. Towles. “Principles and Practices of 
Interconnection Networks”. Morgan-Kaufmann, 2004. 
[5] J. Duato. “A Necessary and Sufficient Condition for 
Deadlock-Free Routing in Cut-Through and Store-and-
Forward Networks”. IEEE Trans. on Parallel and Distributed 
Systems, v. 7, n. 8, 1996. 
[6] C. Izu, J. Miguel-Alonso, J.A. Gregorio. “Evaluation of 
Interconnection Network Performance under Heavy Non-
uniform Loads”. Lecture Notes in Computer Science, 
Volume 3719 / 2005 (Proc. ICA3PP 2005), pp. 396 - 405. 
[7] C. Izu, J. Miguel-Alonso, J.A. Gregorio. “Effects of 
Injection Pressure on Network Throughput”, in Proc. PDP 
2006 14th Euromicro Conference on Parallel, Distributed and 
Network based Processing. Montbéliard-Sochaux - France- 
February 15-17 2006. 
[8] R. Jain. “Congestion control in computer networks: issues 
and trends”. IEEE Network, v.4 n.3, May 1990. 
[9] J. Miguel-Alonso, C. Izu, J.A. Gregorio. “Improving the 
Performance of Large Interconnection Networks using 
Congestion-Control Mechanisms”. EHU-KAT-IK-06-05. 
Dep. of Computer Architecture and Technology, UPV/EHU. 
Submitted. 
[10] NASA Advanced Supercomputing (NAS) division. 
“NAS Parallel Benchmarks” Available (May 2006) at 
http://www.nas.nasa.gov/Resources/Software/npb.html  
[11] J. Navaridas, F.J. Ridruejo, J. Miguel-Alonso. 
"Evaluation of Interconnection Networks Using Full-System 
Simulators: Lessons Learned". Proc. 40th Annual Simulation 
Symposium, Norfolk, VA, 2007. 
[12] V. Puente, C. Izu, J.A. Gregorio, R. Beivide, and F. 
Vallejo, “The Adaptive Bubble router”, Journal on Parallel 
and Distributed Computing, vol 61, no. 9, Sept. 2001. 
[13] F.J. Ridruejo, J. Miguel-Alonso. “INSEE: an 
Interconnection Network Simulation and Evaluation 
Environment”. Lecture Notes in Computer Science, Volume 
3648 / 2005 (Proc. Euro-Par 2005). 
[14] Y.H. Song, T.M. Pinkston. “Distributed Resolution of 
Network Congestion and Potential Deadlock Using 
Reservation-Based Scheduling”. IEEE Trans. Parallel and 
Distributed Systems, v.16, N.8, 2005. 
[15] M. Thottethodi, A.R. Lebeck, S.S. Mukherjee. 
“Exploiting Global Knowledge to Achieve Self-Tuned 
Congestion Control for K-Ary N-Cube Networks”. IEEE 
Trans. on Parallel and Distributed Systems, Vol. 15, No. 3, 
March 2004, pp 257-272.  
[16] Virtutech Inc. “Simics page”. Available (June 2006) at 

http://www.virtutech.se/products/ 

 
Acknowledgements 

  
This research has been supported by the Spanish 

Ministerio de Educación y Ciencia, under grant TIN2004-
07440-C02-01. Mr. Navaridas is supported by a pre-doctoral 
grant from the University of the Basque Country. We also 
acknowledge the Barcelona Supercomputing Center (BSC) 
for supplying computing resources for our research. 


