
Effects of Job and Task Placement on Parallel Scientific Applications Performance 

Javier Navaridas,  Jose A. Pascual,  Jose Miguel-Alonso 

Department of Computer Architecture and Technology 

The University of the Basque Country UPV/EHU 

P.O. Box 649, 20080 San Sebastián, SPAIN 

{javier.navaridas,  ja-pascual,  j.miguel}@ehu.es 

 

 
Abstract—this paper studies the influence that task placement 

may have on the performance of applications, mainly due to 

the relationship between communication locality and overhead. 

This impact is studied for torus and fat-tree topologies. A 

simulation-based performance study is carried out, using 

traces of applications and application kernels, to measure the 

time taken to complete one or several concurrent instances of a 

given workload. As the purpose of the paper is not to offer a 

miraculous task placement strategy, but to measure the impact 

that placement have on performance, we selected simple 

strategies, including random placement. The quantitative re-

sults of these experiments show that different workloads pre-

sent different degrees of responsiveness to placement. Fur-

thermore, both the number of concurrent parallel jobs sharing 

a machine and the size of its network has a clear impact on the 

time to complete a given workload. We conclude that the effi-

cient exploitation of a parallel computer requires the utiliza-

tion of scheduling policies aware of application behavior and 

network topology. 

Keywords-interconnection networks; parallel job scheduling; 

performance characterization; resource allocation; trace-driven 

simulation. 

I. INTRODUCTION 

Current high-performance computing facilities are com-
posed of thousands of computing nodes executing jobs in 
parallel. An underlying interconnection network (such as 
Myrinet [13], Infiniband [6], Quadrics [19], or an ad-hoc 
network) provides a mechanism for tasks to communicate. 
Most of these facilities belong to national laboratories or 
supercomputing centers, and are shared by many researchers 
(see the Top500 list, [5]). However, it is very uncommon to 
dedicate all the nodes of a site to run a single application. In 
most cases, nodes are time and/or space shared among users 
and applications. For example, in [17] authors describe the 
scheduling mechanisms in use in the supercomputers of the 
Numerical Aerospace Simulation (NAS) supercomputer fa-
cility, located at NASA Ames Research Center.  

Supercomputing sites have one or more job queues to 
which users send their parallel jobs, where they wait until a 
scheduler allocates some resources to it. A large variety of 
scheduling policies have been proposed and are in use in 
order to manage the queues, many of them based on the 
First-Come First-Served discipline (see [17] again), typically 
taking into account some restrictions: different levels of pri-
ority, quotas (both in terms of CPU time and number of 
processors per job), maximum waiting time, etc. 

It may be shocking to know that many scheduling poli-
cies disregard any knowledge about the topological charac-
teristics of the underlying system; they see the system as an 
unstructured pool of computing resources. We will discuss in 
the next section how schedulers assign free nodes—i.e. re-
sources—to jobs, independently of the location of those 
nodes in the network, and return them to the free pool when 
jobs finish or are cancelled. After a certain warm-up time, 
which depends on the number and variety of executed jobs, 
physical selection of allocated resources is close to random: 
nodes assigned to a given job may be located anywhere in 
the network. In other words, resources are fragmented.  

The reader should note that programmers of parallel ap-
plications usually arrange tasks in some form of virtual to-
pology. This is a natural way of programming applications in 
which large datasets (matrices) are partitioned among tasks 
[2]. Programmers favor communication between neighboring 
tasks, under the assumption that this strategy should result in 
improved performance. If the assigned execution nodes are 
not in close proximity, programmers’ efforts are totally use-
less. Furthermore, if job placement is arbitrary, the messages 
interchanged by a job may interfere with those interchanged 
by other, concurrent ones, in such a way that contention for 
network resources may be exacerbated. Thus, topological 
information should be taken into account in the scheduler’s 
decision process to effectively exploit locality and to avoid 
undesired interactions between jobs. 

As we stated before, most job placement policies are not 
locality-aware. In this work, we want to show how the inclu-
sion of topological knowledge in schedulers can improve the 
performance of parallel computers. We will explore previous 
work on this issue, as well as the current state of the art about 
scheduling tools, focusing on the knowledge of the system 
they manage. Furthermore, we will discuss the impact that 
job and task placement has on performance when the net-
work of the parallel computer is based on any of the two 
most commonly used topologies: fat-tree and torus. To do it 
so, we carried out a simulation-based performance study in 
which we fed the networks with different application-like 
workloads: traces, and synthetic traffic patterns that closely 
emulate the behavior of actual applications. We tested net-
works of different sizes, and we explored several alternatives 
of task allocations for a single parallel job, and job and task 
allocations for concurrent, parallel jobs. Results support what 
we stated before about the effects of topology-unaware 
placement: it results in unnecessarily long execution times.  



To our knowledge, there is no previously published work 
measuring the interactions between parallel job schedulers, 
application’s sensitivity to placement, and network topology. 
This is a gap we aim to start filling, with an exploration of 
the impact that task placement have on the execution time of 
parallel applications running on supercomputers with differ-
ent interconnection networks (tori and fat-trees). We will 
show how some applications are insensitive to placement, 
but many others run very efficiently under certain topol-
ogy/placement combinations. The natural continuation of 
this work will be the inclusion of topology-aware policies in 
parallel job schedulers.  

The rest of this paper is organized as follows. In Section 
II we discuss some work on job placement and also explore 
some schedulers and their job placement policies. The ex-
perimental environment—studied networks, workloads and 
placement strategies—is described in Section III. In Section 
IV we show and analyze the results of the experiments. Sec-
tion V closes this paper with some conclusions and an out-
look of our plans for future work. 

II. RELATED WORK 

In the literature we can find a variety of strategies for re-
source allocation and scheduling. These two problems are 
strongly interconnected. The use of a good allocation algo-
rithm and a good scheduling policy decreases network frag-
mentation, allowing contiguous allocation of jobs in the par-
allel system, which can be taken advantage by applications. 

In [23] we can see how the contiguous allocation of tasks 
resulted in improved application performance. Authors run 
eight sets of 16-node FFTs—benchmark FT, part of the well-
known NAS Parallel Benchmarks [14]—concurrently on a 
128-node mesh, and compared contiguous vs. random node 
allocation. They observed a 40% improvement in runtime 
when using contiguous allocation. The obvious way to go is 
to introduce contiguous allocation strategies in schedulers for 
parallel machines. In some other papers addressing this issue 
[3, 9, 10, 12, 23] allocation algorithms were proposed mainly 
for k-ary n-cube topologies. Figures of merit usually did not 
show how placement strategies affect the runtime of an ap-
plication instance, but just the completion time of a list of 
jobs. In [16] we paid attention to tree-based topologies and 
relied on contiguous allocation of tasks to, by means of an 
efficient exploitation of communication locality, dilute or 
even invert the potentially negative effects of reducing the 
bisection bandwidth of the network. Interestingly, in [10] 
authors showed how the requirement of contiguous alloca-
tion may cause poor utilization of the system due to external 
or internal fragmentation. To avoid this effect, they evaluated 
several non-contiguous, but non-random, allocation schemes 
that improved overall system utilization.  

A review of commercial and free schedulers shows that, 
by default, they are not topology aware—in other words, 
they do not take care of the actual placement of tasks. This is 
true for job queuing systems and scheduling managers such 
as Sun’s Grid Engine [24], IBM’s LoadLeveler [7] or PBS 
Pro [18] (the latter used in Cray Supercomputers [1]). Al-
though some of them provide mechanisms for the system 
administrators to implement their own scheduling/allocation 

policies, in practice, this is not done. For example, the 
scheduling strategy used on Cray XT3/XT4 systems (cus-
tom-made 3D tori) simply gets the first available compute 
processors [1]. Maui [4] and Slurm [8], in use in ASC Purple 
(IBM Federation network) and BSC’s MareNostrum (multi-
stage Myrinet), have an option to take into account applica-
tion placement, but they ignore the underlying topology, 
considering a flat network, i.e. distance between nodes is 
considered as the difference between node identifiers. The 
most notable example of current supercomputer that tries to 
maintain locality when allocating resources is the BlueGene 
family (3D tori), whose scheduler [3] puts tasks from the 
same application in one or more midplanes of 8x4x4 nodes. 

III. EXPERIMENTAL SET-UP 

We used simulation to assess the impact of allocation 
strategies on application performance. The simulation envi-
ronment encompasses a network simulator and a workload 
generator [21]; we describe them in this section. It is impor-
tant to remark that our simulator measures time in terms of 
cycles; a cycle is the time required by a phit (physical trans-
fer unit, fixed to 4 bytes) to traverse one network switch. 

A. Workloads 

Throughout this work we evaluate networks using realis-
tic workloads, taken from actual or emulated applications. In 
particular, we used traces taken from the well-know NAS 
Parallel Benchmarks [14] (NPB), and a set of application 
kernels described in [15]. In both cases we assumed infinite-
speed processors, meaning that we only measured the time 
used by the network to deliver the messages, but not the time 
used at compute nodes to generate, receive and process them. 
Note that message causality is preserved, so when the trace 
states that a node must perform a receive operation, the 
simulated node stalls until the expected message arrives—we 
encourage reader to examine [11] for a deeper explanation of 
our methodology to perform trace-driven simulation. Under 
these assumptions, reported results only toke into account the 
communication and synchronization parts of parallel applica-
tions; thus, the actual impact on performance of a given 
scheduling algorithm would depend on the application’s 
computation to communication ratio. 

Regarding traces, we used class A of NPB applications 
Block Tridiagonal (BT), Conjugate Gradient (CG), Integer 
Sort (IS), Lower-Up diagonal (LU), Multi-Grid (MG), Sca-
lar Pentadiagonal (SP) and Fourier Transform (FT). This 
study did not include Embarrassingly Parallel (EP) because 
it does not make intensive use of the network. In order to 
reduce required computing resources, and given that they are 
iterative applications, we drastically reduced the number of 
iterations in each benchmark, to only 10 to 20 iterations.  

Pseudo-synthetic workloads used in this work are binary-
tree (BI), butterfly (BU), distribution in 2D or 3D meshes 
(2M, 3M) and wave-front in 2D or 3D meshes (2W, 3W), 
which are detailed and justified in [15]. The message length 
was 64 Kbytes. Our experimental set-up also included water-
fall (WF), a pattern observed in the LU NPB application 
[22]. We modeled this pattern as a burst of 286 wave-fronts 



(2W) starting at once, each of them composed by small mes-
sages (256 bytes, or 4 packets).  

All of the workloads used in the experiment were cap-
tured (or generated) for exactly 64 tasks. In some experi-
ments the network had 64 nodes, so a single application uses 
the whole computer. In others, the network had 64*N nodes, 
so N instances of an application shared the computer. Chosen 
values of N were 4 and 16. To simplify the experiments, we 
never mixed different applications. The figure of merit to 
measure performance was the time required to consume all 
the messages in the workload. When using multiple, simul-
taneous application instances to feed a network, reported 
time is the one required to complete all the instances (the 
time taken by the slowest one). 

B. Networks and placement 

Not all the interconnection networks have the same prop-
erties, including the topological ones, and the effect of the 
placement strategies may vary depending on the network. 
For this reason, we selected two of the most widely used 
topologies: fat-trees (typically used to build large-size clus-
ters) and cubes (typically used to build massively parallel 
computers). The reader can check the Top500 list [5] to see 
how most computers in the highest positions of the list fit on 
one of these categories.  

In our experiments we used small to medium-size net-
works, with a number of nodes ranging from 64 to 1024. 
Given these sizes, we considered only 2D cubes (3D would 
be recommended for large-scale networks). In order to allow 
workloads to fit exactly in the network, we used fat-trees 
built with 8-radix switches. Note how fat-trees raise one 
level from configuration to configuration. Considering all 
these restrictions, the networks used in our study are:  

• 4-ary, 3-tree and 8-ary, 2-cube (i.e. 8x8 torus) for 
experiments with a single application instance. Both 
topologies are depicted in Figure 1. 

• 4-ary, 4-tree and 16-ary, 2-cube (i.e. 16x16 torus) for 
experiments with 4 instances of the application.  

• 4-ary, 5-tree and 32-ary, 2-cube (i.e. 32x32 torus) for 
experiments with 16 instances of the application.  

Note that the aim of this paper is not to compare the torus 
against the fat-tree. The evaluation of alternative network 
topologies goes beyond the scope of this paper. Our focus is 

on the impact that placement have on the execution time of 
applications of different sizes, running alone or sharing a 
parallel computer with other applications.  

We assume that parallel jobs are composed of 64 tasks, 
numbered from 0 to 63. Network nodes are also numbered. 
In the case of fat-trees, numeration of nodes is: (0,0), (0,1), 
(0,2), (0,3), (1,0), (1,2), etc., where (s,p) should be read as 
“switch number s, port number p”. Switch numbers corre-
spond, left to right, to the lowest level of the tree, the one to 
which compute nodes are attached. In the case of 2-cubes, 
numeration is done using the Cartesian coordinates of the 
nodes: (0,0), (0,1), (0,2), (0,3), (1,0), etc.  

Regarding placement, we consider task placement (allo-
cation of the tasks of a single job) and job placement (alloca-
tion of several jobs that will run concurrently). Actually, we 
consider task allocation alternatives only for the experiments 
with a single application instance. In the other cases we 
evaluate combinations of task and job placement strategies. 
Now we describe these strategies. In all cases, we assume 
that assignment is done first in order using the job identifier 
and that, for a given job, nodes are assigned to task in order 
of task identifier. In the case of the fat-tree, allocation can be: 

• Consecutive. Switch/port assignment is done select-
ing, in order, node (s,p), increasing first p and then s.  

• In shuffle order. Switch/port assignment is done se-
lecting, in order, node (s,p), increasing first s and 
then p. 

Allocation for the torus can be: 

• In row order. Assignment is done selecting, in order, 
node (x,y), increasing first x and then y. This can be 
seen as partitioning the network in rectangular sub-
networks, wider than tall. 

• In column order. Assignment is done selecting, in 
order, node (x,y), increasing first y and then x. This 
can be seen as partitioning the network in rectangu-
lar sub-networks, taller than wide. 

• When using several application instances, we can 
partition the network in perfect squares (this is pos-
sible because our choice of network and application 
sizes). We use a quadrant scheme in which the net-
work is partitioned this way. Allocation inside each 
partition is done in row order.  

 

 
Figure 1.   Examples of the topologies used in this study. 4,3-fat-trees (left) and 8-ary 2-cube (right), both used to interconnect 64 nodes. 



Both for torus and fat-tree, allocation of the tasks of N 
64-task jobs to an N*64-node machine can be done ran-
domly. When running experiments with this placement, we 
generated five random permutations and plotted the average, 
maximum and minimum values of the measured execution 
times. 

C. Models of the components 

Nodes were modeled as reactive traffic sources/sinks 
with an injection queue able to store up to four packets. In 
order to model causality, the reception of a message may 
trigger the release of one or several extra messages as de-
fined by the workloads. When necessary, messages are seg-
mented into fixed-size packets (16 phits). One phit is the 
smallest transmission unit, fixed to 32 bits. If a message does 
not fit exactly in an integral number of packets, the last 
packet contains unused phits. 

Simple input-buffered switches were used. Transit 
queues had room to store up to four packets. The output port 
arbitration policy was round robin. Switching strategy was 
virtual cut-through. We depicted the models of switches for 
the two topologies in Figure 2. 

In the case of fat-trees, switches were radix-8. Routing 
was, when possible, adaptive using shortest paths. A credit-
based flow-control mechanism was used, so that when sev-
eral output ports were viable options to reach the destination, 
the port with more available credits was selected. Credits 
were communicated out-of-band, so they did not interfere 
with normal traffic. 

Tori were built using radix-5 switches. Four of the ports 
were regular transit ports, and the fifth one was an interface 
with the node. We assumed that the consumption interface 
was wide enough to allow simultaneous consumption of sev-
eral packets arriving from different ports. The network relied 
on bubble flow control [20] to avoid deadlock, making use of 
two virtual channels: one escape channel in which routing is 
oblivious DOR (Dimension Order Routing), and an adaptive, 
minimal routing channel. 

IV. EXPERIMENTS AND ANALYSIS OF RESULTS 

Results of the experiments are depicted in Figure 3. Exe-
cution times (actually, communication times) in cycles, as 
reported by the simulator, were normalized to the best per-
forming task placement, in order to highlight the differences 
between the different placement strategies. We want to re-
mark that we are not betting for a single, miraculous task 
placement which performs best for all possible applications. 
In fact, we will see that some applications were not respon-
sive to task placement, or even to the underlying topology. 
Plots do not allow for a direct comparison of topologies (be-
cause values are not absolute) but, as we stated before, this is 
not the focus of this paper. 

For the smallest networks (64-node networks and a single 
application instance) both in torus and fat-tree, differences 
between the best and the worst performing placement strat-
egy reached a 250%. This is very significant for such a small 
network. In general, although there were exceptions, the ran-
dom placement yielded the worst results, consecutive place-
ment was the best performer for the fat-tree, and both row 
and column placements performed equally well in the torus 
topology.  

For the medium size configurations (256-node networks 
and 4 concurrent application instances), the worst-to-best 
ratio grew up to over 300%, reaching 400% and 450% in the 
most adverse cases (LU in fat-tree and BT in torus, respec-
tively). Again, consecutive placement was the best performer 
in the fat-tree network. In the case of the torus, the best per-
forming strategy was quadrant placement, with the single 
exception of MG, for which row and column placements 
work equally well. 

Finally, for the largest systems in our evaluation (1024-
node networks and 16 concurrent application instances) in 
the fat-tree the ratio for some of the patterns was around 
500% and reaches 600% in the most adverse cases. In the 
case of the torus, these ratios went even higher, being around 
700%, and reaching 850% in the worst case. The best place-
ment options were those described for the medium size case. 
In general, the negative impact of a bad placement depends 
heavily on the network size. More exactly, on network dis-

Local

Figure 2.   Model of the switches used to build fat-trees (left) and 2D tori (right). All the ports are depicted showing 

input queues and output buffers. Note the utilization of two virtual channels sharing a physical link in the torus switch. 



tance, that depends on the height (number of levels) of the 
fat-tree and on the length of the rings of the torus. 

If we focus on applications, we can see how LU, BT and 
SP were very sensitive to task placement, regardless of the 
topology. This is because their communication patterns 
cause a significant degree of contention for resources. The 
interferences between communications from different in-
stances worsen this contention, which in turns increased even 
more the communication time. On the other hand, 2W and 
3W were the workloads less responsive to task placement or 
topology. This is because the high degree of causality intrin-
sic to their traffic patterns does not saturate the network; 
thus, in the absence of contention for resources, message 
delay depends slightly on distance, so the short differences. 
IS also showed not being very sensitive to the placement 
regardless of the topology. 

It is interesting to observe that some workloads were very 
sensitive to placement when running on one topology, but 
not that much when the network was different. Extreme ex-
amples are 2M and BU. The former adjust perfectly to a 
mesh topology, and was able to take full advantage of this 
situation when the placement allowed it. However, 2M does 

not map naturally on a fat-tree, so the choice of placement on 
this network was almost irrelevant. Regarding BU, the per-
fect marriage between this pattern and the fat-tree was ex-
ploited only with the consecutive placement, and worked on 
the torus equally well (or bad) with any placement. For a 
more detailed explanation of this effect, the interested reader 
can see [15]. 

Moreover, if we focus on the plots for single-instance 
experiments, we can see how consecutive allocation strate-
gies were not always the best performers. Let us pay atten-
tion to results of FT in the torus. Row and column place-
ments performed worse than random placement. It happens 
that the allocation strategies we tested were not optimal for 
this pattern, because its regularity lead to the occurrence of 
highly congested hot paths. Random allocation scatters these 
contention spots around the network, thus its performance 
was better. For the multi-instance experiments with FT, the 
quadrant allocation of jobs avoided harmful interferences 
between instances, an effect that overshadowed the bad task 
allocation. We would expect better results if we perform the 
same quadrant job allocation, but with a better task alloca-
tion, even random, inside each quadrant. 

Fattree - 1 instance

0

1

2

3

BI

BU

2M

3M

2W

3W

WF

BT

CG

IS

LU

MG

SP

FT

consecutive

shuffle

random

Fattree - 4 instances

0

2

4

BI

BU

2M

3M

2W

3W

WF

BT

CG

IS

LU

MG

SP

FT

consecutive

shuffle

random

Fattree - 16 instances

0

2

4

6

BI

BU

2M

3M

2W

3W

WF

BT

CG

IS

LU

MG

SP

FT

consecutive

shuffle

random

Torus - 1 instance

0

1

2

BI

BU

2M

3M

2W

3W

WF

BT

CG

IS

LU

MG

SP

FT

row

column

random

Torus - 4 instances

0

2

4

BI

BU

2M

3M

2W

3W

WF

BT

CG

IS

LU

MG

SP

FT

row column
quadrant random

Torus - 16 instances

0

3

6

9

BI

BU

2M

3M

2W

3W

WF

BT

CG

IS

LU

MG

SP

FT

row column
quadrant random

Figure 3.   Results of the experiments with different networks, network sizes and workloads. They are normalized, in such a way  

that 1 represents the execution time for the best placement. Dotted blue lines represent best and worst results for random placement. 



To summarize this analysis, we can state that the choice 
of placement has a very relevant impact on performance on 
some applications, a fact that should not be taken lightly. 
Other applications are insensitive to placement, and could be 
used to fill fragmented gaps of the network, in order to in-
crease system utilization with a minimal impact on the over-
all performance. 

The best performing placements were those that allow for 
a good matching between the virtual topology (spatial distri-
bution of application’s communication) and the physical one, 
because this way communication locality can be exploited 
effectively. With very few exceptions, the random placement 
was the worst performer. The actual benefit of a placement 
strategy depends heavily on the application and the network 
topology, but our analysis showed that the flat-network sup-
position embedded in many schedulers is too simplistic and 
must be reconsidered in order to accelerate the execution of 
applications. 

We want to remark again that the results presented in this 
work were obtained under the assumption of infinite-speed 
processors. Parallel applications pass through computation 
phases, in addition to communication phases. Our experi-
ments showed how communication can be improved using a 
good placement; however, computation is not directly af-
fected by placement. Therefore, the actual impact of place-
ment on execution speed would depend on the communica-
tion/computation ratio of the application. In other words, the 
benefits we announce for good placement strategies will be 
diluted when running actual applications on actual machines. 
For example, for a 10:1 computation-communication ratio, a 
450% increase in communication time will increase total 
execution time over 30%, which in our opinion still makes 
worthwhile to continue doing research on this topic 

V. CONCLUSIONS AND FUTURE WORK 

Most parallel applications rely on different virtual to-
pologies to arrange their tasks, and communication is usually 
performed between neighboring tasks. When the topology of 
the physical network matches the virtual one, application 
performance boosts. Otherwise the interchange of messages 
is not done in an optimal way, and performance suffers. 
Even when virtual and actual topologies are similar, a task 
allocation mechanism that does not allow a good matching 
between them will result in the impossibility of efficiently 
exploiting the potential of the network.  

In this paper we study the impact of job and task place-
ment strategies on the time parallel applications spend inter-
changing messages. To do so, we carried out a simulation-
based study with two kinds of workloads: traces from appli-
cations and application-inspired synthetic traffic. We focused 
our study on two different network topologies widely used in 
current supercomputers: tori and fat-trees. We used some 
very simple placement strategies, as well as random place-
ment. 

Results showed that for a small 64-node network in 
which we run just one application, for almost half of the 
workloads the difference in speed between the worst and the 
best placement was around 200%. When increasing the 
number of concurrent application instances and the size of 

the network, these differences were more noticeable, reach-
ing increases in excess of 300% for 256-node networks, and 
close to 1000% for 1024-node networks. The obtained im-
provements are only applicable for communication phases of 
the applications, being the computation phases unaffected by 
placement. 

In contrast, and depending on the host topology, some 
applications or kernels were shown to be only slightly sensi-
tive to task placement. In these cases, the effort of looking 
for a consecutive region of the network will not pay off. The 
positive side is that, when mixing different applications, the 
placement-insensitive ones are good candidates to be used to 
fill gaps that would otherwise remain unused while place-
ment-sensitive applications are waiting for a consecutive 
portion of the system.  

We conclude that the inclusion of locality-aware place-
ment policies within scheduling tools could boost parallel 
application performance. The way to carry out this inclusion 
is still a line of research. We plan to apply different optimi-
zation techniques in order to decide the degree of respon-
siveness to task placement of an application. If this degree is 
low, we can use the application to fill fragmented regions of 
the network. Alternatively, if an application is sensitive to 
placement, we should find appropriate placement for it, even 
when sharing a parallel computer with other jobs. 

Initial results showed that dividing a network in sub-
networks with the same topology result in excellent perform-
ance, especially when these networks match the virtual to-
pologies used within applications. Still, both the pros and 
cons of this approach have to be considered, because the 
effort required to allocate an optimal sub-network may sur-
pass the possible performance drop derived from a simple, 
random allocation. 

The work described in this paper is focused on parallel 
applications running on high performing computing systems, 
and on the kind of interconnection networks used in them. 
However, the effects of efficiently exploiting locality could 
be even more noticeable when using a hierarchy of networks. 
Let us consider a cluster of multiprocessors. In this machine, 
the communication time within an on-chip network is 
smaller than that of the external node-to-node network, so if 
communicating tasks are located in the same node, the exe-
cution time should be improved. Furthermore, if the comput-
ing resource is a grid of clusters, the cluster-to-cluster com-
munication links are orders of magnitude slower than the 
other networks, so the allocation of processors for the tasks 
of a job must avoid the utilization of these links. 

ACKNOWLEDGMENTS 

This work has been supported by the Spanish Ministry of 
Education and Science, grant TIN2007-68023-C02-02, and 
by Basque Government grant IT-242-07. Mr. Javier Navari-
das is supported by a doctoral grant of the UPV/EHU. Mr. 
Jose A. Pascual is supported by a doctoral grant of the 
Basque Government. 



REFERENCES 

[1] R Ansaloni, “The Cray XT4 Programming Environment”. Slides 
available (November 2008) at: http://www.csc.fi/english/csc/courses/ 
programming_environment 

[2] Y. Aoyama and J. Nakano. "RS/6000 SP: Practical MPI 
Programming". IBM Red Books SG24-5380-00, ISBN 0738413658. 
August, 1999. 

[3] Y Aridor, T Domany, O Goldshmidt, JE Moreira and E Shmueli 
“Resource allocation and utilization in the Blue Gene/L 
supercomputer”. IBM J. Res. & Dev. Vol. 49 No. 2/3 March/May 
2005. Available (November 2008)  at: http://www.research.ibm.com/ 
journal/rd/492/aridor.pdf 

[4] Cluster Resources. “Maui Admin Manual”. Available (November 
2008) at: http://www.clusterresources.com/products/mwm/moabdocs/ 
MoabAdminGuide52.pdf 

[5] JJ Dongarra, HW Meuer and E Strohmaier. “Top500 Supercomputer 
sites”. Available (November 2008) at: http://www.top500.org/  

[6] Infiniband Trade Association. “Infiniband® Trade Asociation”. 
Available (November 2008) at: http://www.infinibandta.org 

[7] S Kannan, M Roberts, P Mayes, D Brelsford and JF Skovira 
“Workload Management with LoadLeveler”. IBM Red Books SG24-
6038-00. ISBN 0738422096. November 2001. 

[8] Lawrence Livermore National Laboratory. “Simple Linux Utility for 
Resource Management”. Available (November 2008)  at: https:// 
computing.llnl.gov/linux/slurm/ 

[9] Y Liu, X Zhang, H Li and D Qian. “Allocating Tasks in Multi-core 
Processor based Parallel System”. 2007 IFIP International Conference 
on Network and Parallel Computing Work-shops (NPC 2007), 
September 2007 pp. 748-753. 

[10] V Lo, KJ Windisch, W Liu and B Nitzberg “Noncontiguous 
Processor Allocation Algorithms for Mesh-Connected 
Multicomputers”, IEEE Transactions, on Parallel and Distributed 
Systems, July 1997 (Vol. 8, No. 7) pp. 712-726. DOI: 
10.1109/71.598346 

[11] J. Miguel-Alonso, J. Navaridas and F.J. Ridruejo. “Interconnection 
network simulation using traces of MPI applications”. International 
Journal of Parallel Programming, in press. DOI: 10.1007/s10766-008-
0089-y 

[12] DH Miriam, T Srinivasan and R Deepa. “An Efficient SRA Based 
Isomorphic Task Allocation Scheme for k-ary n-cube Massively 

Parallel Processors”. International Symposium on Parallel Computing 
in Electrical Engineering (PARELEC'06), September 2006 pp. 37-42. 

[13] Myricom. “Myrinet home page”. Available (November 2008) at: 
http://www.myri.com/ 

[14] NASA Advanced Supercomputing (NAS) division. “NAS Parallel 
Benchmarks” Available (November 2008) at: http:// 
www.nas.nasa.gov/Resources/Software/npb.html 

[15] J Navaridas, J Miguel-Alonso and FJ Ridruejo. “On synthesizing 
workloads emulating MPI applications”. The 9th IEEE International 
Workshop on Parallel and Distributed Scientific and Engineering 
Computing (PDSEC-08). April 14-18, 2008, Miami, Florida, USA. 

[16] J Navaridas, J Miguel-Alonso, FJ Ridruejo and W Denzel “Reducing 
Complexity in Tree-like Computer Interconnection Networks”. 
Technical report EHU-KAT-IK-06-07. Department of Computer 
Architecture and Technology, The University of the Basque Country. 
Submitted to Elsevier’s Journal of Parallel Computing 

[17] J Patton-Jones and B Nitzberg. “Scheduling for Parallel 
Supercomputing: A Historical Perspective of Achievable Utilization.” 
In Job Scheduling Strategies for Parallel Processing, Lecture Notes in 
Computer Science 1659, pages 1-16. Springer-Verlag, 1999. 

[18] PBS GridWorks. “PBS Pro”. Available (November 2008)  at: http:// 
www.pbsgridworks.com/ 

[19] F Petrini, W Feng, A Hoisie, S Coll and E Frachtenberg. “The 
Quadrics Network: High-Performance Clustering Technology”. IEEE 
Micro 22, 1 (Jan. 2002), 46-57. DOI: 10.1109/40.988689 

[20] V Puente, C Izu, R Beivide, JA Gregorio, F Vallejo and J M. Prellezo 
“The Adaptive Bubble router”, Journal on Parallel and Distributed 
Computing, vol 61, Sept. 2001. DOI: 10.1006/jpdc.2001.1746 

[21] FJ Ridruejo and J Miguel-Alonso. “INSEE: an Interconnection 
Network Simulation and Evaluation Environment”. Lecture Notes in 
Computer Science, Volume 3648 / 2005 (Proc. Euro-Par 2005). 

[22] FJ Ridruejo, J Navaridas, J Miguel-Alonso and C Izu “Realistic 
Evaluation of Interconnection Network Performance at High Loads”. 
The International Conference on Parallel and Distributed Computing, 
Applications and Technologies (PDCAT), Adelaide, December 3-6, 
2007. 

[23] V Subramani, R Kettimuthu, S Srinivasan, J Johnson and, P 
Sadayappan “Selective Buddy Allocation for Scheduling Parallel Jobs 
on Clusters”. Fourth IEEE International Conference on Cluster 
Computing, (CLUSTER'02), September 2002 pp. 107. 

[24] Sun Microsystems, Inc. “N1 Grid Engine 6 User’s Guide”. Available 
(November 2008) at: http://docs.sun.com/app/docs/coll/1017.3. 

 


