
Parallelization of the Quadratic Assignment
Problem on the Cell

Jose Antonio Pascual1 Jose Antonio Lozano2 and Jose Miguel Alonso3

Abstract— The mapping problem involves the assig-
nation of a set of tasks of a parallel application onto a
set of computational nodes. This problem can be for-
mulated as an instance of the Quadratic Assignment
Problem (QAP), being this one of the most difficult
combinatorial optimization problems. The solution
for the QAP is a permutation that minimizes an ob-
jective function. This paper proposes two algorithms
to generate sequences of permutations with distance
one between them, and to map each permutation of
size n with a number in the range {1,n!}. This is very
important because, once the objective function for a
given permutation has been computed, the computa-
tion for the next permutation is very simple. Once
we have a fast solution to the QAP, we can use it to
solve non-trivial cases of mapping problems, in this
case checking the complete permutation space.

Keywords— Mapping Problem, Quadratic Assign-
ment Problem, Permutations Set Parallelization.

I. Introduction

AP ermutation of order n is an arrangement of n
symbols. Given a set X={1,2, ..., n}, the set

of all permutations over X is denoted by πn, repre-
senting the whole set of bijections of the X set onto
itself. The cardinality of πn is n!.

There are many problems, most of them related
to heuristic search and combinatorial optimization,
in which the search of the solution is performed
over a set of permutations. Generally, these prob-
lems belong to the NP-complete complexity class,
because of the cardinality of the solution space. The
TSP (Travelling Salesman Problem) [1] and the QAP
(Quadratic Assignment Problem) [2] belong to this
class.

NP-complete problems include those for which
there is not known algorithm capable of solving them
in polynomial time, and even small size instances re-
quire long computation times. Due to this complex-
ity, the exhaustive search of the optimum solution
becomes impracticable when the size of the problem
grows. For example, the exact resolution of QAP for
problem sizes greater than 30 require a huge amount
of compute time [2]. For this reason, several heuristic
methods that find good solutions (but cannot guar-
antee optimal solutions) have been developed.

The above mentioned heuristic methods reduce
the time required to find solutions for these prob-
lems, but they are still time-consuming for large-size

1Department of Computer Architecture and Technol-
ogy, The University of the Basque Country, e-mail:
joseantonio.pascual@ehu.es.

2Department of Computer Sciences an Artificial Intel-
ligence, The University of the Basque Country, e-mail:
ja.lozano@ehu.es.

3Department of Computer Architecture and Technol-
ogy, The University of the Basque Country, e-mail:
j.miguel@ehu.es.

problem instances. Execution speed can be reduced
using parallel computing, and any techniques have
been developed to tackle this. In our case, given
the structure of the problem at hand, the most effi-
cient parallelization approach involves the partition
of the search space across the different computational
elements. This is because of the independency be-
tween permutations: each permutation corresponds
to a possible problem solution, that can be computed
without knowledge of the solutions for the remaining
permutations.

A more in-depth analysis of the problem reveals
a trivial acceleration strategy for this problem. The
generation of permutations at distance one will al-
low the reutilization of previously done calculations,
reducing the number of operations to perform for
the next permutation. This paper focus on the cre-
ation of consecutive (distance one) permutations [3],
and well as on a method to map each size-n permu-
tation with a natural number in the range {1,n!}.
This second issue is important in order to be able
to distribute de whole the permutations set along a
collection of processors. The process of mapping a
permutation to a natural number is known as ranking
[4] [5], and the inverse of this operation (that is, com-
puting the permutation that corresponds to a given
natural number in the range {1,n!}) is known as un-
ranking [4] [5]. The ranking function is bijective, so
for every permutation belonging to πn exists exactly
one i in the range {1,n!} such that rank(πi) = i. The
existence of an unranking function is guaranteed, be-
cause a ranking is a bijection and the unranking must
be its inverse function.

The context in which these techniques will be used
is in finding solutions for the mapping problem [6]
stated as an instance of the QAP. This problem stud-
ies the mapping of a set of tasks belonging to a paral-
lel application onto an available (pre-assigned) set of
nodes. This problem has been studied by many re-
searchers [2] [7] [8] [9], and many techniques for solv-
ing it have been proposed. Some of the approaches
will be discussed later. Our main interest is on pro-
viding mechanism to accelerate them, using parallel
processors. We provide an implementation of a par-
allel program that finds the optimal solution of the
QAP by means of an exhaustive sweep of the solu-
tion space. This program has been implemented for
the Cell Broadband Engine [10].

The rest of the paper is organized as follows. In
Section II the motivation to develop this paralleliza-
tion technique is explained. Section IV states the
Mapping problem as a QAP instance, and discusses
some previous work on how to solve it, making in Sec-

tion III a brief review of the work done in the permu-
tations area. Section V presents the algorithms that
have been designed and implemented, making in Sec-
tion VI an analysis of the obtained results with some
classical QAP problems. Section VII closes the paper
with some conclusions and future lines of research.

II. Motivation

Most current processors are composed a collection
of cores that can work together towards the resolu-
tion of problems. To that extent, some sort of inter-
nal interconnection network is required. For exam-
ple, in the Cell a ring is used, while Intel’s Larrabee
incorporates a mesh [11]. The efficient exploitation
of these multi-core architectures depends on many
factors, such as the design of the application (as a
collection of collaborative tasks) and the communica-
tion patterns between tasks, which can put a consid-
erable stress on the interconnection network. A good
(optimal) allocation of tasks to cores is required to
reduce this stress. This is the reason why the map-
ping problem is of interest in the design of multi- and
many-core computing systems.

To define it formally, the mapping problem in-
volves the search for the best assignment of a group
of tasks belonging to a parallel application onto a
given set of computational cores. This assignment
must minimize some function. Typically, this func-
tion is the mean distance of the messages (packets, or
any class of communication unit) interchanged by the
cores. That is, given a set of tasks T = {t1,, tn}
and a set of cores C = {c1,, cn}, the objective is
to find a mapping function π that assigns a task t to
a core c trying to minimize some objective function.

π : T −→ C

tj −→ π(tj)

The result of the application of this function to a
set of tasks will be a mapping vector that associates
each task of the set T to one core of the set C.

As we anticipated, the mapping problem can be
stated as an instance of the Quadratic Assignment
Problem (QAP), a standard problem in location the-
ory that consists in finding the optimal assignment
of a certain number of facilities to a certain number
of locations with the minimum cost. For each pair of
locations a distance between them is given, and for
each pair of facilities a weight is provided, which rep-
resents the flow between them. The problem involves
the search of a mapping vector that assign each fa-
cility to each location minimizing the sum of the dis-
tances multiplied by the corresponding weights. The
mapping problem is clearly a QAP instance where
the locations are the cores, the facilities are the appli-
cation tasks and the flow between them is the amount
of information that tasks interchange.

The QAP is one of the most challenging NP-
Complete combinatorial optimization problem [6].
Due to its complexity, there is not an algorithm ca-
pable of solving it in polynomial time. In addition,
in [6], the authors show that the problem belongs

to the hardest core of this complexity class. Due to
this, extensive research has been done in methods to
solve it either in an optimal or a sub-optimal way.

In either case, the parallelization of these methods
is the natural way to reduce the execution times.
The resolution of a size n QAP requires the evalu-
ation of only a subset of the permutations space, if
heuristic methods are being used, or the exhaustive
evaluation of the complete set if using exact. Due to
the problem structure, the simplest way to parallelize
the problem is to distribute the set of permutations
across the different compute nodes of a parallel com-
puter, and perform independently the calculations of
the objective function in each of these nodes. With
this kind of parallelization strategy each node will
look for its best, local solution. At the end of the
program, the best global minimum will be selected.

III. Permutations and Ranking Algorithms

Certain classes of algorithms require working with
non-overlapping subsets of a permutation space. To
help with this subsetting it is necessary to create
ranking/unranking functions that, given a permuta-
tion, maps it onto a natural number between {1,n!}
(and unranks a given number into the corresponding
permutation). The lexicographical order is a natu-
ral order structure of the Cartesian product of two
ordered sets being the most used to order permuta-
tions. A ranking function is called lexicographic if
it maps a permutation and its lexicographically next
permutation into consecutive integers.

A distance between permutations can be defined
as follows: given two permutations πi and πj , the
distance between them is the lower bound of pair-
wise exchanges needed when transforming one to the
other [3].

Table I shows the first five permutations of four
numbers (0 to 4) in lexicographic order. Note how
this order does not guarantee that two consecutive
permutations are at distance one.

In this paper will use this topological characteris-
tic of the permutation space for speeding up calcu-
lations when this space is traversed looking for the
optimization of some objective function.

TABLE I

A sequence of permutations generated in

lexicographical order. Two consecutive permutations

are not always at distance one.

Rank Permutation d

0 0 1 2 3 -

1 0 1 3 2 1

2 0 2 1 3 2

3 0 2 3 1 1

4 0 3 1 2 2

5 0 3 2 1 1

In Table II a different permutation sequence has
been generated, but instead of using the lexico-
graphic order, care has been taken to maintain dis-

tances one between two consecutive ones. This is the
ordered permutation space that is used in this paper
in order to facilitate the parallelization of algorithms.

TABLE II

A sequence of permutations generated, maintaining

distance one between every two consecutive elements.

Rank Permutation d

0 0 1 2 3 -

1 1 0 2 3 1

2 2 0 1 3 1

3 0 2 1 3 1

4 1 2 0 3 1

5 2 1 0 3 1

Extensive research has been done in the creation
of ranking and unranking functions for permutations
[4] [5]. To our knowledge, none of the previous works
deal with ranking functions that take into considera-
tion the guarantees of distance one between consec-
utive permutations.

IV. The Mapping Problem Formulated as a
QAP instance

The formal definition of the problem is as follows.
Given F and L, two equal size sets representing fa-
cilities and locations, w : F × F −→ ℜ the weight
function and d : L × L −→ ℜ the distance function,
find the bijection π : F −→L such that:

min
∑

i,j∈F

w(i, j) · d(π(i), π(j)) . (1)

or, in its matrix form:

min
∑

i,j∈F

Wi,j · Dπ(i),π(j) . (2)

It is clear that the mapping problem has the same
structure of the QAP problem. The relationship be-
tween each other is as follows:

1. Locations – Network nodes
2. Facilities – Parallel application tasks
3. Weight matrix – Amount of communication be-

tween each pair of nodes
4. Distance matrix – Distance between the nodes

in the network (depends on the network topol-
ogy)

The formal definition of the mapping problem for-
mulated as a QAP instance is as follows. Given T

and C, two equal-size sets representing the paral-
lel application tasks and the cores in the processor,
w : T ×T −→ ℜ the weight function representing the
amount of information interchanged between each
pair of nodes and d : C × C −→ ℜ the distance
function representing the distance between each pair
of nodes in a concrete network topology, find the bi-
jection π : T −→C such that:

min
∑

i,j∈T

Wi,j · Dπ(i),π(j) . (3)

Extensive research has been conducted to effi-
ciently solve QAP problem. Most works were focused
on the search of sub-optimal solutions using heuristic
methods, due to the complexity of providing exact
solutions. The most used techniques to tackle the
problem are:

1. Exact algorithms: Exact algorithms try to
find the optimum solution for a given problem.
The two main approaches developed include dy-
namic programming algorithms [12] and branch
and bound techniques [7]. These algorithms uses
lower bounds to reduce the number of nodes to
visit. The formal definition is as follows. Given
a subset S of a partially ordered set P, the lower
bound is defined as an element of P which is
lesser or equal than every element of S. The
lower bounds are key for algorithms in combi-
natorial optimization [13]. Generally, problems
of size greater than 15 are hard to solve, and
only certain instances of the problem, with cer-
tain structural characteristics, have been solved
for sizes up to 31 [2].

2. Sub-optimal algorithms: Due to the in-
herent complexity of the problem, several sub-
optimal algorithms have been developed. These
include improvement methods such as local
search and tabu search [14], simulation ap-
proaches like simulated annealing [15] and ge-
netic algorithms [8]. One of the most used
heuristic procedures is the GRASP (Greedy
Randomized Adaptive Search Procedures). This
is an iterative randomized technique [9]. The
construction of the solution is composed by
two steps. In the first, an initial solution is
constructed via an adaptive greedy randomized
function; afterwards, a local search is carried out
in order to improve the solution. This two-step
process is iterated, keeping the best solution of
the whole process as the final result.

All of these techniques evaluate the whole set of
permutations or a subset of them. Those that the
search for sub-optimal solution values dramatically
reduce the computation time to find a solution, com-
pared to the time required to search for the optimal
solution. However, when the problem size increases,
even sub-optimal methods require unaffordable com-
putation times. Mechanisms to accelerate program
execution, which include parallelization, are required
to deal with problems of realistic sizes.

V. Design and Implementation of
Algorithms to Solve the QAP

In this section we explain in detail the design and
implementation of a parallel algorithm to solve the
QAP problem using an exhaustive search of the per-
mutation space. The parallel approach is very sim-
ple: just distribute evenly the permutation space
along the processing elements. Knowing the number
of tasks, each one can easily compute the number of
iterations it has to perform in order to sweep its per-

mutation sub-space. This will be done after obtain-
ing its initial permutation using the get perm func-
tion, as well as a control vector using the get control
function. After discussing these functions, we will
explain how they will be combined to solve the QAP.

A. Algorithms Dealing with Permutations

The following three algorithms are designed to
generate the permutation sequences (with distance
one between each consecutive pair) and to unrank a
permutation given an index.

A.1 Permutations Generator Algorithm

The get perm algorithm sweeps the permutation
space. The input is composed by two vectors con-
taining the current permutation and the current con-
trol vector. In each iteration, the next permutation
at distance one is created. Note that when iter num
is equal to the size of the permutations set, and perm
is the permutation with index 0, the algorithm ex-
plores the whole set of permutations. This is way
this function is used in the sequential version of our
program to solve the QAP. The iter num parameter
controls the number of iterations, and is used in the
parallel version to control the number of permuta-
tions that each thread has to process.

gen_perm(iter_num,i_c,perm,control)

cont=0;

while(cont < iter_num){

control[i_c]--;

j=(i_c%2==0)?0:control[i_c];

tmp = a[j];

a[j] = a[i_c];

a[i_c] = tmp;

i_c = 1;

}

while (!control[i_c]){

control[i_c] = i_c;

i_c ++;

}

cont ++;

}

end gen_perm

A.2 Algorithm to Obtain the Control Structure

In order to generate consecutive, distance one per-
mutations, an auxiliary structure called control vec-
tor is used. It is required to control which permu-
tations have been already visited. This algorithm
constructs the control vector that correspond to the
permutation with index k, which is provided as pa-
rameter.

get_control(n,k,control)

begin

num_perm = factorial(n);

aux = num_perm-k;

ind = n-1;

for(i=n-1;i>=0;i--){

f = factorial(ind);

coc = aux / f;

aux = aux % f;

control[i] = coc;

ind --;

}

control[n] = n;

end get_control

A.3 Algorithm to Obtain the Permutation Vector

This algorithm computes the permutation that
corresponds to a given control vector. It takes as
input the size of the permutation and a control vec-
tor, generating as result the permutation.

get_perm(n, control, perm)

begin

for(i=0;i<n;i++){

perm[i] = i+1;

}

for(i=n-1;i>=0;i--){

aux = control[i];

while(aux<i){

aux2 = perm[i];

for(j=i;j>=1;j--){

perm[j] = perm[j-1];

}

perm[0] = aux2;

aux ++;

}

}

i = 1;

while(!control[i]){

control[i] = i;

i ++;

}

return(i);

end get_perm

B. Exhaustive Search Algorithm for the QAP

In order to test the algorithms described above,
three implementations of a QAP solver have been de-
veloped. The first version implements the simplest
way to solve the QAP problem, making all the re-
quired calculations to compute the value of the cost
function to minimize for each permutation. A sec-
ond sequential version includes important improve-
ments to accelerate the process, taking advantage
of the property of consecutively generated permu-
tations being at distance one. The final, parallel ver-
sion is a modification of the previous one, using the
unrank function to implement the partition of the
permutation space between the threads. The reader
will note that the number of operations that the al-
gorithm must compute is proportional to a constant
k that only depends on the size of the elements.

B.1 Sequential Version without Improvements

procedure QAPseq(n)

begin

foreach permutation

s = calc_cost(perm);

s_min = min(s,s_min);

end foreach

end QAPseq

The function calc cost(perm) computes the Equa-
tion 3 given a size n permutation. This algorithm
runs over the whole permutations set performing a
total of n! · n2 operations.

B.2 Sequential Version with Improvements

procedure QAPseq_dist(n)

begin

foreach gen_permutation

s = calc_cost(perm[i],perm[j]);

s_min = min(s,s_min);

end foreach

end QAPseq_dist

In this case, the function gen perm generates per-
mutations with distance one between them, allowing
to the function calc cost(perm[i],perm[j]) calculate
only these two elements cost reducing the amount of
calculations needed. This function calculates on each
iteration the value of the permutation with and with-
out make the change, comparing this new value of
the objective function with the previously calculated
value. If this new value is lower, the new permuta-
tion is stored as the current optimal solution. This
algorithm runs over the whole permutations space
performing a total of n! ·k operations where k is con-
stant.

B.3 Parallel Version

procedure QAPsec(n)

begin

size = factorial(n);

size_proc = size / num_procs;

foreach procs

QAPpar(n,size_proc);

end foreach

wait();

s_min_total = min(s_min);

end QAPsec

procedure QAPpar(n,size_proc)

begin

perm = unrank(proc_id*size_proc)

foreach perm from perm

s = calc_cost(perm[i],perm[j]);

s_min = min(s,s_min);

end foreach

end QAPpar

This algorithm is a modified version of the
QAPseq dist allowing its execution in a parallel ma-
chine. The sequential code calculates the number
of permutations that a thread must do and executes
the function QAPpar onto each thread. This func-
tion calculates the first permutation, unranking the
number passed to it and traverses the permutations
space until size proc calculations of the function em-
phcalc cost are done.

These algorithms runs over the whole permuta-
tions space. Each thread performs a total of n! · k/nt

operations, where nt is the number of threads and k
is a constant.

C. Implementation on the Cell Broadband Engine

The platform selected to run the parallel program
was a PlayStation 3, which incorporates a Cell pro-
cessor. The tests have been carried out as follows.
First, the non-optimized sequential version was run
on a SPE (Synergistic Processing Element). Results
were compared with those obtained with the opti-
mized (sequential) version. Finally, we ran tests with
the parallel version using from one to the six SPEs
available in the Cell of a PS3, running a single, sep-
arate thread on each SPE.

VI. Results and Analysis of Experiments

In this section we carry out a collection of ex-
periments to thoroughly evaluate the performance
of our programs when solving different instances of
the QAP. The sequential versions were created in or-
der to assess the benefits of the acceleration of the
incremental computation of the cost function. Addi-
tionally, the are the yardstick against to compare the
performance of the parallel version. The problems to
solve have been extracted from the QAPLIB [16], the
de-facto standard for benchmarking QAP solutions.
We have selected problems with three different sizes
to carry out the experiments.

Table III shows execution times of the two sequen-
tial programs (un-optimized and optimized) when
solving QAP problems of size 12, 14 and 15. The
reader can observe the notable reduction of time of
the optimized version, which is achieved because the
cost function for a given permutation is computed
easily, in constant time, from the cost already com-
puted for the previous, at distance one.

TABLE III

Execution times (minutes) for the two sequential

programs.

Problem Size Time Time Opt

chr12a 12 13 2.5

had12 12 13 2.5

nug12 12 13 2.5

had14 14 54000 455

nug14 14 54000 455

chr15a 15 810154 6825

chr15b 15 810154 6825

The parallel version further accelerates execution
times. Figures 1 and 2 shows the execution times,
for different numbers of SPEs (threads), for two
QAP problems of size 12 and 14 respectively. We
can observe how the algorithm scales almost linearly
with the number of SPEs. This is because the to-
tal independency between the tasks assigned to each
SPE, that do not require interchanges of information.
Only at the end the threads communicate their par-
tial solutions, that are merged to select the final one.

 0

 50

 100

 150

 200

1 2 3 4 5 6

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

s
)

Number of Threads

Execution times for the chr12a problem for different number of threads

Fig. 1. Execution times for the parallel version applied prob-
lem chr12a, for 1-6 threads.

 0

 5000

 10000

 15000

 20000

 25000

 30000

1 2 3 4 5 6

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

s
)

Number of Threads

Execution times for the nug14 problem for different number of threads

Fig. 2. Execution times for the parallel version applied prob-
lem nug14, for 1-6 threads.

VII. Conclusions and Future Work

In the computer architecture area, the mapping
problem (assignment of parallel tasks to computa-
tional units taking into account the characteristics
of the interconnection fabric) has received important
attention, particularly in the field of on-chip multi-
processors, homogeneous as well as heterogeneous.
We have shown too how this is a particular instance
of the most general Quadratic Assignment Problem.
A good mapping is especially relevant on embedded
systems, where a single (parallel) application will be
the only one running on a chip, but can also be ap-
plicable to general-purpose, multi-application envi-
ronments. In the first case, system designer can use
complex (slow) algorithms to search for very good
(optimal) solutions; for the latter, sub-optimal so-
lutions are acceptable, because they have been ob-
tained rapidly.

Throughout this paper we have show how to accel-
erate the solution of the QAP problem (and, there-
fore, of the mapping problems). Two orthogonal ac-
celeration techniques have been identified and im-
plemented: acceleration of the evaluation of the cost
function (taking advantage of the generation of se-
quences of permutations at distance one), and par-
allelization. These techniques have been tested with
problems taken from the QAPLIB, and both of them
have proven its usefulness, alone and in combination.

Programs have been tested on a Cell processors, but
the underlying acceleration techniques are valid for
any computing platform.

The main limitation of our experiments is that ac-
celeration techniques have been used only within pro-
grams that carry out an exhaustive sweep of permu-
tation spaces. Even with accelerator, this approach
is useless for problem sizes larger than 16. As a fu-
ture line of work, we plan to implement them within
heuristic algorithms that are not exhaustive, but pro-
vide (supposedly) good solutions in much shorter
times. As the problem still consists on checking parts
of a permutation spaces, the acceleration techniques
should be applicable too.

The main contributions of this work have to
be found in the mechanism designed to generate
sequences of permutations with distance one be-
tween consecutive elements, and the associated rank-
ing/unranking functions. This has been the key
point in providing excellent acceleration levels for
both the sequential and the parallel QAP-solving al-
gorithms. Additionally, this allows for a simple par-
tition of the permutation space, which is the key for
implementing simple but efficient (linear speedup)
parallel versions of the algorithms.

We plan to use these algorithms in research work
related to dynamic assignment of parallel tasks to
compute nodes in supercomputing environments.
The dynamic nature of this assignment requires fast
generation of good mappings. Acceleration tech-
niques can help us to obtain acceptably good solu-
tions within a restricted time budget.

References

[1] E.L. Lawler, J.K. Lenstra, Karl Rinnooy, and D.B.
Shmoys, “The traveling salesman problem: A guided
tour of combinatorial optimization,” 1985.

[2] Panos M. Pardalos, Franz Rendl, and Henry Wolkowicz,
“The quadratic assignment problem: A survey and recent
developments,” in In Proceedings of the DIMACS Work-
shop on Quadratic Assignment Problems, volume 16 of
DIMACS Series in Discrete Mathematics and Theoreti-
cal Computer Science. 1994, pp. 1–42, American Mathe-
matical Society.

[3] Chong Zhang, Zhangang Lin, Qi Zhang, and Zuoquan
Lin, “Variable neighborhood search with permutation
distance for qap,” in Knowledge-Based Intelligent Infor-
mation and Engineering Systems, London, UK, 2005, pp.
81 – 88, Springer-Verlag/Heidelberg.

[4] Wendy Myrvold and Frank Ruskey, “Ranking and un-
ranking permutations in linear time,” Inf. Process. Lett.,
vol. 79, no. 6, pp. 281–284, 2001.

[5] Mares Martin and Milan Straka, “Linear-time ranking of
permutations,” in Algorithms - ESA 2007, London, UK,
2007, pp. 187–193, Springer-Verlag/Heidelberg.

[6] S. H. Bokhari, “On the mapping problem,” IEEE Trans.
Comput., vol. 30, no. 3, pp. 207–214, 1981.

[7] K. G. Ramakrishnan, M. G. C. Resende, and P.M. Parda-
los, “A branch and bound algorithm for the quadratic
assignment problem using a lower bound based on lin-
ear programming,” in In C. Floudas and P.M. Pardalos,
editors, State of the Art in Global Optimization: Com-
putational Methods and Applications. 1995, pp. 57–73,
Kluwer Academic Publishers.

[8] Charles Fleurent, Jacques, and Jacques A. Ferland, “Ge-
netic hybrids for the quadratic assignment problem,” in
DIMACS Series in Mathematics and Theoretical Com-
puter Science. 1993, pp. 173–187, American Mathemati-
cal Society.

[9] Carlos A. S. Oliveira, Panos M. Pardalos, and Mauri-
cio G.C. Resende, “Grasp with path-relinking for the

qap,” in 5th Metaheuristics International Conference
MIC03, 2003.

[10] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,
T. R. Maeurer, and D. Shippy, “Introduction to the cell
multiprocessor,” IBM J. Res. Dev., vol. 49, no. 4/5, pp.
589–604, 2005.

[11] Larry Seiler, Doug Carmean, Eric Sprangle, Tom
Forsyth, Michael Abrash, Pradeep Dubey, Stephen Junk-
ins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger
Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan,
“Larrabee: a many-core x86 architecture for visual com-
puting,” ACM Trans. Graph., vol. 27, no. 3, pp. 1–15,
2008.

[12] Ambros Marzetta and Adrian Brungger, “A dynamic-
programming bound for the quadratic assignment prob-
lem,” in Computing and Combinatorics, London, UK,
1999, pp. 339 – 348, Springer-Verlag/Heidelberg.

[13] Peter Hahn and Thomas Grant, “Lower bounds for the
quadratic assignment problem based upon a dual formu-
lation,” .

[14] Alfonsas Misevicius, “A tabu search algorithm for the
quadratic assignment problem,” Comput. Optim. Appl.,
vol. 30, no. 1, pp. 95–111, 2005.

[15] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Op-
timization by simulated annealing,” Science, vol. 220,
pp. 671–680, 1983.

[16] Rainer E. Burkard, Stefan E. Karisch, and Franz Rendl,
“Qaplib – a quadratic assignment problemlibrary,” J. of
Global Optimization, vol. 10, no. 4, pp. 391–403, 1997.

