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Abstract

The optimal mapping of tasks of a parallel program onto nodes of a parallel computing system

has a remarkable impact on application performance. In this paper we propose an optimization

framework to solve the mapping problem, which takes into account the communication matrix

of the application and a cost matrix that depends on the topology of the parallel system. This

cost function can be a distance matrix (the classic approach), or can take into account other

considerations. We propose a novel definition of the cost criterion, applicable to torus networks,

that tries to distribute traffic evenly over the different axes: the Traffic Distribution criterion. As

the mapping problem is a particular instance of the Quadratic Assignment Problem, we can apply

any QAP solver to the mapping. In particular, in this work we use GRASP. Using simulation,

we test the performance of the optimization-based mappings, and compare it with that of trivial

mappings (consecutive, random), in two different environments: static (a single applications uses

all system resources all the time) and dynamic (applications are managed by a scheduler, and

use and free resources as needed), always using a system with a 2D topology and real application

traffic. In both environments optimization-based mappings with the TD criterion provides excellent

performance.
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1 Introduction

Parallel applications are composed of a collection of tasks that interchange information and synchro-

nize among them using different communication patterns. These applications are often designed and

developed with a parallel communications architecture in mind, and arrange the interchanges of data

blocks using some schema that tries to efficiently use the underlying network. The way tasks are

arranged to perform communications is called the virtual topology.

These applications, once programmed, can be executed in a wide variety of parallel architectures,

with different physical interconnection networks. These architectures vary from on-chip multipro-

cessors with small-sized networks-on-chip to clusters with simple LAN-based networks, and even to

supercomputers with custom-made networks organized as meshes, tori, trees, etc.

Given this variety of topologies, it is not uncommon to find a mismatch between the network ar-

chitecture (machine-dependent) and the virtual topology (application-dependent). This may result in

an inefficient use of the network, that materializes in large delays and bandwidth bottlenecks that, in

turn, results in a general loss of application performance. The way tasks are mapped onto processors

(network nodes) has a remarkable impact on the performance of parallel applications, and on the

performance of the parallel system as a whole [1].

Current supercomputers generally share their resources between different users and applications.

This means that the system can be running simultaneously several parallel jobs. A system scheduler

is in charge of allocating resources to jobs, applying different policies to select the collection of nodes

(partition) on which a given job (application) will run. The scheduler manages one or several job

queues. When a job finishes, released resources are allocated to the next job (or jobs) in the queue.

In this dynamic environment, it is difficult to find a match between the physical topology of the

allocated partition and the application’s virtual topology. Actually, many schedulers totally ignore

the machine’s topology, considering a flat network. Some others search for contiguous partitions, a

policy that can result in improvements in applications’ performance due to the efficient exploitation

of communication locality [26] [29]. In any case, a mapping strategy is required to allocate job’s tasks

onto the assigned partition’s nodes. Ideally, this mapping should allow the tasks to make an efficient

usage of the assigned resources.
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In smaller contexts in which a scheduler is not required, mapping strategies are also relevant. Con-

sider, for example, an embedded system where a single application runs permanently on an on-chip

multiprocessor. An optimal mapping of tasks to nodes is critical to keep under control the time to

complete tasks’ duties, even to comply with real-time constraints. This mapping can be computed

off-line, before application deployment.

The mapping problem has been studied by many research groups during the last years. In the

context of massively parallel computers, in [26] [29], the authors show, using some simple mappings,

the great influence mappings have on application performance. Achievable improvements depend on

the particularities of the application, as shown in [4] [5], where some ad-hoc mapping strategies were

developed for NAMD, a classical molecular dynamics application. Due to the increase in the use of

multi-core architectures, many researchers are studying the mapping problem in this field, developing

mapping strategies that focus on the volume of data interchanged by tasks [18] [24] or on the reduction

of power consumption [14] [20].

Ideally, in dynamic environments, topology and application-aware allocation and mapping policies

should be included in the system scheduler, in order to increase its performance. However, in practice,

most schedulers managing current supercomputers include very simplistic allocation/mapping policies

that are application and network agnostic. This fact results in random assignments of tasks to nodes:

applications are not located in contiguous nodes, and mapping is done without considering their

implications on the utilization of network resources 1. Therefore, communications are inefficient due

to inter- and intra-application interferences (as studied in [29]). To our knowledge, only the BlueGene

family of supercomputers provides a way to assign to a job a file containing a mapping for its tasks [3].

To illustrate the importance of this issue, in [5], the authors perform a study with three applications

in two supercomputers arranged as 3D tori: a BlueGene/L [3] and a Cray XT3 [2]. They conclude

that, by co-locating communicating tasks on nearby processors, the distance travelled by messages,

and hence the communication traffic, can be minimized, reducing communication latency and network

contention. They achieve this goal by manually defining partition and mapping procedures for the

target machines. In [7], the authors evaluate the effect that contention has on packets’ latencies,

1As a notable exception, SLURM [17] includes topology-aware scheduling for BlueGene, Cray XT, Sun Constellation

and tree-based hierarchical networks.

3



concluding that developers should take into account the network topology when mapping tasks to

nodes.

In this paper we propose an optimization-based framework to deal with the mapping problem. This

framework allows us to easily select different criteria when searching for good mappings. These criteria

need to be captured in a cost matrix that finally translates in a function to optimize. In addition to the

commonly used distance criterion, that tries to minimize the average distance traversed by messages

[27] [35], we propose and evaluate another criterion, which we call Traffic Distribution (TD). The

motivation to propose the TD criterion is that the reduction of the average distance (classic criterion)

can create network contention due to the locality of communications, resulting in a degradation of

the applications’ performance. The new criterion tries to reduce contention, taking into account not

only the communication patterns of the application tasks, but also the topology of the interconnection

network.

The mapping problem [8] can be seen as a specific instance of the Quadratic Assignment Problem

(QAP, see Section 3.1). Consequently, we can tackle it using any method developed to solve the QAP.

This problem has NP-hard complexity [13] and, therefore, we use heuristic approaches to find good

solutions for it. In particular, we have selected the Greedy Randomized Adaptive Search Procedure

(GRASP) [11] [31]. This algorithm, with the optimization criterion expressed as a matrix cost, will

minimize the target function and provide as solution a mapping vector that associates each task with

a processing node. In terms of optimization, a given mapping is better than another one if the value

of the target function is smaller. However, the target function is only a model of what happens in

reality, and as such it only considers part of the effects that the mapping will have on the application’s

execution. Therefore we have to validate the mappings, proving that a reduction in the target function

actually makes the application run faster.

In order to carry out this validation we use simulation, due to its inherent flexibility for testing

different system configurations. The simulation workbench used is INSEE [33] which, given a trace

of an application, a target network, and a mapping, can provide an estimation of the application’s

execution time. As target applications we use (traces of) a subset of the NAS Parallel Benchmarks

(NPB) [25]. For the interconnection networks, we have restricted our study to the well-known 2D

tori. We have carried out two different sets of experiments to evaluate mappings for static and
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dynamic environments. For simplicity, in the static environment we only consider configurations in

which the number of tasks (belonging to a single parallel application) equals the number of nodes.

Regarding mappings, we have tested some trivial ones (consecutive, random) and those provided by the

optimization procedure, considering both the classic and the TD criteria. Results show that, in static

environments, the consecutive mapping is the best option when the application’s virtual topology

matches the network’s physical topology. In these situations the solutions obtained by means of

optimization-based strategies cannot provide any improvement. For applications in which this match

does not take place the TD approach provides excellent results. Only for a few, pathological cases,

the best results are obtained using random mappings.

For dynamic environments (systems managed by a scheduler and shared by many concurrent par-

allel jobs), we have measured the performance of applications that fill a quarter of system’s nodes,

introducing some “background noise” in the form of synthetic, random traffic between the remaining

nodes (those not allocated to the application). The objective of this background traffic is to disturb

the application’s inter-task communications, trying to emulate real environments in which network

resources are shared with other running jobs. Regarding the allocation of system partitions to the

target application, three partitioning schemas have been tested: contiguous forming a square, con-

tiguous forming a band, and random (see Figure 3 for the details). We have tested different mappings

for each partitioning schema, using as in the static environment the trivial ones (consecutive, ran-

dom) and those provided by the optimization procedure using both criteria (classic and TD). In this

environment, results show that the mismatch between virtual and physical topology results in a bad

behaviour for the consecutive mapping, revealing the great potential of mappings based on the TD

criterion, which performs better than the classic one.

The rest of the paper is organized as follows. Section 2 is devoted to the definition of the Quadratic

Assignment Problem, and to present some approaches developed to solve it. In Section 3 we define

formally the mapping problem and its expression as a particular instance of the QAP studying in detail

the GRASP algorithm used to solve it. In Section 4 we detail the criteria (classic and the proposed

TD) used to solve the mapping problem. Section 5 presents the experimental workbench, following

in Sections 6 and 7 with the results of the experiments for both static and dynamic environments,

carried out to validate the proposed mapping criteria. Finally, the paper ends in Section 8 with some
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conclusions and future lines of research.

2 The Quadratic Assignment Problem

The mapping problem consists of finding an assignment for the set of tasks belonging to a parallel job

onto the set of nodes in the partition assigned to run the job; in what we call static environments,

the partition can be the whole system. We can do this assignment randomly, or can follow some

criterion trying to impact positively on the execution speed of the application. In order to formulate

this as an optimization problem, we need to define a criterion to minimize, which is expressed as a

cost matrix. This representation of the mapping problem allows us to identify it as an instance of the

Quadratic Assignment Problem (QAP), one of the fundamental combinatorial optimization problems

in the branch of optimization in mathematics [28]. Consequently, we can take advantage of all the

work already done for the QAP, including the different techniques developed to solve it. In the next

sections we explore the QAP; first we provide its definition and formal representation, and we follow

with a brief review of some approaches developed to solve it.

2.1 Definition of the QAP

The problem of how to assign a certain number of facilities to a certain number of locations with the

minimum cost is the well-known QAP problem [28]. Given a weight w representing the flux between

each pair of facilities and a distance d between each pair of locations, the problem is to assign each

facility to a different location with the goal of minimizing the sum of distances multiplied by the

corresponding weight.

One way of formally expressing the QAP, known as the matrix form, is as follows: given F and

L, two equal size sets representing facilities and locations, W = [wi,j ]i,j∈F representing the weight

matrix, and D = [di,j ]i,j∈L representing the distance matrix between location pairs, find the bijection

π : F −→ L that minimizes the following objective function:

∑

i,j∈F

wi,j · dπ(i),π(j) (1)
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2.2 Approaches to solve the QAP

The QAP is a NP-Hard problem [34]. Due to its computational complexity, extensive research has

been carried out to propose effective methods to solve it. We can roughly classify these methods into

two groups: exact methods that guarantee finding an optimal solution, and heuristic methods that,

while providing good solutions, cannot give optimality guarantees.

• Exact methods: The two main approaches in this group include dynamic programming algo-

rithms [21], and branch and bound techniques [30]. In general, problems with size larger than 16

are hard to solve with these methods, and only certain instances of the problem with particular

structures have been solved for larger sizes [19].

• Heuristic methods: These include improvement methods such as local search and tabu search

[23], simulated annealing [15] and genetic algorithms [12]. Another heuristic widely used to

solve the QAP is the Greedy Randomized Adaptive Search Procedures (GRASP) [32]. Besides

producing good quality results, in terms of execution time and solutions, it requires minimal

parameter tuning and is relatively easy to implement. See Section 3.2 for a description of this

method.

3 A Framework for Solving the Mapping Problem

In this section we explain in more detail our proposal of an optimization-based framework to find

mappings vectors. First we formalize the definition of the mapping problem, and then we describe

the use of the GRASP algorithm to generate the mappings. The framework we will define is valid for

both static and dynamic environments. In a static environment, it is assumed that a single application

runs on a target architecture for a long period of time, and the main concern is the quality of the

solution, even if the process of generating it is slow. In contrast, in dynamic environments several

applications share a machine, and the partition temporally assigned to a particular job can have an

arbitrary topology – given by the decision of the scheduler. In this case the solution still has to be

good, but there are time restrictions: it has to be obtained fast to keep scheduling overheads low. For

the shake of homogeneity in the process of analysing the performance of our proposals, we have set
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the same time restrictions (iterations of the GRASP algorithm) for both environments.

3.1 The Mapping Problem

The mapping problem can be formally defined as follows: given a set of tasks belonging to a parallel

job T = {t1, ..., tn} and a set of processing nodes of a parallel computing system P = {p1, ..., pn} find

a mapping function π that assigns a task t to a node p

π : T −→ P

t −→ π(t) = p

trying to optimize a given objective function. Note that we use (network) node and processor inter-

changeably.

The mapping problem can be expressed easily as a QAP in the matrix form: given T and P two equal

size sets representing parallel application tasks and processors respectively, matrix W = [wi,j]i,j∈T

representing the number of bytes interchanged between each pair of tasks, and matrix C = [ci,j ]i,j∈P

representing some cost characteristic involving pairs of network nodes, find the bijection π : T −→ P

that minimizes:

∑

i,j∈P

wi,j · cπ(i),π(j) (2)

The formulation shown in Equation 2, that states the mapping problem as an instance of the QAP,

allows us to leverage the strategies developed for the QAP to find solutions for the mapping problem.

We need two data structures: the communication matrix W representing the amount of information

interchanged by the tasks, and the cost matrix C which models the criterion selected to distribute the

traffic across the network. Note that the first depends solely on the characteristics of the application,

while the other depends on the characteristics of the network: topology and routing function. In

order to fill W for a particular application, we use traces containing all the interchanges of messages,

counting the messages interchanged between each task pair multiplied by their lengths (in bytes). The

procedure to fill C depends on the criterion selected to create mappings represented as a function to

be optimized.
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3.2 Mapping Algorithm

In our experiments we used the GRASP solver, because we found in the literature that this is the

algorithm that provides the best results known when solving the generic QAP [9]. We have adapted

it slightly in order to deal with the data structures of the mapping problem. GRASP is a constructive

and a multi-step algorithm that iterates over the following steps.

First, an initial solution is created by means of a greedy algorithm. The solution is constructed

iteratively, adding one solution element (one entry of the mapping vector) at each step, using a greedy

function that measures the cost of adding each element into the solution being constructed. The

element to be incorporated into the partial solution is selected randomly (uniformly) from the unas-

signed elements, considering only the α% of those with lowest cost, being α a parameter provided to

the algorithm. Once the selected element is incorporated into the partial solution, the list of remaining

elements is updated and the incremental costs are re-evaluated. The greedy function depends on the

mapping criterion selected to construct the solutions. The objective of this step is to generate a good

quality solution that helps reducing the time required by the local search (next step) to converge to a

local optimum.

In a second stage, once an initial mapping is provided (using the previously explained procedure), a

local search is carried out. The local search algorithm works iteratively, by successively replacing the

current solution with a better one from those in the neighbourhood. In our case the neighbourhood

of a solution (a mapping vector) is given by all solutions that can be reached performing a two

element swap. The search in the neighbourhood is performed using a best improving strategy: all

neighbours are evaluated and the best one replaces the current solution. This process is repeated until

no improvement is found.

The previous two steps construct a solution that is a local optimum. The algorithm iterates over

these steps selecting, at each iteration, the solution with the best objective function value. The use of

problem instances of sizes up to 64, as well as the time restrictions imposed by the scheduling process,

forced us to find a trade-off between the quality of solutions and the number of iterations performed.

In Section 5.2 we will state the value of the parameters (number of iterations and α) provided to the

algorithm.
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4 Mapping Criteria

The archetypal context in which the QAP has been applied is in location problems, where the cost

matrix represents the distance between facilities, as shown in Equation 1. Often the mapping problem

has been seen as a location problem [8], searching a mapping vector that minimizes the average

distance traversed by application messages. This is what we call the classic (optimization-based)

strategy. The result of using this strategy is a mapping that locates in neighbouring nodes those

tasks that interchange large data volumes. Apparently, this is a good policy, because it exploits

communication locality, reducing the utilization of network resources. However, experiments show

that a reduction in average distance does not always result in a reduction of application execution

time, because it may create contention hot-spots inside the network [1] [6]. For this reason, we propose

a different cost matrix to be used instead of the distance matrix. With this matrix the criterion of

minimizing average distance is relaxed, in order to favour communication paths that distribute traffic

through the network, avoiding bottlenecks. We have called this the Traffic Distribution (TD) criterion.

The definition of both criteria, that materialized in cost matrices, depends on topological character-

istics of the target network in which applications will run. In this work we consider just one network

topology: 2D tori of N = n × n nodes, as represented in Figure 1. In these networks each node

has an identifier i in the range 0 . . . N − 1. We will consider routing functions that make messages

advance using shortest-path routes between source and a destination. The simplest form of routing is

Dimension Order Routing (DOR) [10], in which messages traverse first all the necessary hops in the

X axis and then switches to the Y axis, but we do not make any assumption regarding the routing

algorithm, except that it must use minimal paths.

4.1 Classic Distance Criterion

In a square 2D torus, given two nodes with identifiers i and j, the distance between them is given by

Equation 3.

dist(i, j) = distx(i, j) + disty(i, j) (3)
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Figure 1: Example of the topology used in static environments: square 2D torus of 64 nodes.

where the first term of the sum is the number of hops through the X axis a message must traverse when

going from i towards j, and the second term is the number of hops through the Y axis. Equations 4

and 5 show terms distx and disty.

distx(i, j) = |⌊j/n⌋ − ⌊i/n⌋| mod ⌊n/2⌋ (4)

disty(i, j) = |j mod n − i mod n| mod ⌊n/2⌋ (5)

Therefore, the classic criterion to tackle the mapping problem identifies C as the distance matrix,

whose components can be filled using Equation 3 for each pair of source-destination nodes.

C = [ci,j]i,j=1...N where ci,j = dist(i, j) (6)

4.2 Traffic Distribution Criterion

The rationale behind use of the classic criterion is clear: minimizing the distance should result in

lower latencies (because latency depends on the number of hops) and in lower utilization of network

resources, because the number of involved links will be minimized. However, a preliminary collection
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Figure 2: Relationship between the simulation time (in cycles) and the communications mean distance

in a 8 × 8 torus for NPB applications LU and CG, class A, size 64.

of experiments using the INSEE simulator shows that this is not always true. We have generated

10 random mappings for two 64-node NPB applications (LU and CG) running on a 8 × 8 torus, and

measured the mean distance traversed by packets. We have also measured the execution time of the

applications as reported by INSEE. All this data has been plotted in Figure 2, using the distance as

the ordering criterion. We would expect a correlation between distance and execution time, but the

figure does not show it.

The distance criterion hides a fundamental characteristic of interconnection networks: resources

(routers, links) have to be shared between many simultaneous communications. It may happen that

a given mapping that is optimal in terms of distance, results in multiple communications contending

for the use of a single link (or a small collection of links). The contention generated for the shared

resources results in increased latencies.

We propose in this paper a new criterion, expressed as an alternative cost matrix, that allows us to

find mappings that, while not optimal in terms of distance, helps avoiding network bottlenecks. In

particular, we pay attention to the number of hops per dimension that messages have to travel. A

6-hop route in which all the hops are in the X axis is worse than another 6-hop route with 3 hops per

dimension, because the latter imposes less pressure in the X axis, spreading the utilization of network

resources evenly among the two axes. Formalizing this, we favour those routes in which the number

of hops per dimension is equalized – or, in other words, we penalize those routes in which the number
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of hops per dimension is not equal. The level of penalization depends on the level of asymmetry, as

represented in Equation 7.

cost(i, j) = dist(i, j) + |distx(i, j) − disty(i, j)| (7)

Hence, when using the TD criterion for the resolution of the mapping problem using our framework,

the cost matrix is defined as:

C = [ci,j ]i,j=1...N where ci,j = cost(i, j) (8)

5 Experimental Set-up

In this section we detail the collection of experiments that we carried out to evaluate the effectiveness

of the two approaches to the mapping problem described in the previous section. We will use networks

of three different sizes: 16 (4 × 4), 64 (8 × 8) and 256 (16 × 16) nodes, in order to test the impact

of network size on that effectiveness. Now we describe the experimental workbench used for the

experimentation.

5.1 Experimental Workbench

The experimental workbench comprises three key pieces:

1. NPB traces [25]: For each application and size we need to generate the traffic matrix W .

We have done so for particular instances of the benchmarks included in the NPB, class W size

16, and class A size 64. These applications were run in a real parallel machine, in which traces

of all the messages interchanged by tasks were captured. These traces contain the necessary

information to fill W , and are also valid to be used within the INSEE simulation environment.

2. QAP Solver: This is a program that implements the GRASP algorithm. It accepts as param-

eters matrix W (the communication matrix of the application trace to evaluate, expressed in

bytes), matrix C (the cost matrix modeling a mapping criterion), the number of iterations to be

performed and α, used to create the first solution at each step of the algorithm. The output is
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a mapping vector that associates each application task with one node of the network partition.

The creation of this vector obeys the criterion represented in the cost matrix.

3. INSEE [33]: This tool simulates the execution of a message-passing application on a multicom-

puter connected via an interconnection network. INSEE performs a detailed simulation of the

interchange of the messages through the network, considering network characteristics (topology,

routing algorithm) and application behaviour (causality among messages). The input includes

the application’s trace file and the mapping vector. The output is a prediction of the time that

would be required to process all the application messages, in the right order, including causal

relationships and resource contention. However, it only measures the communication costs,

assuming infinite-speed CPUs.

5.2 Design of the Experiments

To perform the validation tests in static environments, we created a set of 50 different mappings

for each NPB application, using the classic and the TD expressions of the cost matrix. For this

environment, we tested two application/network sizes: 16 and 64 tasks/nodes (we only considered

one-to-one assignments). Each of the 50 solutions were selected after 50 GRASP iterations with the

value of parameter α set to 20%.

For the dynamic environment the set-up was more complex. We used traces of the NPB appli-

cations, size 64, class A. The network was four times larger: a torus of 16 × 16 nodes. Therefore,

a running application used a partition containing one fourth of the network nodes. The remaining

nodes generated background noise: they interchanged messages using a random, uniform pattern, to

emulate the effect of other applications sharing the network. We evaluated the behaviour of the map-

pings for three different values of the background traffic generation rate: 0.0625 packets per node and

per cycle (the theoretical maximum injection rate accepted by the network as determined from the

bisection bandwidth [10]), 0.016 packets per node and per cycle (one fourth of the theoretical maxi-

mum injection rate), and 0.0003125 packets per node and per cycle (0.5% of the theoretical maximum

injection rate). These rates were selected trying to emulate different scenarios of network usage: from

a network in saturation state (highest noise injection rate) to an almost empty network (lowest rate).
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We tested three forms of network partitions: quadrant (the partition included the 8 × 8 nodes in the

upper-left corner of the network), band (the partition included the 4× 16 nodes in the upper network

rows) and random (selecting 64 nodes randomly) as shown in Figure 3. For the latter, 20 different

random partitions were generated. The mappings, obtained as explained in the previous paragraph,

were tested on the assigned partitions.

In both environments, in addition to the classic and the TD mapping strategies, we also evaluated

the behaviour of two trivial mappings: consecutive and random.

• Consecutive mapping: Given a network partition (the whole network in the static environment),

application tasks are allocated onto the partition’s nodes in order of identifiers, starting with

the assignment of the first task to the node with the lowest identifier, and ending with the

assignment of the last task to the node with the highest identifier.

• Random mapping: In this case, given a network partition, application tasks are assigned to

partition nodes randomly. To evaluate this strategy, a set of 50 different random assignments to

each partition were performed. In dynamic environments, for the random partitioning schema,

due to the use of 20 randomly generated partitions, a total of 20×50 experiments were performed

for each application. Note that in dynamic environments (network size larger than application

size) with random partitioning (nodes in the partition are selected randomly) the consecutive

mapping is just a particular case of random mapping.

Each of the mappings was simulated using the INSEE environment [33] [22]. For dynamic environ-

ments and because of the use of random background traffic (noise), each experiment was repeated five

times, using each time a different seed.

6 Results for Static Environments

The results of the experiments in static environments are summarized in Table 2 for the smallest

size network (16-node 2D torus), and in Table 3 for the largest size network (64-node 2D torus).

The tables show the best, the average and the standard deviation of the execution times reported by

the simulator for each application-topology-mapping combination. The statistical significance of the
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Figure 3: Network partitions used to test different mappings strategies in dynamic environments. a)

Quadrant partition b) Band partition c) Example of a random partition

differences between the three non-consecutive mapping strategies (note that the consecutive has not

random component) has been assessed running Kruskal-Wallis [16] paired tests on the results obtained

for each of the traces. The tests have been performed between the strategy that obtained the best

result and each of the others, at one level of significance: 0.05.

In Table 2 we can see that the use of the TD mapping criterion improves, in most cases, the results

obtained by the other criteria. There is only one case, the SP trace, in which the TD does not obtain

the best result. For this trace the best mapping is the consecutive. However, the use of TD reaches

almost the same results. It is remarkable that only in two traces, BT and SP, there exists a significant

difference between the use of the classic and the TD criteria, obtaining almost the same results for

the other traces. Regarding the random mapping, for this network size it provides the worst results

for all traces.

Let us now pay attention to Table 3. Results for the large network differ from those obtained with

the 16-node case. The behaviour of the mapping strategies depend strongly on the characteristics of

the applications. We can differentiate three application groups. In the first one we include BT, LU and

SP. A property of these applications is that the communications pattern (virtual topology) matches

the physical one. Therefore the consecutive mapping is clearly the best performer. TD is the second

best, with significant differences in two traces with the classic and in three cases with the random
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mapping. In a second group we can consider FT and IS. These applications performs basically all-to-all

data interchanges, launched by all the tasks almost simultaneously; this generates peaks of substantial

network utilization. For this group the best results are given by the random mapping, being the

difference of results in relation with TD and classic statistically significant. These two optimization-

based mapping strategies tend to allocate as close as possible those tasks that communicate often,

and this results in heavy contention for the network links, due to the communications pattern. In this

case, the random distribution of the tasks spreads messages evenly throughout the network, helping

to reduce contention. Finally, in the third group we find CG and MG. For these two applications there

is no match between virtual and physical topologies, and the utilization of the network is not based

on intensive all-to-all interchanges. For this group the TD strategy is the best, having significant

differences with the classic for CG, and with the random for both applications.

In summary, the novel TD procedure we propose in this paper provides good mappings of applications

onto networks in static environments. The trivial mappings are able to produce better results in

those cases in which the virtual network matches the actual one (consecutive mapping) and when

the communications pattern performs mainly all-to-all communications (random mapping). Note,

though, that in actual supercomputers applications run in partitions of a machine, instead of in the

whole machine, and in this scenario the perfect matching cannot be expected to happen. We explore

results for these scenarios in the forthcoming section.

7 Results for Dynamic Environments

The results of the experiments carried out in dynamic environments are summarized in Tables 4(a),

4(b) and 4(c) for the quadrant partition schema, Tables 5(a), 5(b) and 5(c) for the band partition

schema, and Tables 6(a), 6(b) and 6(c) for the randomly generated partitions. The tables show the

best, the average and the standard deviation of the execution times reported by the simulator for

each application-topology-mapping combination. As done for the static environment, the statistical

significance of the differences between the four strategies in dynamic environments has been assessed

running Kruskal-Wallis [16] paired tests on the results obtained for each application. Note that in this

case the consecutive strategy has a random component derived from the use of background traffic. As
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it was done before, we used one significance level: 0.05.

As explained in the previous section, the experiments for dynamic environment were performed in a

network that is four times larger than the application size: 256-node 2D torus network, 64-task jobs.

Tasks are mapped onto a network partition, using different partitioning schemas: quadrant, band and

random (Figure 3). Next we examine the results obtained for each partition schema, and after that

we carry out a brief study about the impact that background noise has on the effectiveness of the

mapping strategies.

7.1 Analysis of Results

We start analysing the results obtained using the quadrant partition schema. It reserves for a 64-task

job a 8×8 square partition of a 16×16 torus. The square is located the upper left corner of the torus;

however, due to the symmetry of this topology, the position of the partition in the network does not

affect the results.

Again, we will consider three groups of applications: those whose virtual topology is a torus (BT,

LU, SP), those that use all-to-all interchanges (FT, IS) and the remaining ones (CG, MG). Obviously,

for the first group the best mapping strategy is the consecutive, with significant differences with the

other strategies. The second best is TD. For the second group, random mapping is again the best

performer, with significant differences with the other methods. For the last group the winner mapping

strategy is TD. As we expected, this behaviour is exactly the same observed in static environments.

Although most communications are internal to the partition, the average distance traversed by packets

is larger than in the case of a 8 × 8 network. For this reason, execution times are longer than for the

case evaluated in the static environment (64-task job on a 64-node network, see Table 3). The presence

of background traffic on nodes not belonging to the partition affects internal communications (higher

levels of noise results in longer execution times), but does not change the conclusions regarding the

best choices of mappings.

Now we analyse the band partitioning schema. In this case the TD strategy performs the best for

traces in the first group (BT, LU, SP) and also for CG, with significant differences with the other

three strategies. The use of a band partition breaks the perfect topological match, and TD shows its

potential. For the second group (FT, IS) the winner is, as in the previous experiments, the random
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mapping. For the particular case of MG, the best mapping criterion is TD for low-medium levels of

background noise, and consecutive for highly loaded networks. In the latter case, differences between

TD and consecutive are statistically significant, but not very large.

Finally, let us analyse the results achieved using randomly generated partitions. In this case, none of

the applications benefit from a match between virtual and physical topologies. The group composed

by applications FT and IS maintains a differentiated behaviour, and works better with a random

mapping. The remaining applications now behave similarly, and in this case TD is the best performer

with significant differences with the other mappings.

We have to insist in that, in most current supercomputers, partitioning is carried out without any

special consideration. When a job needs a partition, the scheduler selects any available node – which

results in something close to the random partitioning schema used in our experiments. This is the

most realistic scenario, and corresponds to the one in which the TD mapping strategy performs best

for five out of the seven applications included in our experiments.

To summarize this section, we can state that the choice of a mapping criterion to make the task-to-

node allocation has a remarkable impact on the performance of parallel applications. The behaviour

of a particular mapping, measured in terms of application speed, depends on many aspects: physical

topology of the network, partitioning schema, virtual topology of the application, and other char-

acteristics of the application’s traffic. Some applications perform the best when tasks are located

randomly, because this reduces the presence of network bottlenecks. For most cases it is better to

locate communicating tasks in nearby nodes, avoiding bottlenecks, and here is where the TD strategy

performs well – although it can be surpassed by consecutive mappings only in the (improbable) case

of good virtual-to-physical topology match.

7.2 Effects of the network load on the mapping strategies

As stated in the previous section, the experiments in the dynamic environment were performed inject-

ing synthetic, random background traffic at three different rates in the network. The objective of this

traffic is to evaluate the effect that the network status (load) has on the behaviour of the mapping

strategies. A direct inspection of the tables shows how the background traffic increments the execu-

tion times of the applications, and this increase is larger for higher injection rates. This is expected,
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due to the existence of more packets in the network that interfere the inter-tasks communications:

there is more contention for the (shared) resources. Our goal now is to compare the stability of the

behaviour of the different mapping strategies as we increase network utilization. In table 1 we detail

which method obtains the best results at each injection rate for all applications.

Table 1: Best mapping strategies (•) for each application, for different levels of background
traffic: Low (0.0003125 packet/node/cycle), Medium (0.016 packet/node/cycle) and High (0.0625
packet/node/cycle).

Quadrant Band Random

Co R Cl TD Co R Cl TD Co R Cl TD

L • • • •

BT M • • •

H • • •

L • • •

CG M • • •

H • • •

L • • •

FT M • • • •

H • • •

L • • • •

IS M • • •

H • • •

L • • • •

LU M • • •

H • • •

L • • •

MG M • • • •

H • • • •

L • • •

SP M • • •

H • • •

We can observe that, in most cases, the network load does not affect the choice of best mapping

strategy. There are a few exceptions, though. In the case of the quadrant partitioning schema, consec-

utive and random mappings perform similarly with the medium injection rate for the FT application,

and the same happens with he low injection rate for IS. However, when this rate is increased, the

best mapping criterion is always the random one. Regarding the MG application, the increase of the

injection rate results in better performance for the classic criterion, which is as good as the TD at

high injection rates.

If we focus on the band partitioning schema, the MG trace is the only one that deserves comment.

The TD criterion is the best at the low and medium injection rates. However, at high rate, the
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consecutive mapping becomes the best performer.

Finally, let us pay attention to the random partitioning schema. In this case, the consecutive mapping

is as good as the TD for applications BT and LU when used in lowly-loaded networks. However, when

the load is higher the best mapping option is TD.

In general, we can conclude that the choice of mapping strategy can be done without taking into

consideration the amount of traffic not related to the applications.

8 Conclusions and Future Work

Current supercomputer centres share their resources between different users and applications. A

system scheduler plays a crucial role, selecting the jobs to be executed (extracting them from a queue)

and assigning some resources to it. Often, the allocation/mapping procedures are carried out using

simple mechanisms that ignore the communication patterns of the application and the topology of the

network.

In this work we have focused on the mapping problem, describing an optimization-based framework

to find good task-to-node assignments that takes into account the communication characteristics of the

application, as well as the topology of the network. This framework allows us to represent a mapping

criterion as a cost matrix. We have identified a classic form of cost matrix: the node distance matrix.

We have proposed a novel criterion that tries to distribute traffic evenly through the network, while

still keeping close those tasks that communicate most.

In order to validate our proposal we have used trace-based simulation, using traces obtained from

the applications included in the NPB suite. First, we have measured running times on systems

built around 2D square tori of sizes 16 and 64, in static environments (a single application uses

permanently the whole system). Results show that the proposed TD criterion surpasses the results of

the classic one. Random mappings are useful for pathological cases of intense all-to-all communications,

and consecutive mappings can perform well only if the application’s virtual topology matches the

underlying physical topology. In general, the use of an optimization-based search is able to produce a

good-quality mapping.

The main goal of our research work, though, is the identification of good mappings for highly dynamic
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environments in which the scheduler selects a partition for a job and then maps tasks onto nodes –

an assignment that is temporal, because applications are not running forever. To test our proposals

in this environments, we have used 64-task applications from the NPB suite running in a 256-node

2D square torus, with three types of partitioning schemas and different levels of background traffic

generated by the nodes not allocated to the jobs, trying to simulate different scenarios of network

load. In this environment, the TD mapping strategy is the one that allows the applications to run

faster, particularly in those cases in which the topologies of partition and application do not match.

Note that, as we have stated repeatedly, this is a very realistic assumption.

Although in the experimental part of this paper we have focused on creating good mappings for tori,

this work can be extended easily for other topologies, regular or not – for example, to fat-trees, a very

common topology in state-of-the-art supercomputers. We just need a criterion to fulfil the cost matrix

for the target topology. Also, our experiments have been performed using synthetic traffic. We plan

to consider an even more realistic scenario and carry out experiments in which different applications

(not synthetic traffic) share a single machine.

We also plan to extend this work in other directions. In particular, we plan to investigate the way

“smart”, topology-aware partitioning schemas could be incorporated into schedulers. A combination

of a good partitioning with an optimization-based mapping strategy could greatly enhance the pro-

ductivity of large-scale parallel computers. In a previous work we have investigated the great potential

of topology-aware partitioning [29], that can be exploited only if applications experiment a significant

speed-up when tasks are located contiguously. If we incorporate better mappings, this requirement

could be relaxed while still improving system’s performance.
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Table 2: Execution times (104 simulation cycles) for the NPB applications (class W, size 16) running on a 4 × 4 torus. The
experiments were tested using a statistical test with one level of significance: 0.05 (†).

Consecutive Random Classic TD
Value Best Average Std Dev Best Average Std Dev Best Average Std Dev

BT 93.78 111.38 121.34† 2.94 93.78 103.69† 6.88 93.77 93.78 0.00

CG 348.65 346.13 386.16† 17.97 302.80 307.66 7.86 302.80 302.86 0.08

FT 117.94 117.68 124.59† 2.35 113.28 115.70 0.98 113.31 116.33 1.53

IS 82.54 80.65 84.42† 1.75 77.70 79.38 0.68 76.61 79.71 0.78

LU 74.78 77.92 85.29† 2.71 74.76 74.78 0.02 74.77 74.78 0.03

MG 50.48 52.95 57.98† 1.66 45.52 45.58 0.07 45.52 45.56 0.06

SP 161.11 181.30 194.67† 4.28 161.11 175.58† 10.42 161.11 161.46 0.28

Table 3: Execution times (104 simulation cycles) for the NPB applications (class A, size 64) running on a 8× 8 torus topology. The
experiments were tested using a statistical test with one level of significance: 0.05 (†).

Consecutive Random Classic TD
Value Best Average Std Dev Best Average Std Dev Best Average Std Dev

BT 369.35 728.22 764.38† 16.34 576.15 648.51 29.76 569.67 623.23 28.95

CG 719.35 715.50 789.10† 25.76 572.84 642.17† 35.52 533.42 614.87 29.56

FT 1254.25 783.92 801.16 6.77 832.72 911.30† 28.33 840.50 910.81† 24.13

IS 404.21 248.89 253.27 6.77 273.93 292.19† 28.33 274.88 294.80† 6.93

LU 136.57 231.38 258.05† 9.01 187.20 211.53† 10.11 181.01 201.45 9.19

MG 468.47 449.96 477.92† 10.04 378.73 399.74 9.03 377.86 397.02 8.61

SP 598.97 1095.80 1156.00† 22.61 882.47 953.65† 31.69 823.69 907.23 33.98
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Table 4: Execution times (104 simulation cycles) for the NPB applications (class A, size 64) running on a quadrant partition on
a 16 × 16 torus, with different levels of background traffic. The experiments were tested using a statistical test with one level of
significance: 0.05 (†).

(a) Injection rate for background traffic: Low (0.0003125 packets/node/cycle).

Consecutive Random Classic TD
Best Average Std Dev Best Average Std Dev Best Average Std Dev Best Average Std Dev

BT 424.88 427.92 3.51 1243.34 1338.92† 44.07 821.03 886.64† 37.33 709.94 752.66† 32.00

CG 1015.40 1016.23† 0.56 1244.78 1387.09† 50.81 680.13 813.32† 50.20 648.81 701.06 34.04

FT 1521.99 1536.65† 9.78 1495.29 1514.47 8.09 1513.17 1622.83† 54.84 1505.33 1579.93† 35.26

IS 505.62 506.88 1.49 496.75 507.24 3.59 520.12 542.85† 9.52 517.36 536.74† 12.33

LU 137.03 137.03 0.01 386.38 420.56† 18.96 202.79 252.66† 23.76 190.88 217.15† 14.99

MG 635.06 639.62† 3.04 824.44 890.08† 27.47 513.86 535.42† 8.38 489.37 519.91 14.35

SP 730.06 733.22 3.36 1918.23 2129.24† 71.46 1148.93 1259.65† 37.70 1007.31 1093.41† 34.74

(b) Injection rate for background traffic: Medium (0.016 packets/node/cycle).

Consecutive Random Classic TD
Best Average Std Dev Best Average Std Dev Best Average Std Dev Best Average Std Dev

BT 570.70 579.68 8.97 1342.04 1452.50† 48.93 884.06 963.14† 46.12 728.85 812.26† 45.42

CG 1056.75 1057.48† 0.73 1337.19 1491.80† 53.20 713.83 864.48† 65.34 682.36 738.12 35.16

FT 1644.87 1649.56 4.69 1622.75 1647.55 9.15 1632.53 1763.01† 63.78 1638.67 1726.52† 1.53

IS 554.86 555.01† 0.14 536.59 546.40 3.90 565.43 578.17† 6.71 549.95 571.67† 11.87

LU 156.61 156.67 0.06 414.34 451.31† 20.14 225.99 265.73† 20.72 201.25 227.87† 14.56

MG 689.58 691.32† 1.74 893.85 964.33† 29.92 558.81 573.67 7.13 538.47 565.80 19.56

SP 898.83 899.71 0.44 2099.81 2297.22† 74.51 1230.93 1352.68† 44.42 1074.66 1168.40† 28.57

(c) Injection rate for background traffic: High (0.0625 packets/node/cycle).

Consecutive Random Classic TD
Best Average Std Dev Best Average Std Dev Best Average Std Dev Best Average Std Dev

BT 798.20 808.80 5.32 1412.75 1565.46† 48.56 981.13 1050.99† 41.32 811.65 876.95† 47.75

CG 1225.73 1226.47† 0.29 1457.26 1638.02† 58.65 844.28 979.01† 73.71 826.87 865.89 24.92

FT 1808.62 1811.30† 9.46 1753.45 1789.58 13.51 1775.97 1927.73† 75.54 1866.96 1869.08† 2.12

IS 608.83 612.68† 2.47 583.58 594.59 4.53 609.78 636.28† 11.91 613.05 622.84† 4.77

LU 223.66 224.13 0.29 447.99 488.82† 20.69 262.70 293.50† 15.34 238.41 261.35† 13.27

MG 768.97 776.14† 4.03 980.98 1048.40† 30.48 633.75 656.10 14.45 619.13 652.54 18.52

SP 1229.71 1244.77 5.74 2265.83 2473.06† 72.24 1405.28 1526.82† 43.96 1247.65 1304.99† 22.83
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Table 5: Execution times (104 simulation cycles) for the NPB applications (class A, size 64) running on a band partition on a
16 × 16 torus, with different levels of background traffic. The experiments were tested using a statistical test with one level of
significance: 0.05 (†).

(a) Injection rate for background traffic: Low (0.0003125 packets/node/cycle).

Consecutive Random Classic TD
Best Average Std Dev Best Average Std Dev Best Average Std Dev Best Average Std Dev

BT 1603.71 1612.01† 6.85 1149.57 1215.63† 36.41 794.87 923.78† 86.57 680.76 744.20 44.53

CG 1025.15 1025.34† 0.20 1190.64 1328.34† 44.58 713.85 814.18† 43.49 654.14 681.16 22.98

FT 1920.73 1923.84† 2.64 1299.38 1328.78 13.59 1393.63 1492.58† 31.04 1425.47 1472.83† 31.30

IS 506.59 513.63† 5.72 414.50 421.51 3.27 448.84 483.38† 18.12 453.33 491.62† 25.47

LU 387.25 390.00† 2.65 356.98 395.22† 14.08 221.07 263.38† 22.44 205.16 230.09 14.77

MG 534.22 534.98† 0.70 728.29 783.40† 22.77 514.72 555.34 20.50 487.08 511.89 12.08

SP 2425.16 2430.58† 6.97 1776.69 1887.00† 59.31 1060.08 1222.78† 76.50 1049.42 1110.82 35.50

(b) Injection rate for background traffic: Medium (0.016 packets/node/cycle).

Consecutive Random Classic TD
Best Average Std Dev Best Average Std Dev Best Average Std Dev Best Average Std Dev

BT 1649.10 1651.64† 2.54 1181.24 1240.94† 37.46 835.10 945.18† 79.98 719.29 773.39 34.56

CG 1045.01 1045.79† 0.78 1232.26 1361.17† 42.19 718.60 819.19† 35.88 683.88 712.63 21.06

FT 1986.32 1990.41† 4.09 1342.24 1375.89 15.96 1444.27 1549.03† 33.74 1480.44 1501.82† 17.76

IS 548.14 552.14† 4.00 433.35 440.63 3.39 469.31 509.64† 20.00 476.39 496.53† 10.21

LU 386.59 387.22† 0.63 361.73 402.23† 13.00 230.52 268.71† 23.16 220.59 236.01 11.20

MG 551.82 552.37† 0.56 758.83 813.98† 23.34 541.46 575.69† 17.65 519.84 543.92 12.19

SP 2462.18 2467.95† 5.77 1833.71 1942.91† 60.47 1095.88 1258.30† 80.21 1087.29 1148.72 32.30

(c) Injection rate for background traffic: High (0.0625 packets/node/cycle).

Consecutive Random Classic TD
Best Average Std Dev Best Average Std Dev Best Average Std Dev Best Average Std Dev

BT 1726.23 1736.44† 9.24 1299.75 1370.62† 40.84 886.26 929.50† 32.42 765.86 825.70 27.76

CG 1119.93 1122.93† 1.27 1365.53 1480.60† 38.82 768.71 870.04† 35.81 750.61 777.11 24.71

FT 2259.05 2261.62† 1.67 1462.12 1513.49 18.18 1607.44 1707.12† 36.43 1686.14 1708.58† 22.60

IS 597.14 600.79† 2.57 485.92 495.91 4.15 540.47 581.68† 23.55 520.06 556.23† 31.11

LU 597.14 391.98† 1.29 392.63 434.30† 13.01 244.41 281.04† 19.98 227.63 247.39 10.03

MG 588.18 590.37 1.47 830.41 902.01† 27.11 579.55 614.53† 13.79 586.04 611.84† 14.94

SP 2624.58 2637.76† 8.79 2003.93 2132.24† 64.61 1166.82 1323.25† 80.88 1184.33 1235.37 29.27
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Table 6: Execution times (104 simulation cycles) for the NPB applications (class A, size 64) running on random partitions on
a 16 × 16 torus, with different levels of background traffic. The experiments were tested using a statistical test with one level of
significance: 0.05 (†).

(a) Injection rate for background traffic: Low (0.0003125 packets/node/cycle).

Consecutive Random Classic TD
Best Average Std Dev Best Average Std Dev Best Average Std Dev Best Average Std Dev

BT 537.06 584.32 26.74 641.45 704.24† 26.17 538.75 609.46† 25.99 536.67 577.38 16.13

CG 662.46 734.27† 60.47 639.31 710.98† 32.69 525.08 611.12† 39.38 520.11 585.45 41.27

FT 880.08 935.05† 33.07 669.75 708.97 13.64 679.44 764.48† 28.63 713.80 781.95† 18.91

IS 254.37 272.63† 11.76 199.79 219.84 8.18 218.48 237.24† 7.49 216.22 239.53† 9.94

LU 183.31 200.89 12.51 209.74 235.52† 12.48 168.03 198.54† 11.07 168.01 193.14 12.69

MG 362.19 390.11† 21.74 377.61 414.16† 17.07 334.89 358.26† 13.00 332.78 348.60 8.89

SP 830.56 882.11† 35.45 958.87 1042.50† 31.86 794.01 889.93† 43.03 776.43 833.07 28.67

(b) Injection rate for background traffic: Medium (0.016 packets/node/cycle).

Consecutive Random Classic TD
Best Average Std Dev Best Average Std Dev Best Average Std Dev Best Average Std Dev

BT 681.54 719.84† 31.11 731.87 840.06† 37.32 639.27 709.78† 30.30 607.19 658.48 23.26

CG 827.72 892.92† 64.18 763.39 875.09† 40.54 656.21 735.04† 40.45 617.16 705.99 45.94

FT 1229.51 1292.74† 37.35 851.79 890.01 14.06 880.16 980.80† 30.81 936.15 996.34† 23.81

IS 399.34 413.39† 10.16 268.96 289.32 8.08 301.16 329.11† 11.00 303.92 325.31† 9.97

LU 233.33 245.22† 13.49 253.03 283.06† 14.74 208.37 244.09† 16.21 211.20 233.55 12.34

MG 456.44 481.51† 26.40 487.58 534.19† 20.00 421.05 450.93† 14.31 410.90 439.45 13.45

SP 1041.56 1100.75† 42.54 1148.71 1287.23† 51.18 964.35 1089.11† 55.43 914.84 1002.56 39.47

(c) Injection rate for background traffic: High (0.0625 packets/node/cycle).

Consecutive Random Classic TD
Best Average Std Dev Best Average Std Dev Best Average Std Dev Best Average Std Dev

BT 1223.30 1300.21† 34.51 1181.63 1283.79† 31.01 1100.43 1256.54† 50.43 1089.94 1183.70 41.52

CG 1451.57 1506.92† 26.53 1348.13 1446.81† 47.07 1240.11 1385.14† 66.04 1164.05 1256.59 38.56

FT 1905.98 1964.07† 26.07 1328.94 1366.29 12.92 1449.59 1540.50† 29.25 1430.51 1532.25† 37.85

IS 586.99 600.42† 5.61 428.82 444.90 4.22 477.72 518.62† 16.31 468.92 512.25† 14.58

LU 460.00 493.66† 16.64 428.43 469.47† 18.56 407.95 453.00† 19.68 377.84 426.48 17.40

MG 804.09 851.29† 26.62 796.33 840.75† 13.84 774.89 817.52† 19.99 734.34 777.76 18.40

SP 1889.85 1983.33† 51.25 1863.66 1992.44† 48.77 1736.60 1887.61† 53.05 1671.20 1808.62 54.28
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