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Abstract- This paper describes the application of several
data mining approaches to solve a calibration problem
in a quantitative chemistry environment. Experimental
data obtained from reactions which involve known con-
centrations of two or more components are used to cali-
brate a model that, later, will be used to predict the (un-
known) concentrations of those components in a new re-
action. This problem can be seen as a selection + predic-
tion one, where the goal is to obtain good values for the
variables to predict while minimizing the number of the
input variables needed, taking a small subset of really
significant ones. Initial approaches to the problem were
Principal Components Analysis and Filtering. Then we
used methods to make smarter reductions of variables,
by means of parallel Estimation of Distribution Algo-
rithms (EDAs) to choose collections of variables that
yield models with less average prediction errors. A final
step was to use multi-objective parallel EDAs, in order
to present a set of optimal solutions instead of a single
solution.

1 Introduction

In modern laboratories the development of chemical instru-
mentation has allowed the existence of equipment that can
acquire large amounts of data in a short period of time.
For instance, whole Ultraviolet-Visible (UV-Vis) spectra
can be obtained at a rate of several samples per second by
diode-arrays or charge-coupled devices, and the same hap-
pens with mass spectra or nuclear magnetic resonance spec-
tra. Typically, the number of data points in each spectrum
ranges between 100 and 1000, and the number of spectra
acquired in a run ranges between 100 and 200. All this in-
formation is easily stored with a personal computer, opening
new possibilities for handling these large volumes of data.
All kinds of data mining techniques can then be applied in
order to extract knowledge from the raw data.

Many chemical reactions can be followed through the
change of their UV-Vis spectrum. When the chemical
and physical reaction conditions are controlled, the rate of
changes in the UV-Vis spectrum can be made dependent ex-
clusively on the concentration of species taking part in the
reaction; this provides a way to determine the concentra-
tion of species in solution. This kind of procedures can be
applied to determine mixtures of 2-3 highly related com-
ponents. To do this, a procedure in two steps is accom-

plished: in the first one, enough experimental matrices of
data are obtained for different and known concentrations of
the species of interest. All this information is used to estab-
lish a model that, in a second step, can be used to predict
the concentration of the same species in unknown sample
mixtures. An artificial neural network (typically, a multi-
layer perceptron) may be used to build the model, training
it with the experimental data (or with data elaborated with
it) during the model-construction step, also know as the cal-
ibration step. Once trained, it can be used to predict values.
Obviously, the goal is to obtain an algorithm able to provide
the concentration of the species of interest with an error as
low as possible.

Owing to the large amount of data available, the calibra-
tion step (in which the optimum model is looked for) may
take a long time and can be tedious if manual techniques
(trial-and-error) are used. This is especially relevant when
iterative algorithms are involved. The present paper deals
with the automation of that work. We will present different
approaches to the calibration problem, including the use of
parallel Estimation of Distribution Algorithms implemented
in low-cost parallel computers.

When dealing with this type of problems, that is, datasets
where each sample contains thousands of variables, an im-
portant stage must be usually completed: a reduction of the
amount of variables, looking for those that have the most
relevant information. Several approaches can be used for
this size reduction: Feature Construction and Feature Sub-
set Selection (FSS) [1, 2].

Feature Construction techniques look for the relation
among the variables and return a new set of variables, com-
bining the original ones. In contrast, FSS looks for the most
significant variables, returning a subset of the original group
of variables.

In FSS, two main different approaches must be men-
tioned: filter and wrapper. In the filter approach, variables
are selected taking into account some intrinsic properties of
the dataset. However, the wrapper approach considers the
final objective of the selected variables; for instance, in a
classification problem, the wrapper approach evaluates each
subset of variables by means of the accuracy of the classifier
that is built with this subset of variables.

In the search of a simple solution for the problem,
two techniques were studied initially: Principal Compo-
nent Analysis (PCA) and Filter. As the obtained solutions
were not satisfactory, a more complex solution was applied,



combining filter and wrapper techniques in two consecutive
steps. In the first step, filtering was completed while in the
second step (wrapper), we used parallel Estimation of Dis-
tribution Algorithms. Among the different solutions (filter
and/or wrapper) that have been presented in the last years,
we decided to use parallel Estimation of Distribution Algo-
rithms because of their promising results in previous works
in the FSS area [3, 4], although we are conscious that other
efficient approaches exist [5].

Additionally, as this type of algorithms (EDAs) require
long computation times, we present a parallel implementa-
tion that makes possible the application of EDAs to prob-
lems that were unapproachable when using a single com-
puter.

This paper is organized as follows: Section 2 begins with
a description of the problem and afterwards the initial ap-
proaches are explained (Principal Components Analysis and
Filter technique). An introduction to EDAs as well as a
parallel EDA are introduced in Section 3. Section 4 sum-
marizes the results obtained with the different techniques:
PCA, Filter and parallel EDA. In Section 5 a parallel multi-
objective proposal is presented based on the parallel algo-
rithm designed previously. Finally, a summary and some
ideas for future work are exposed in Section 6.

2 Initial approaches

In this section we present a detailed description of the prob-
lem that we faced, as well as the initial ways we tackled
it.

2.1 Problem definition

The particular problem used throughout this paper corre-
sponds to a chemical reaction which involves a mixture
of three species, whose concentration we want to predict:
formaldehyde, glioxal and glutaral. For the calibration
phase we have used 181 samples. The variables that rep-
resent a sample contain measurements of light absorption
for a range of wavelengths, sampled over a time interval.
Organization of the sample vector is as follows: it is a se-
ries of 61 consecutive blocks, each one corresponding to a
time interval (from 2 to 602 with a time step of 10 seconds).
In each block, 91 values represent light absorption measure-
ments for a range of wavelengths (from 290 to 470 nm, with
a step of 2 nm). So, the input dataset comprises 181 cases
each described by 5551 features (all of them are continu-
ous values) and 3 target variables (those to be predicted).
The concentration of the three target variables in the train-
ing dataset are normalized to values in the range [0,1]; the
values that the obtained models predict will be in the same
range.

As we stated before, our goal is to predict automatically
these values using techniques of data mining. Particularly,
we have used an Artificial Neural Network (ANN) [6]. Es-
sentially, an ANN can be defined as a pool of simple pro-
cessing units (nodes) that work together sending informa-
tion among them. Each unit stores the information that re-
ceives and produces an output that depends on an internal

function.

From the several approaches of ANNs described in
the literature, we used the so-called multilayer perceptron
(MLP) model [7]. In this model, nodes are organized in
layers: an input layer, an output layer and several interme-
diate (hidden) layers, being communication possible only
between adjacent ones. Once the structure has been defined
(number of layers and nodes per layer), the final step re-
quires to adjust the weights of the network, so that it pro-
duces the desired output when confronted with a particular
input. This process is known as training. As occurs with the
structure, different proposals have been presented to com-
plete this training. Among them, we selected a classic ap-
proach called Backpropagation [8].

Now that the prediction algorithm has been selected, we
need to consider the way it is used. The problem has more
than five thousand variables, so to feed directly the neural
network with all these values could be an initial approxima-
tion. However, the results obtained this way are far from
good: using so much variables as input makes difficult to
the MLP to distinguish the really relevant ones (too much
“noise”).

Therefore, the model we present has two modules. The
first one, selection, takes as input all the dataset and reduces
it considering only the most relevant variables or principal
components (depending on the approach); and the second
one, the utilization of a MLP which takes as input the vari-
ables selected by the first step and returns the values for the
variables to be predicted.

Due to the small number of cases in the dataset, we have
chosen to complete a 5-fold cross validation to measure the
accuracy of the model. In this technique (k-fold cross val-
idation), the dataset is randomly divided in k pieces, using
k — 1 of them to train the model and one to test its good-
ness. The process is repeated k times, varying the piece used
to complete the test and therefore, the training. As fitness
value, a global error value is given, defined as the average
of the square difference between the predicted value and the
real value for each variable. Furthermore, as training a MLP
is not a deterministic process, we need to repeat all the pro-
cess several times; we fixed this value to 10 due to the small
deviation observed among the experiments.

In the following sections we explain how PCA and a fil-
tering technique are used to reduce the number of variables,
obtaining a subset with the most significant ones.

2.2 PCA approach

The initial approach to the problem was to use PCA to ex-
tract the main characteristics of the dataset, and then, train
the MLP to build the prediction module. PCA involves a
mathematical procedure that transforms a number of (pos-
sibly) correlated variables into a (smaller) number of uncor-
related variables called principal components.

Once a dataset with the principal components is avail-
able, we can test different MLP structural configurations in
order to select the best one. We do that using a brute-force
approach: testing a large range of possibilities for the in-
put and hidden layers of the MLP. Obviously, we need to
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Figure 1: Average square error for different MLP configu-
rations and PCA features

put a limit to this trial-and-error process, due to the huge
number of possible configurations for the MLP. In partic-
ular, we have decided to fix the number of layers to three:
input, hidden and output layer. Configuration of the output
layer is fixed: 3 nodes, because we are calibrating 3 vari-
ables. So, we need to determine the configurations for the
input and hidden layers.

The number of nodes of the input layer depends on
how many principal components (or how many features)
we want to incorporate in our model. A priori, we do not
know how many of them are really useful. Also, we do not
know the optimum configuration of the hidden layer. For
this reason, being this an initial approach, we have tested
configurations with 5 to 50 principal components, and 5 to
50 intermediate nodes. Obtained results are plotted in an
error map (Fig. 1) where each map point (x,y) represents
the average square error for a configuration with  hidden
nodes and y input nodes.

As can be seen in the map, configurations with too few
(less than 15) or too many (more than 27) intermediate
nodes yield large error values. Regarding the number of
components, we need more than 7 principal components to
achieve a good MLP configuration. The best model, i.e.,
the one with the minimum error for this approach can be
consulted in table 1.

2.3 Filter approach

In the literature, several methods and proposals have been
described to complete filter approaches. Usually, these tech-
niques complete an univariate evaluation for each variable,
assigning it a value. Once all the variables have been evalu-
ated, we have a sorted list (ranking) based on the relevance
of each variable.

The approximation that we have used in this paper, is
the Correlation-based Feature Selection (CFS), introduced
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Figure 2: Average square error for the filtered subset using
different MLP configurations

in [9]. CFS is a multivariate approach to filter, i.e., it is able
to evaluate the goodness of subsets of variables, returning
as result the set of the most relevant variables (instead of
a ranking with all of them). This method requires all the
data to be discrete, so a previous discretization process was
completed employing one of the most used algorithms, the
so-called Entropy or Fayyad-Irani method [10].

The filtering process obtained a subset of 31 relevant
variables, which fixes the configuration of the input layer
of the MLP. As we did for the PCA method, we tested 50
different configurations for the intermediate layer, varying
the number of nodes from 5 to 50. Obtained error values
are plotted in Fig. 2. It can be seen that, in general terms,
the more nodes are used in the hidden layer, the worse re-
sults are obtained. This second approach, see table 1, out-
performs the results obtained with the previous approach
(PCA), but it still seems not enough satisfactory for the
chemists.

In order to further reduce the prediction error of the ob-
tained models, we tested a more complex approximation:
filter+wrapper, based on ranking techniques and parallel
EDAs.

3 Estimation of Distribution Algorithms and
parallel approaches

EDAs were introduced in [11], although similar approaches
can be found in [12]. The structure of EDAs is similar to
Genetic Algorithms (GAs) but, instead of using crossover
or mutation operators to obtain the new population, they
sample this population from a probability distribution. This
probability distribution is estimated from the database that
contains a selection of the individuals of the previous pop-
ulation. Thus, the interrelations between the different vari-
ables that represent the individuals are explicitly expressed
through the joint probability distribution associated with the
individuals selected at each generation. A common schema
for all EDAS can be given as:

1. Generate the first population of M individuals and
evaluate each of them. Usually, this generation is
made assuming a uniform distribution on each vari-



able.

2. N individuals are selected from the set of M, follow-
ing a given selection method.

3. An n-dimensional probability model that shows the
interdependencies among the variables is induced
from the N individuals selected, where n is the size
of the individual.

4. Finally, a new population of M individuals is gener-
ated based on the sampling of the probability distri-
bution learnt in the previous step.

Steps 2, 3 and 4 are repeated until some stop criterion
is met (e.g., a maximum number of generations, a homoge-
neous population or no improvement after a certain number
of generations).

The most important step is the third one: the way the
dependencies between variables are learnt. We can classify
EDAs in three families: (1) those where all the variables are
considered independent, (2) those that only consider depen-
dencies between pairs of variables and (3) those that con-
sider multiple dependencies between the variables. Detailed
information about the different approaches that constitute
the family of EDAs and its characteristics can be obtained

n [13] and [14].

Our interest on EDAs for FSS is motivated by results
obtained in previous works [3, 4]. However, these works
reported the problematic of applying multivariate EDAs
(for example, Estimation of Bayesian Networks Algorithms
(EBNAs)) on problems with more than a few hundred of
variables due to the computational cost.

Therefore, we want to accelerate this kind of algorithms,
designing a parallel approach for one of them (EBN Apjc
algorithm [15, 16]). In the following sections, a description
of the algorithm as well as the parallelization schemas are
presented.

3.1 Description of the sequential algorithm

The learning phase of EBN Agj¢ involves the learning of
a Bayesian network from the selected individuals at each
generation, that is, learning the structure (the graph S) and
the parameters (the local probability distributions 8).

There is also another common phase for all EDAs, “sam-
pling and evaluation”, that can require high computation
times when the fitness function for each individuals is com-
plex (as is our case). An easy parallel approach to do this is
to evaluate separately a subset of individuals in each node
(CPU).

Therefore, in the following section, we focus only on the
learning phase, presenting its parallel approach after intro-
ducing it.

3.1.1 The learning phase

Once the population is selected, a Bayesian network is
learnt from it. In EBNA, a greedy approach is used to learn
the structure of the Bayesian network. Each possible net-
work structure will be assigned a score that represents its

goodness for the current population. The search will be
done adding or deleting edges to the existing Bayesian net-
work when this addition or deletion implies a better score.

Obviously, the score used during this process plays an
important role in the algorithm, as it conditions the obtained
Bayesian network. EBNA ¢ uses the penalized maximum
likelihood score denoted by BIC' (Bayesian Information
Criterion) [17]. Given a structure S and a dataset D (set
of selected individuals), the BIC score can be defined as:

n qi Ti
BIC(S,D) ZZZN”klog N (1)
i=1 j=1 k=1
1 n
—3 log(N) ;Qi(ri —1)
where:

e 71 is the number of variables of the Bayesian network
(size of the individual).

e r; is the number of different values that variable X;
can take.

e g; is the number of different values that the parent
variables of X; (those from which an arc exists to-
wards X;), Pa;, can take.

e N;; is the number of individuals in D in which vari-
ables Pa; take their 5" value.

® N;jj, is the number of individuals in D in which vari-
able X; takes its k" value and variables Pa; take
their j** value.

An important property of this score is that it is decom-
posable. This means that the score can be calculated as the
sum of the separate local BIC scores for the variables, that
is, each variable X; has a local BIC score (BIC(i,S, D))
associated to it:

BIC(S,D) =Y _ BIC(i,S, D) 2)
i=1
where
BIC(i,S,D) N;ixlo
121; ik g N (N)gi(ri—

3
At each step, an exhaustive search is made through the
whole set of possible arc modifications. An arc modifica-
tion consists of adding or deleting an arc from the current
structure S. The modification that maximizes the gain of
the BIC score is used to update S, as long as it results in
a DAG structure. This cycle continues until there is no arc
modification that improves the score. It is important to bear
in mind that if we update S with the arc modification (j, 7),
then only BIC(i, S, D) needs to be recalculated to update
the global score.
The previous structural learning algorithm involves a se-
quence of actions that differs between the first step and all



Learning algorithm. Sequential version.

Input: D, S, paths
Step 1. fori=1,...
Step2. fori=1,...,nandj=1,...,n G[},i] =0
Step3. fori=1,...,nandj=1,...,n
if (i # j) calculate G[j, 4] /* the change of the BIC
produced by the arc modification (7, ) */
Step 4. find (4, ¢) such that paths[i, j] = 0 and G[4,4] > G|, s]
foreach r,s = 1,...,n such that paths[s,r] = 0
Step 5. if G[4,7] > 0
update S with arc modification (j, ¢)
update paths
else stop
Step 6. fork =1,...,n
if (k # i and k # j) calculate G[k, i]
Step 7. go to Step 4

,n calculate BIC[i]

Figure 3: Pseudocode for the sequential structural learning
algorithm.

subsequent steps. In the first step, given a structure S and
a dataset D, the change in the BIC score is calculated for
each possible arc modification. Thus, we have to calculate
n(n — 1) terms, as there are n(n — 1) possible arc modi-
fications. The arc modification that maximizes the gain of
the BIC score, whilst maintaining the DAG structure, is ap-
plied to S. In the remaining steps, only changes to the BIC
score due to arc modifications related to the variable X; (it
is assumed that in the previous step, S was updated with
the arc modification (j,4)) need to be considered. Other arc
modifications have not changed its value because of the de-
composable property of the score. In this case, the number
of terms to be calculated is n — 2.

The following data structures are used to implement the
algorithm:

e A vector BIC[i], i = 1,2,...,n, where BICi]
stores the local BIC score of the current structure as-
sociated with variable X;.

e Astructure S[¢], i = 1,2,...,n, with the DAG repre-
sented as adjacency lists, that is, S[é] represents a list
of the immediate successors of vertex X;.

e A n x n matrix G[j,4], j,i = 1,...,n, where each
(J,1) entry represents the gain or loss in score associ-
ated with the arc modification (7, 7).

e A matrix paths[i,j], i,5 = 1,2...,n, of dimension
n X n that represents the number of paths between
each pair of vertices (variables). This data structure is
used to check if an arc modification produces a DAG
structure. For instance, it is possible to add the arc
(4,19) to the structure if the number of paths between
i and j is equal to 0, that is, pathsli, j] = 0.

The pseudocode for the sequential structure learning al-
gorithm is shown in Fig. 3.

3.1.2 Parallelization of the learning phase

We have chosen a well-known design pattern for parallel
programming: the master-worker paradigm. The master
runs the sequential parts and when it reaches the costly
phase, it distributes parts of its workload among a collec-
tion of workers. Then, it collects and summarizes the par-
tial results, and continues normal operation. Sometimes,
depending on the characteristics of the work that must be
completed, it is interesting to design the master in such a
way that it can make use of the idle time. While waiting for
the workers to finish, the master completes part of the work
just as another worker. This approach is particularly useful
in small-scale parallel computers.

This paradigm can be easily implemented using threads
inside a computer (common data structures are used to com-
municate master with workers, the usual primitives are used
to synchronize the system) or message passing between pro-
cesses in the same or in different computers (message pass-
ing combine information exchange with synchronization).
We have chosen to use two widely-known programming in-
terfaces for the implementation: POSIX threads [18] and
Message Passing Interface (MPI) [19]. The selected pro-
gramming language has been C++.

Related to the algorithm, we have explained before that
the learning phase (creation of the Bayesian network) is a
greedy process where each network will be measured using
the BIC criterion. This criterion is decomposable, so each
worker (master included) will compute a subset of variables
returning the results to the master, which then actualizes
the structure of the Bayesian network applying the arc addi-
tion/deletion that improves the score the most. This process
is repeated until the best structure is obtained.

From the point of view of implementation, the issue of
data consistency is of major importance. It must be taken
into account that each worker could be in a different ma-
chine (MPI implementation), so data structures must be sent
and updated in each node that takes part in the execution.
There are different ways to provide this information to the
workers. An option is to send all the structure each time the
Bayesian network changes; another is to send only the arc
that has been modified indicating when it has been deleted
or added. After some tests we have adopted the second op-
tion. Other structures also need to be actualized after each
master’s modification.

With regard to the execution schema, once initialization
has been completed, workers wait for an job request. Two
different types of job requests can be received: (1) to com-
pute the initial BIC scores for their respective set of vari-
ables -each worker receives a chunk of variables to work
with- and (2) to update the BIC scores and maintain the in-
tegrity of the local structures -each node addition or deletion
means that the master must notify the workers that the (4, )
edge has changed and they must update their own copy of
the network as well as BIC scores-.

The previous description assumes the use of MPI. How-
ever, the user can request the use of several threads inside
each MPI process. If this is the case, the specified number
of worker threads are pre-forked when the process starts.



Learning algorithm. Parallel version. Master.

Input: D, S, paths
Step 1. send D to the workers
set the number of variables (/N Set) to work with
Step 2. send “calculate BIC” order to the workers
Step 3. receive BIC results from workers
Step4. fori=1,...,nandj=1,...,n G[4,i] =0
Step 5. fori =1,...,n
send ¢, BIC[i] to the workers
calculate the structures that fit the DAG property
set the number of variables (N SetD AG) to work with
send “calculate G[k, %" order to the workers
send to the workers the set of variables (N SetDAG)
Step 6. receive from workers all the changes and update G
Step 7. find (4,%) such that paths[i, j] = 0 and G[4,%] > G|r, 5]
foreach r, s = 1,...,n such that paths[s,r] = 0
Step 8. if G[4,7] > 0
update S with arc modification (3, %)
update paths
send “change arc (7, ¢) order” to the workers
else send workers “stop order” and stop
Step 9. calculate the structures that fit the DAG property
set the number of variables (N SetD AG) to work with
send to the workers “calculate G[k, ] for (3,5)” order
send to the workers the set of variables (N SetDAG)
Step 10.receive from workers all the changes and update G
Step 11.go to Step 7

Figure 4: Parallel structural learning phase. Pseudocode for
the master.

When a worker receives the request to perform a BIC com-
putation for a chunk of variables, it can distribute this work-
load among its set of threads. As we can see, an MPI-worker
behaves as a master for its set of worker threads. The whole
schema can be seen as a two-level parallelization, where
communication between computers is carried out using MPI
and communication inside each computer is either via MPI
or using a collection of variables shared by a set of threads.

Fig. 4 (master) and Fig. 5 (workers) show the pseu-
docode for master and workers.

3.2 Adapting the algorithm for species prediction in a
chemical reaction

In order to adapt the algorithm to the particular problem we
are dealing with, the following choices are introduced:

e Individual representation: each variable of the indi-
vidual can take one of two values: 0 or 1. 1 implies
that the input variable (of the dataset) associated to
this variable (of the individual) has been selected. A 0
means that the variable will not take part of the model.

e Fitness function: in order to check the goodness of an
individual, a MLP training-evaluation process must
be completed using as input the set of selected vari-
ables from the dataset. As explained before, the aver-
age square error is the fitness value for each individ-
ual. The smaller the error, the better the individual.

A typical configuration for EDAs is to set a population
size equal or bigger than the size of the individual. For this

Learning algorithm. Parallel version. Workers.

Step 1. create and initialize S local structure
receive D
define the set of variables (/V Set) to work with
Step 2. wait for an order
Step 3. case order of
“calculate BIC”
for each variable 7 in N Set calculate BIC|¢]
send to the master BIC results
“calculate G[k,i]”
receive the set of variables (N SetDAG) to work with
for each variable k in NSetDAG
calculate G[k, i]
send G modifications to the master
“calculate G[k, 1] for (¢,7)”
receive the set of variables (N SetDAG) to work with
for each variable k in NSetDAG
calculate G[k, ¢]
send G modifications to the master
“change arc (j,¢)”
Update S with (j,2) arc modification
“stop” stop
Step 4. go to Step 2

Figure 5: Parallel structural learning phase: Pseudocode for
the workers.

particular problem, having an individual of more than five
thousand variables implies that, each time a new population
is created, more than five thousand individuals should be
evaluated (executing MLP with a 5-fold cross validation).
Unfortunately, this approach is excessive even for the paral-
lel approach.

Therefore, a previous filtering technique was applied
in order to reduce the number of variables in which the
smart search will be performed. To complete this process,
6x3 different rankings were created combining six metrics
(Mutual Information, Euclidean distance, Matusita metric,
Kullback-Leibler mode 1, Kullback-Leibler mode 2, and
Bhattacharyya metric (described in [20])) with each of the
three variables to be predicted: formaldehyde, glioxal and
glutaral.

Finally, a unique sorted list was created using a consen-
sus of the previous lists.

To complete the experiments, an individual size of 500
was fixed, that is, the first 500 variables of the ranking were
selected. As happened with the previous approaches, once
the size of the initial layer is set, the number of nodes of
the hidden one must be selected. For this algorithm, due to
its computational demand, it would be unavailable to per-
form an exhaustive trial-and-error approximation and there-
fore we decided to fix the number of intermediate nodes to
16; this number produces reasonable results with the two
previous approaches (bests configurations between 15 and
30 for PCA and between 5 and 15 for Filter). Logically, this
approximation is presented as an initial test to study the util-
ity of this algorithm to solve this kind of problems: further
experimentation will use a wider range of options.



Table 1: Minimum error for each initial approach

#input  # hidden Error  Deviation

PCA 41 20 13.958¢ % 1.786e

Filter 31 7 12.811e™3 2.227e73
EBNABgic 60 16  7.407e¢3 1.180e3

Table 2: Average square error for each variable to predict

formaldehyde glioxal glutaral

PCA 6.759¢=%  6.273e=%  28.785¢73

Filter 4.065¢7%  4.697¢=%  29.824e73
EBNABic 1.241e=2  3.932¢73  17.246e3

4 Experiments results

All the experiments were completed in a linux cluster of 11
nodes, where each node has two AMD Athlon MP 2000+
processors (1.6GHz).

In table 1 the best results for the three approaches are
presented. Related to the execution times:

e PCA needs 6 hours (1 CPU) to obtain the principal
components and 1 hour (22 CPUs) to evaluate the dif-
ferent PCA/MLP configurations.

¢ Filter employs 1 hour and a half (1 CPU) to extract the
most relevant variables and less than 5 minutes (22
CPUs) to complete the MLP training and evaluation.

e For EDAs: 4 hours (1 CPU) to complete the ranking
and 11 hours (22 CPUs) for each EBN Apgj¢ execu-
tion (using a population of 500 individuals).

AS expected, it can be seen that the most promising re-
sults are those obtained by the EBN A ¢ approximation.
However, after analyzing the results individually for each
variable to be predicted, we noticed that an acceptable av-
erage error was hiding not good enough results for the third
variable (see result in table 2).

Therefore, it may happen that the optimal solution in
terms of average error is not the best solution for the
chemists because of the unbalanced results in the three vari-
ables. In this situation, we considered reasonable to deal
with the problem as a multi-objective one in order to present
a set with the optimal solutions. This new approximation re-
quires the use of multi-objective techniques, modifying the
present EBN Appc parallel algorithm.

5 Solution using Multi-objective and Parallel
EDAs

For many problems, in which several objectives must be ac-
complished, is sometimes difficult to describe a single fit-
ness function that combines these objectives in a balanced
way. Getting better values for one objective may worsen the
values for the others. In this case, an alternative approach
is to generate a set of non-dominated solutions (known as
Pareto-optimal solutions), none of one better than the oth-
ers. Only the final user can choose between them.
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Figure 6: Some non-dominated solutions obtained by the
parallel multi-objective EBN Apgr¢ algorithm

From the set of different approaches presented in the lit-
erature to solve multi-objective algorithms we have selected
the NSGA-II algorithm, introduced by [21], adapting its
functionality to our EBN A gy algorithm. In the following
lines, the changes done in our algorithm are explained:

e Each individual has different fitness functions (one
for each objective) and these values must be stored.
For this problem, the average square error for each
variable will be stored.

e Selecting the new population requires a process that
sorts the individuals of the old and present popula-
tions based on a non-domination criterion.

From the point of view of parallelization, none of this
changes have big influence. Only the manager must be
changed in order to use the new population-selecting pro-
cess.

After completing the experiments (the same steps as for
the previous non multi-objective version), different non-
dominated solutions have been obtained. In Fig. 6 some
of them are presented. For example, the solutions with
the minor error for each variable (formaldehyde, glioxal
and glutaral) are presented in solutions B, E and A respec-
tively. As expected, prediction error for glutaral is still the
largest. Solution B presents the best obtained error for it
(16.063e~3), although at the expense of yielding worse er-
rors for formaldehyde and glioxal.

6 Conclusions and future work

This paper presents some promising approaches to predict
concentration values for a chemical reaction. As initial
approaches, PCA and Filtering were used but due to its
poor results, in a second phase a filter technique was com-
bined with a wrapper approach based on Evolutionary Al-
gorithms.

Moreover, a parallel approach has been presented for a
particular EDA that allows the use of this type of algorithms
in problems when the sequential solution is useless.



Related to the problem, promising results have been ob-
tained using parallel EDA algorithms, and this encourages
us to study more deeply the use of this algorithms in prob-
lems of medium-big size (thanks to the parallel approach).

Particularly for the problem, there is an aspect that could
be improved: what is the best configuration for the struc-
ture of the MLP?. We have solved it using the results of the
previous approaches, but there are more interesting approx-
imations as the use of GAs [22] or EDAs [23] to search the
weights that make the network perform better.
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