
Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 1

Hill-Climbing Algorithm:
let’s go for a walk before finding the optimum

Leticia Hernando, Alexander Mendiburu and Jose A. Lozano

Intelligent Systems Group
University of the Basque Country UPV/EHU, Spain

July, 11th 2018
2018 IEEE Congress on Evolutionary Computation

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 2

Objectives

Analysis of the solutions found in the attraction basins:
distance to the local optimum vs. number of steps of the
algorithm.

The paths defined by a hill-climbing algorithm do not
monotonically reduce the distance to the local optimum.

Visual examples of the paths built by the algorithm.

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 2

Objectives

Analysis of the solutions found in the attraction basins:
distance to the local optimum vs. number of steps of the
algorithm.

The paths defined by a hill-climbing algorithm do not
monotonically reduce the distance to the local optimum.

Visual examples of the paths built by the algorithm.

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 2

Objectives

Analysis of the solutions found in the attraction basins:
distance to the local optimum vs. number of steps of the
algorithm.

The paths defined by a hill-climbing algorithm do not
monotonically reduce the distance to the local optimum.

Visual examples of the paths built by the algorithm.

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 3

Outline

1 Introduction

2 Results

3 Visualization

4 Conclusions

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 4

Introduction

Outline

1 Introduction

2 Results

3 Visualization

4 Conclusions

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 5

Introduction

Combinatorial Optimization Problem

Definition
A Combinatorial Optimization Problem consists of finding the
points σ∗ that minimize or maximize a function f :

σ∗ = arg min
σ∈Ω

f (σ)

where Ω is a finite or countable infinite set

Permutation-based COP
A COP where Ω is the space of permutations of size n

Permutation Flowshop Scheduling Problem
Quadratic Assignment Problem
Linear Ordering Problem

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 5

Introduction

Combinatorial Optimization Problem

Definition
A Combinatorial Optimization Problem consists of finding the
points σ∗ that minimize or maximize a function f :

σ∗ = arg min
σ∈Ω

f (σ)

where Ω is a finite or countable infinite set

Permutation-based COP
A COP where Ω is the space of permutations of size n

Permutation Flowshop Scheduling Problem
Quadratic Assignment Problem
Linear Ordering Problem

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 5

Introduction

Combinatorial Optimization Problem

Definition
A Combinatorial Optimization Problem consists of finding the
points σ∗ that minimize or maximize a function f :

σ∗ = arg min
σ∈Ω

f (σ)

where Ω is a finite or countable infinite set

Permutation-based COP
A COP where Ω is the space of permutations of size n

Permutation Flowshop Scheduling Problem
Quadratic Assignment Problem
Linear Ordering Problem

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 6

Introduction

Combinatorial Optimization Problem

Definition
A Combinatorial Optimization Problem consists of finding the
points σ∗ that minimize or maximize a function f :

σ∗ = arg min
σ∈Ω

f (σ)

where Ω is a finite or countable infinite set

Permutation-based COP
A COP where Ω is the space of permutations of size n

Permutation Flowshop Scheduling Problem
Quadratic Assignment Problem
Linear Ordering Problem

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 7

Introduction

Permutation Flowshop Scheduling Problem

n jobs
m machines
Each job consists of m operations

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 7

Introduction

Permutation Flowshop Scheduling Problem

n jobs
m machines
Each job consists of m operations

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 7

Introduction

Permutation Flowshop Scheduling Problem

n jobs
m machines
Each job consists of m operations

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 7

Introduction

Permutation Flowshop Scheduling Problem

n jobs
m machines
Each job consists of m operations

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 8

Introduction

Permutation Flowshop Scheduling Problem

1M1

M2

M3

2 3 4 5

1 2 3 4 5

2 3 4 51

flow time 1

flow time 2

flow time 3

flow time 4

flow time 5

Total Flow Time = FT1 + FT2 + FT3 + FT4 + FT5
minimize TFT

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 9

Introduction

Neighborhood

A neighborhood N in a search space Ω is a mapping that
assigns a set of neighboring solutions N(σ) ∈ P(Ω) to each
solution σ ∈ Ω:

N : Ω −→ P(Ω)
σ 7−→ N(σ)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 10

Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

(4231) (1234) (1324)

(1432) (1243)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 10

Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

(4231) (1234) (1324)

(1432) (1243)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 10

Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

(4231) (1234) (1324)

(1432) (1243)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 10

Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

(4231) (1234) (1324)

(1432) (1243)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 10

Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

(4231) (1234) (1324)

(1432) (1243)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 10

Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

(4231) (1234) (1324)

(1432) (1243)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 10

Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

(4231) (1234) (1324)

(1432) (1243)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 10

Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

(4231) (1234) (1324)

(1432) (1243)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 11

Introduction

Neighborhoods. Examples

Insert
Move an item to a different position

(2134) (2314) (2341)
(1342)

(1324) (1234)
(3124)

(1243) (4123) (1423)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 11

Introduction

Neighborhoods. Examples

Insert
Move an item to a different position

(2134) (2314) (2341)
(1342)

(1324) (1234)
(3124)

(1243) (4123) (1423)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 11

Introduction

Neighborhoods. Examples

Insert
Move an item to a different position

(2134) (2314) (2341)
(1342)

(1324) (1234)
(3124)

(1243) (4123) (1423)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 11

Introduction

Neighborhoods. Examples

Insert
Move an item to a different position

(2134) (2314) (2341)
(1342)

(1324) (1234)
(3124)

(1243) (4123) (1423)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 11

Introduction

Neighborhoods. Examples

Insert
Move an item to a different position

(2134) (2314) (2341)
(1342)

(1324) (1234)
(3124)

(1243) (4123) (1423)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 11

Introduction

Neighborhoods. Examples

Insert
Move an item to a different position

(2134) (2314) (2341)
(1342)

(1324) (1234)
(3124)

(1243) (4123) (1423)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 11

Introduction

Neighborhoods. Examples

Insert
Move an item to a different position

(2134) (2314) (2341)
(1342)

(1324) (1234)
(3124)

(1243) (4123) (1423)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 11

Introduction

Neighborhoods. Examples

Insert
Move an item to a different position

(2134) (2314) (2341)
(1342)

(1324) (1234)
(3124)

(1243) (4123) (1423)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 11

Introduction

Neighborhoods. Examples

Insert
Move an item to a different position

(2134) (2314) (2341)
(1342)

(1324) (1234)
(3124)

(1243) (4123) (1423)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 11

Introduction

Neighborhoods. Examples

Insert
Move an item to a different position

(2134) (2314) (2341)
(1342)

(1324) (1234)
(3124)

(1243) (4123) (1423)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 11

Introduction

Neighborhoods. Examples

Insert
Move an item to a different position

(2134) (2314) (2341)
(1342)

(1324) (1234)
(3124)

(1243) (4123) (1423)

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 12

Introduction

Distance

σ1 and σ2 are at distance i if, starting from σ1, and moving
from neighboring to neighboring solutions, the length of the
shortest path to reach σ2 is i .

Two neighboring permutations are at distance one.

Under the 2-exchange and the insert neighborhoods the
maximum distance between two permutations is n − 1.

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 12

Introduction

Distance

σ1 and σ2 are at distance i if, starting from σ1, and moving
from neighboring to neighboring solutions, the length of the
shortest path to reach σ2 is i .

Two neighboring permutations are at distance one.

Under the 2-exchange and the insert neighborhoods the
maximum distance between two permutations is n − 1.

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 12

Introduction

Distance

σ1 and σ2 are at distance i if, starting from σ1, and moving
from neighboring to neighboring solutions, the length of the
shortest path to reach σ2 is i .

Two neighboring permutations are at distance one.

Under the 2-exchange and the insert neighborhoods the
maximum distance between two permutations is n − 1.

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 13

Introduction

Local Optima

A solution σ∗ ∈ Ω is a local optimum if

f (σ∗) ≤ f (σ), ∀σ ∈ N(σ∗) (local minimum)

12345

21345

13245

12435
12354

f

()

()

()

()
()

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 14

Introduction

Attraction basins of local optima

The attraction basin of a local optimum σ∗:

Bσ∗ = {σ ∈ Ω| H(σ) = σ∗},

where H is the operator that associates to each solution σ, the
local optimum obtained after applying the algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 15

Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 16

Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 17

Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 18

Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 19

Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 20

Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 21

Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 22

Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 23

Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 24

Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 25

Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 26

Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 27

Introduction

Deterministic best-improvement local search
algorithm

Choose an initial solution σ ∈ Ω
repeat
σ∗ = σ
for each σ′i ∈ N (σ∗) do

if f (σ′i) < f (σ) then
σ = σ′i

end if
end for

until σ = σ∗

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 28

Introduction

Deterministic best-improvement local search
algorithm

Choose an initial solution σ ∈ Ω
repeat
σ∗ = σ
for each σ′i ∈ N (σ∗) do

if f (σ′i) < f (σ) then
σ = σ′i

end if
end for

until σ = σ∗

The attraction basins are sets of
paths!

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 29

Results

Outline

1 Introduction

2 Results

3 Visualization

4 Conclusions

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 30

Results

Experimental Design

9 PFSP instances of Taillard’s benchmark.

10 jobs and 5 machines (n=10).

The local optima and the attraction basins are calculated
considering the 2-exchange and the insert neighborhoods.

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 30

Results

Experimental Design

9 PFSP instances of Taillard’s benchmark.

10 jobs and 5 machines (n=10).

The local optima and the attraction basins are calculated
considering the 2-exchange and the insert neighborhoods.

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 30

Results

Experimental Design

9 PFSP instances of Taillard’s benchmark.

10 jobs and 5 machines (n=10).

The local optima and the attraction basins are calculated
considering the 2-exchange and the insert neighborhoods.

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 31

Results

No. of local optima and sizes of attraction basins
#

Lo
c.

O
pt inst 1 inst 2 inst 3 inst 4 inst 5 inst 6 inst 7 inst 8 inst 9

2-exch. 225 117 295 11 58 58 158 83 80
insert 43 16 24 3 8 15 31 8 19

0
50

00
00

15
00

00
0

PFSP

Si
ze

 o
f t

he
 a

ttr
ac

tio
n

ba
si

ns

 inst 1 inst 2 inst 3 inst 4 inst 5 inst 6 inst 7 inst 8 inst 9

2−exchange
insert

0e
+0

0
1e

+0
6

2e
+0

6
3e

+0
6

LOP

Si
ze

 o
f t

he
 a

ttr
ac

tio
n

ba
si

ns

 inst 1 inst 2 inst 3 inst 4 inst 5 inst 6 inst 7 inst 8 inst 9

2−exchange
insert

0e
+0

0
4e

+0
5

8e
+0

5

QAP

Si
ze

 o
f t

he
 a

ttr
ac

tio
n

ba
si

ns

 inst 1 inst 2 inst 3 inst 4 inst 5 inst 6 inst 7 inst 8 inst 9

2−exchange
insert

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 32

Results

Distance to local optima vs. number of solutions in
attraction basins

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PFSP

Pr
op

. o
f s

ol
ut

io
ns

 in
 th

e
at

tra
ct

io
n

ba
si

n

 dist 1 dist 2 dist 3 dist 4 dist 5 dist 6 dist 7 dist 8 dist 9

2−exchange
insert

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LOP

Pr
op

. o
f s

ol
ut

io
ns

 in
 th

e
at

tra
ct

io
n

ba
si

n

 dist 1 dist 2 dist 3 dist 4 dist 5 dist 6 dist 7 dist 8 dist 9

2−exchange
insert

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QAP

Pr
op

. o
f s

ol
ut

io
ns

 in
 th

e
at

tra
ct

io
n

ba
si

n

 dist 1 dist 2 dist 3 dist 4 dist 5 dist 6 dist 7 dist 8 dist 9

2−exchange
insert

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 33

Results

Distance to local optima vs. number of steps of the
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 34

Results

Distance to local optima vs. number of steps of the
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 35

Results

Distance to local optima vs. number of steps of the
algorithm

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 36

Visualization

Outline

1 Introduction

2 Results

3 Visualization

4 Conclusions

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 37

Visualization

Visualization of paths: PFSP 2-exchange

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 38

Visualization

Visualization of paths: PFSP insert

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 39

Conclusions

Outline

1 Introduction

2 Results

3 Visualization

4 Conclusions

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 40

Conclusions

Conclusions

The algorithm goes for a walk before finding the optimum!

Future Work

Analysis of larger instances

Use this information to design/modify algorithms

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 40

Conclusions

Conclusions

The algorithm goes for a walk before finding the optimum!

Future Work

Analysis of larger instances

Use this information to design/modify algorithms

Hill-Climbing Algorithm:
let’s go for a walk before finding the optimum

Leticia Hernando, Alexander Mendiburu and Jose A. Lozano

Intelligent Systems Group
University of the Basque Country UPV/EHU, Spain

July, 11th 2018
2018 IEEE Congress on Evolutionary Computation

	Introduction
	Results
	Visualization
	Conclusions

