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Objectives

@ Analysis of the solutions found in the attraction basins:
distance to the local optimum vs. number of steps of the
algorithm.

@ The paths defined by a hill-climbing algorithm do not
monotonically reduce the distance to the local optimum.

@ Visual examples of the paths built by the algorithm.
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Permutation Flowshop Scheduling Problem

n jobs
m machines
Each job consists of m operations
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Permutation Flowshop Scheduling Problem

w @ )

© flow time 1 o :
I , fiow ti|n1ie 2 ,
| . flow time 3 P
I , flow time tll , :
I { flow Itime 5 |

Total Flow Time = FT1 + FT2 + FT3 + FT4 + FT5

minimize TFT UPV-EHU
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Neighborhood

A neighborhood N in a search space Q is a mapping that
assigns a set of neighboring solutions N(c) € P(Q2) to each
solution o € Q:
N: Q — P(Q)
o — N(o)

UPV - EHU



Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

UPV - EHU



Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(1234)

UPV - EHU



Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134)

(1234)

UPV - EHU



Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)
A

UPV - EHU



Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

N\ /

(4231) —— (1234)

UPV - EHU



Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

N\ /
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Distance

@ o4 and o, are at distance i if, starting from o4, and moving
from neighboring to neighboring solutions, the length of the
shortest path to reach o is i.

@ Two neighboring permutations are at distance one.

@ Under the 2-exchange and the insert neighborhoods the
maximum distance between two permutations is n — 1.
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Local Optima

@ A solution o* € Q is a local optimum if
f(c*) < f(o), Yo € N( a*) (local minimum)
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Attraction basins of local optima

The attraction basin of a local optimum o*:
By« = {0 € Q| H(o) ="},

where H is the operator that associates to each solution o, the
local optimum obtained after applying the algorithm
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Deterministic best-improvement local search
algorithm

Choose an initial solution o € Q
repeat
oc*=o0
for each o] € N(o*) do
if f(oj) < (o) then
o=o0j
end if
end for
until 0 = o*
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Introduction

Deterministic best-improvement local search

algorithm

Choose an initial solution o € Q
repeat
oc*=o0
for each o] € N(o*) do
if f(oj) < (o) then
o=o0j
end if
end for
until 0 = o*

The attraction basins are sets of
paths!
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Results

Experimental Design

@ 9 PFSP instances of Taillard’s benchmark.
@ 10 jobs and 5 machines (n=10).

@ The local optima and the attraction basins are calculated
considering the 2-exchange and the insert neighborhoods.
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No. of local optima and sizes of attraction basins
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Results

Distance to local optima vs. number of solutions in
attraction basins
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Conclusions

The algorithm goes for a walk before finding the optimum!

@ Analysis of larger instances

@ Use this information to design/modify algorithms
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