Hill-Climbing Algorithm: let's go for a walk before finding the optimum 1

Hill-Climbing Algorithm:

let’s go for a walk before finding the optimum

Leticia Hernando, Alexander Mendiburu and Jose A. Lozano

Intelligent Systems Group
University of the Basque Country UPV/EHU, Spain

July, 11th 2018
2018 IEEE Congress on Evolutionary Computation

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum

Objectives

@ Analysis of the solutions found in the attraction basins:
distance to the local optimum vs. number of steps of the
algorithm.

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum

Objectives

@ Analysis of the solutions found in the attraction basins:
distance to the local optimum vs. number of steps of the
algorithm.

@ The paths defined by a hill-climbing algorithm do not
monotonically reduce the distance to the local optimum.

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum

Objectives

@ Analysis of the solutions found in the attraction basins:
distance to the local optimum vs. number of steps of the
algorithm.

@ The paths defined by a hill-climbing algorithm do not
monotonically reduce the distance to the local optimum.

@ Visual examples of the paths built by the algorithm.

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum

Outline

@ Introduction

e Results

© Visualization

Q Conclusions

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Outline

Q Introduction

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Combinatorial Optimization Problem

Definition
A Combinatorial Optimization Problem consists of finding the
points ¢* that minimize or maximize a function f:

0" = argmin f(o)

where Q is a finite or countable infinite set

"%

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Combinatorial Optimization Problem

Definition
A Combinatorial Optimization Problem consists of finding the
points ¢* that minimize or maximize a function f:

0" = argmin f(o)

where Q is a finite or countable infinite set

Permutation-based COP

A COP where Q is the space of permutations of size n

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Combinatorial Optimization Problem

Definition
A Combinatorial Optimization Problem consists of finding the
points ¢* that minimize or maximize a function f:

0" = argmin f(o)

where Q is a finite or countable infinite set

Permutation-based COP

A COP where Q is the space of permutations of size n

@ Permutation Flowshop Scheduling Problem
@ Quadratic Assignment Problem 'ﬂ?
@ Linear Ordering Problem ,

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Combinatorial Optimization Problem

Definition
A Combinatorial Optimization Problem consists of finding the
points ¢* that minimize or maximize a function f:

0" = argmin f(o)

where Q is a finite or countable infinite set

Permutation-based COP

A COP where Q is the space of permutations of size n

@ Permutation Flowshop Scheduling Problem
@ Quadratic Assignment Problem ?
@ Linear Ordering Problem ,

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Permutation Flowshop Scheduling Problem

n jobs

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Permutation Flowshop Scheduling Problem

n jobs
m machines

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Permutation Flowshop Scheduling Problem

n jobs
m machines
Each job consists of m operations

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum

Introduction

Permutation Flowshop Scheduling Problem

n jobs
m machines
Each job consists of m operations

M1

- B

C O O
L))
S5

I—¢
(

) @&

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Permutation Flowshop Scheduling Problem

w @)

© flow time 1 o :
I , fiow ti|n1ie 2 ,
| . flow time 3 P
I , flow time tll , :
I { flow Itime 5 |

Total Flow Time = FT1 + FT2 + FT3 + FT4 + FT5

minimize TFT UPV-EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhood

A neighborhood N in a search space Q is a mapping that
assigns a set of neighboring solutions N(c) € P(Q2) to each
solution o € Q:
N: Q — P(Q)
o — N(o)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(1234)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134)

(1234)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)
A

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

N\ /

(4231) —— (1234)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

N\ /

(4231) = (1234) = (1324)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

(4231) = (1234) = (1324)

(1432)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

(4231) = (1234) = (1324)

(1432) (1243)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum

Introduction

Neighborhoods. Examples

Insert

Move an item to a different position

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum

Introduction

Neighborhoods. Examples

Insert

Move an item to a different position

(1234)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum

Introduction

Neighborhoods. Examples

Insert

Move an item to a different position

(2134)

N

(1234)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum

Introduction

Neighborhoods. Examples

Insert

Move an item to a different position

(2134) (2314)

N
(1234)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum

Introduction

Neighborhoods. Examples

Insert

Move an item to a different position
(2134) (2314) (2341)

(1234)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum

Introduction

Neighborhoods. Examples

Insert

Move an item to a different position
(2134) (2314) (2341)

(1324)—— (1234)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum

Introduction

Neighborhoods. Examples

Insert

Move an item to a different position

(2134) <2314>2341)
| 1342)
(1 324)—(1234)/

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum

Introduction

Neighborhoods. Examples

Insert

Move an item to a different position

(2134) (2314) (2341)

NI~ (1342)
/
(1324)—— (1234)
\(3124)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum

Introduction

Neighborhoods. Examples

Insert

Move an item to a different position

(2134) <2314>2341)
| (1342)
(1324)—— (12341

/ —~~ (3124)
(1243)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum

Introduction

Neighborhoods. Examples

Insert

Move an item to a different position

(2134) (2314) (2341)

NI~ (1342)
/
(1324)—— (1234)
\(3124)

(1243)/(4123)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum

Introduction

Neighborhoods. Examples

Insert

Move an item to a different position

(2134) (2314) (2341)

Nl S~ (1342
/
(1324) == (123)\

/ \\ (3124)
(1243)7 (4123) (1423)

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Distance

@ o4 and o, are at distance i if, starting from o4, and moving

from neighboring to neighboring solutions, the length of the

shortest path to reach o is i.

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Distance

@ o4 and o, are at distance i if, starting from o4, and moving
from neighboring to neighboring solutions, the length of the
shortest path to reach o is i.

@ Two neighboring permutations are at distance one.

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Distance

@ o4 and o, are at distance i if, starting from o4, and moving
from neighboring to neighboring solutions, the length of the
shortest path to reach o is i.

@ Two neighboring permutations are at distance one.

@ Under the 2-exchange and the insert neighborhoods the
maximum distance between two permutations is n — 1.

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Local Optima

@ A solution o* € Q is a local optimum if
f(c*) < f(o), Yo € N(a*) (local minimum)

13

(4 13@

(12345

—h

(12435

UPV - EHU

Hill-Climbing Algorithm: let’s go for a walk before finding the optimum
Introduction

Attraction basins of local optima

The attraction basin of a local optimum o*:
By« = {0 € Q| H(o) ="},

where H is the operator that associates to each solution o, the
local optimum obtained after applying the algorithm

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Deterministic best-improvement local search
algorithm

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Deterministic best-improvement local search
algorithm

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Deterministic best-improvement local search
algorithm

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Deterministic best-improvement local search
algorithm

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Deterministic best-improvement local search
algorithm

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Deterministic best-improvement local search
algorithm

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Deterministic best-improvement local search
algorithm

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Deterministic best-improvement local search
algorithm

UUUUUUU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Deterministic best-improvement local search
algorithm

UUUUUUU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Deterministic best-improvement local search
algorithm

UUUUUUU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Introduction

Deterministic best-improvement local search
algorithm

Hill-Climbing Algorithm: let's go for a walk before finding the optimum

Introduction

Deterministic best-improvement local search
algorithm

Choose an initial solution o € Q
repeat
oc*=o0
for each o] € N(o*) do
if f(oj) < (o) then
o=o0j
end if
end for
until 0 = o*

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum

Introduction

Deterministic best-improvement local search

algorithm

Choose an initial solution o € Q
repeat
oc*=o0
for each o] € N(o*) do
if f(oj) < (o) then
o=o0j
end if
end for
until 0 = o*

The attraction basins are sets of
paths!

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Results

Outline

e Results

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Results

Experimental Design

@ 9 PFSP instances of Taillard’s benchmark.

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Results

Experimental Design

@ 9 PFSP instances of Taillard’s benchmark.

@ 10 jobs and 5 machines (n=10).

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Results

Experimental Design

@ 9 PFSP instances of Taillard’s benchmark.
@ 10 jobs and 5 machines (n=10).

@ The local optima and the attraction basins are calculated
considering the 2-exchange and the insert neighborhoods.

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Results

No. of local optima and sizes of attraction basins

g- inst1 inst2 inst3 inst4 inst5 inst6 inst7 inst8 inst9
§ 2-exch. 225 117 295 11 58 58 158 83 80
insert 43 16 24 3 8 15 31 8 19
T
o 1
[2] 1 ' o
c |
K7 B 2-exchange | o
8 § W insert :
[o - o
S B o
46 —
g ° -
g A . N
1
g o ° T| ° I
“— o [N T)
o 8 o ° [: o
.
2 B S l*] | g i o
n e - T |
o) & 1@ ,W o <8 Qm IH 1w
T

T 1 T 1 T 1 T T 1 T 1 T 1 T 1 T 1
inst 1 inst2 inst3 inst4 inst5 inst6 inst7 inst8 inst9

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum

Results

Distance to local optima vs. number of solutions in
attraction basins

o
I °
(2]
©
Qa 8 o B 2-exchange
S « o g B insert
2 ©o
© 8 3 o8
o g o e
ﬁ ©o _| ' lT o © 4
o o f ' °9 °
£ : - O
= ! 8] 2
2 34 b e 2, :
o o | 5 : - og o o ©
5 - 1 o ©
o | : o 88 o ° o o
L] - | ° 8
5 o . ' e ° 8 °8
3 . | ° o °o o
=3 ! ' ' Q o
< o+ 1 ‘ H i
o o _| + 4L i ‘

© T T

T T T 1
dist 1 dist2 dist3 dist4 dist5 dist6 dist7 dist8 dist9

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Results

Distance to local optima vs. number of steps of the
algorithm

o o
o o

£ o o o

£ o o o

5 = 1 o o oo o

o [} o oo o oo

> o o oo o oo - °

£ [) o 00 - T,

5 oo (<] o0 - - . [¢]
o [} 1 |

w 2 - o o oo [¢] o ! b —

o) o oo o o0 ' ! . -—

L] 00 o o0 <] Om .

© o oo o o T J

o oo [o T _.

2 n 4 []]

E H _- B 2-exchange

=] o0 .

= ° _. B insert

—

T T T T T T T T T T 1
dlst1 dist 2 d,sta dlISl4 chstS dist 6 Jist7 Aists dist 9

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Results

Distance to local optima vs. number of steps of the
algorithm

o o
o o

£ o o o o
£ o o o !
- LI o o oo] o oC:
o o o oo o oo /
b o o oo o oo - ° Y
£ [o0 [¢] o0 - - o,
5 [-] o oo - - . (o]

o [} 1 |
w 2 - o o oo [¢] o ! b —
g o oo o o0 ' ! . -—
® 00 o oo <] Om .
k) o oo o o T J
o oo [o T _.
2 n 4 []]
[S H _- B 2-exchange
=] o0 .
= ° _. B insert

—

T T 1 T T T T T T T 1
dlst1 dist 2 d,sta dlISl4 chstS dist 6 Jist7 Aists dist 9

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Results

Distance to local optima vs. number of steps of the
algorithm

o o
o o
£ o o o o
£ () (<] <] [
- LI o o oo]) oC:
o [o] [¢] oo o oo /
> o o oo o oo - ° o
£ o oo o oo - T, o,
5 oo (<] o0 - - ! ' o]
o _| 1 ! 'y
w 2 o o oo o o ! b —
g o oo o o0 ' ! . -—
1Z] o0 o oo o [.
k) o oo o o T J
o) <) [o T _.
2 n 4 o o o. o,
£ H _- B 2-exchange °o——o
= (o] o] 9 2 g
b4 ° _. B insert \ ¢ °
/
—
O,

T T T T T T T T T T T
dist1 dist2 dist3 dist4 dists dist6 dist7 dist8 dist9

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Visualization

Outline

© Visualization

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Visualization

Visualization of paths: PFSP 2-exchange

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Visualization

Visualization of paths: PFSP insert

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Conclusions

Outline

Q Conclusions

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum
Conclusions

Conclusions

The algorithm goes for a walk before finding the optimum!

UPV - EHU

Hill-Climbing Algorithm: let's go for a walk before finding the optimum

Conclusions

Conclusions

The algorithm goes for a walk before finding the optimum!

@ Analysis of larger instances

@ Use this information to design/modify algorithms

UPV - EHU

Hill-Climbing Algorithm:

let’s go for a walk before finding the optimum

Leticia Hernando, Alexander Mendiburu and Jose A. Lozano

Intelligent Systems Group
University of the Basque Country UPV/EHU, Spain

July, 11th 2018
2018 IEEE Congress on Evolutionary Computation

	Introduction
	Results
	Visualization
	Conclusions

