Hill-Climbing Algorithm: let's go for a walk before finding the optimum

Leticia Hernando, Alexander Mendiburu and Jose A. Lozano

Intelligent Systems Group University of the Basque Country UPV/EHU, Spain

July, 11th 2018 2018 IEEE Congress on Evolutionary Computation

(日)

Objectives

- Analysis of the solutions found in the attraction basins: distance to the local optimum vs. number of steps of the algorithm.
- The paths defined by a hill-climbing algorithm do not monotonically reduce the distance to the local optimum.
- Visual examples of the paths built by the algorithm.

(日)

Objectives

- Analysis of the solutions found in the attraction basins: distance to the local optimum vs. number of steps of the algorithm.
- The paths defined by a hill-climbing algorithm do not monotonically reduce the distance to the local optimum.
- Visual examples of the paths built by the algorithm.

A D > A B > A B > A B >

Objectives

- Analysis of the solutions found in the attraction basins: distance to the local optimum vs. number of steps of the algorithm.
- The paths defined by a hill-climbing algorithm do not monotonically reduce the distance to the local optimum.
- Visual examples of the paths built by the algorithm.

A D > A B > A B > A B >

Outline

2 Results

3 Visualization

Definition

A Combinatorial Optimization Problem consists of finding the points σ^* that minimize or maximize a function *f*:

 $\sigma^* = \arg\min_{\sigma \in \Omega} f(\sigma)$

where Ω is a finite or countable infinite set

Permutation-based COP

- Permutation Flowshop Scheduling Problem
- Quadratic Assignment Problem
- Linear Ordering Problem

Definition

A Combinatorial Optimization Problem consists of finding the points σ^* that minimize or maximize a function *f*:

 $\sigma^* = \arg\min_{\sigma \in \Omega} f(\sigma)$

where Ω is a finite or countable infinite set

Permutation-based COP

- Permutation Flowshop Scheduling Problem
- Quadratic Assignment Problem
- Linear Ordering Problem

Definition

A Combinatorial Optimization Problem consists of finding the points σ^* that minimize or maximize a function *f*:

 $\sigma^* = \arg\min_{\sigma \in \Omega} f(\sigma)$

where Ω is a finite or countable infinite set

Permutation-based COP

- Permutation Flowshop Scheduling Problem
- Quadratic Assignment Problem
- Linear Ordering Problem

Definition

A Combinatorial Optimization Problem consists of finding the points σ^* that minimize or maximize a function *f*:

 $\sigma^* = \arg\min_{\sigma \in \Omega} f(\sigma)$

where Ω is a finite or countable infinite set

Permutation-based COP

- Permutation Flowshop Scheduling Problem
- Quadratic Assignment Problem
- Linear Ordering Problem

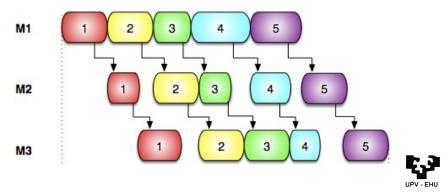
n jobs

m machines Each job consists of *m* operations

n jobs *m* machines Each job consists of *m* operations

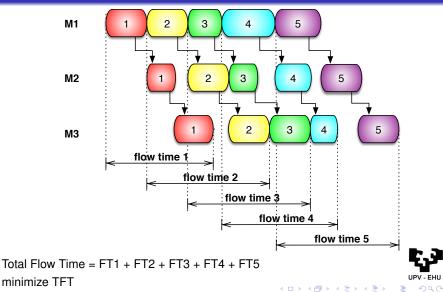
n jobs m machines Each job consists of m operations

n jobs m machines Each job consists of m operations



Introduction

Permutation Flowshop Scheduling Problem



A neighborhood *N* in a search space Ω is a mapping that assigns a set of neighboring solutions $N(\sigma) \in \mathcal{P}(\Omega)$ to each solution $\sigma \in \Omega$:

$$egin{array}{cccc} \mathsf{N}: & \Omega & \longrightarrow & \mathcal{P}(\Omega) \ & \sigma & \longmapsto & \mathsf{N}(\sigma) \end{array}$$

(日)

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214) (4231) (1234) (1324)

(1432) (1243)

2-exchange or Swap

Swap two items, not necessarily adjacent

(4231) (1234) (1324)

(1432) (1243)

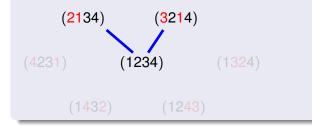
 UPV-EHU ののの ま、く言、く言、くる、へつ、

2-exchange or Swap

Swap two items, not necessarily adjacent

2-exchange or Swap

Swap two items, not necessarily adjacent

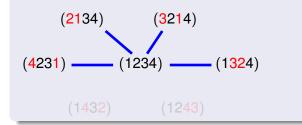


2-exchange or Swap

Swap two items, not necessarily adjacent

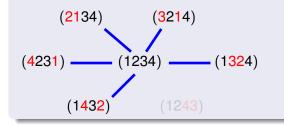
2-exchange or Swap

Swap two items, not necessarily adjacent



2-exchange or Swap

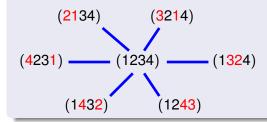
Swap two items, not necessarily adjacent



(日)

2-exchange or Swap

Swap two items, not necessarily adjacent



(日)

Insert

Move an item to a different position

Insert

Insert Move an item to a different position (2134) (2314) (2341) (1324) (1234) (1243) (1423) (1423)

Insert

Insert

Insert

Insert

Insert

Insert

Move an item to a different position

(a)

Insert

Move an item to a different position

(a)

Insert

Move an item to a different position

$$(2134) (2314) (2341) (1342) (1324) (1234) (1234) (3124) (1243) (1423) (1423)$$

<ロ> <圖> <圖> < 国> < 国>

Distance

- σ₁ and σ₂ are at distance *i* if, starting from σ₁, and moving from neighboring to neighboring solutions, the length of the shortest path to reach σ₂ is *i*.
- Two neighboring permutations are at distance one.
- Under the 2-exchange and the insert neighborhoods the maximum distance between two permutations is *n* − 1.

(日)

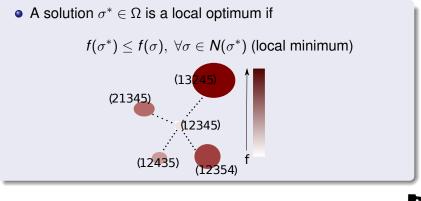
Distance

- σ₁ and σ₂ are at distance *i* if, starting from σ₁, and moving from neighboring to neighboring solutions, the length of the shortest path to reach σ₂ is *i*.
- Two neighboring permutations are at distance one.
- Under the 2-exchange and the insert neighborhoods the maximum distance between two permutations is *n* − 1.

A D > A P > A D > A D >

Distance

- σ₁ and σ₂ are at distance *i* if, starting from σ₁, and moving from neighboring to neighboring solutions, the length of the shortest path to reach σ₂ is *i*.
- Two neighboring permutations are at distance one.
- Under the 2-exchange and the insert neighborhoods the maximum distance between two permutations is *n* − 1.

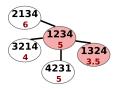


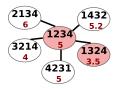
Attraction basins of local optima

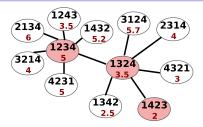
The attraction basin of a local optimum σ^* :

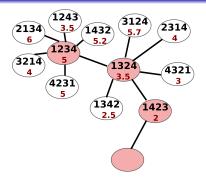
$$\mathcal{B}_{\sigma^*} = \{ \sigma \in \Omega | \ \mathcal{H}(\sigma) = \sigma^* \},$$

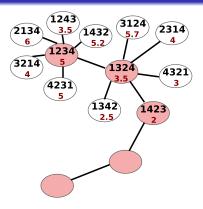
where \mathcal{H} is the operator that associates to each solution σ , the local optimum obtained after applying the algorithm



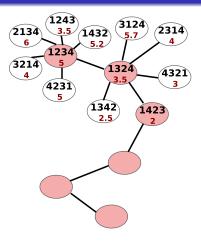




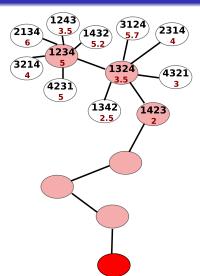




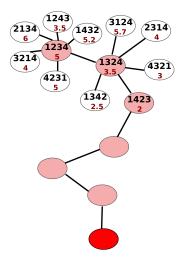
Deterministic best-improvement local search algorithm



Deterministic best-improvement local search algorithm



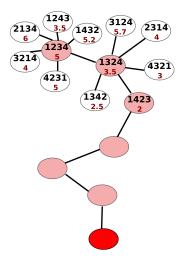
Deterministic best-improvement local search algorithm



Choose an initial solution $\sigma \in \Omega$ repeat

```
\sigma^* = \sigma
for each \sigma'_i \in \mathcal{N}(\sigma^*) do
if f(\sigma'_i) < f(\sigma) then
\sigma = \sigma'_i
end if
end for
until \sigma = \sigma^*
```

Deterministic best-improvement local search algorithm



Choose an initial solution $\sigma \in \Omega$ repeat

```
\sigma^* = \sigma
for each \sigma'_i \in \mathcal{N}(\sigma^*) do
if f(\sigma'_i) < f(\sigma) then
\sigma = \sigma'_i
end if
end for
until \sigma = \sigma^*
```

The attraction basins are sets of paths!

・ロット (雪) (日) (日)

Outline

3 Visualization

Experimental Design

• 9 PFSP instances of Taillard's benchmark.

- 10 jobs and 5 machines (n=10).
- The local optima and the attraction basins are calculated considering the 2-exchange and the insert neighborhoods.

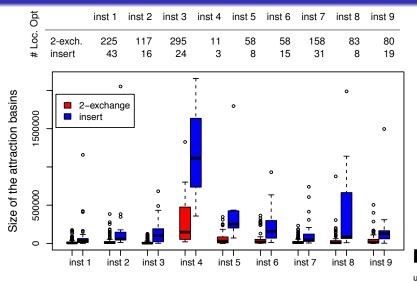
Experimental Design

- 9 PFSP instances of Taillard's benchmark.
- 10 jobs and 5 machines (n=10).
- The local optima and the attraction basins are calculated considering the 2-exchange and the insert neighborhoods.

Experimental Design

- 9 PFSP instances of Taillard's benchmark.
- 10 jobs and 5 machines (n=10).
- The local optima and the attraction basins are calculated considering the 2-exchange and the insert neighborhoods.

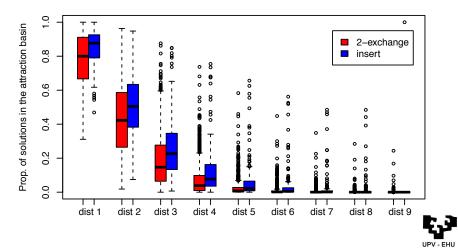
No. of local optima and sizes of attraction basins



31

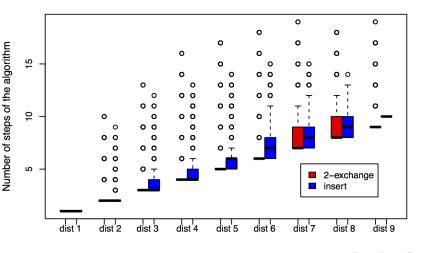
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 ̄

Distance to local optima vs. number of solutions in attraction basins



◆ロ▶★@▶★注▶★注▶ 注:の○

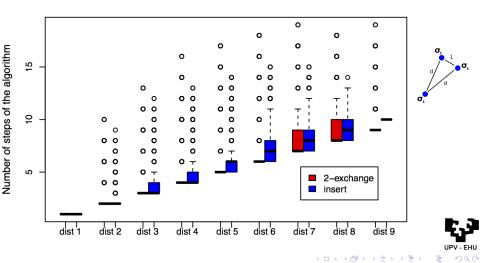
Distance to local optima vs. number of steps of the algorithm



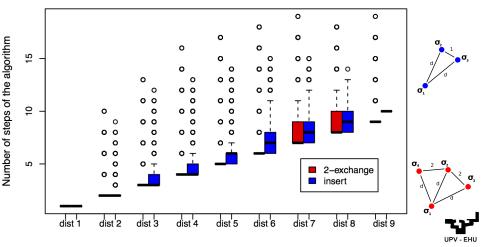
UPV - EHU

▲ロ → ▲御 → ▲ 田 → ▲ 田 → ▲ 田 →

Distance to local optima vs. number of steps of the algorithm



Distance to local optima vs. number of steps of the algorithm



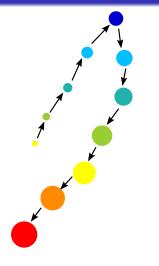
▲ロと▲聞と▲臣と▲臣と 臣 の

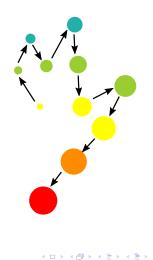
Outline

2 Results

Visualization

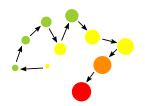
Visualization of paths: PFSP 2-exchange

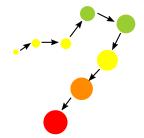




Visualization

Visualization of paths: PFSP insert





<ロト <回 > < 注 > < 注 >

Outline

2 Results

3 Visualization

The algorithm goes for a walk before finding the optimum!

Future Work

- Analysis of larger instances
- Use this information to design/modify algorithms

A D > A B > A B > A B >

The algorithm goes for a walk before finding the optimum!

Future Work

- Analysis of larger instances
- Use this information to design/modify algorithms

Hill-Climbing Algorithm: let's go for a walk before finding the optimum

Leticia Hernando, Alexander Mendiburu and Jose A. Lozano

Intelligent Systems Group University of the Basque Country UPV/EHU, Spain

July, 11th 2018 2018 IEEE Congress on Evolutionary Computation

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶