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Objectives

Analysis of the solutions found in the attraction basins:
distance to the local optimum vs. number of steps of the
algorithm.

The paths defined by a hill-climbing algorithm do not
monotonically reduce the distance to the local optimum.

Visual examples of the paths built by the algorithm.
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Introduction

Combinatorial Optimization Problem

Definition
A Combinatorial Optimization Problem consists of finding the
points σ∗ that minimize or maximize a function f :

σ∗ = arg min
σ∈Ω

f (σ)

where Ω is a finite or countable infinite set

Permutation-based COP
A COP where Ω is the space of permutations of size n

Permutation Flowshop Scheduling Problem
Quadratic Assignment Problem
Linear Ordering Problem



Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 5

Introduction

Combinatorial Optimization Problem

Definition
A Combinatorial Optimization Problem consists of finding the
points σ∗ that minimize or maximize a function f :

σ∗ = arg min
σ∈Ω

f (σ)

where Ω is a finite or countable infinite set

Permutation-based COP
A COP where Ω is the space of permutations of size n

Permutation Flowshop Scheduling Problem
Quadratic Assignment Problem
Linear Ordering Problem



Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 5

Introduction

Combinatorial Optimization Problem

Definition
A Combinatorial Optimization Problem consists of finding the
points σ∗ that minimize or maximize a function f :

σ∗ = arg min
σ∈Ω

f (σ)

where Ω is a finite or countable infinite set

Permutation-based COP
A COP where Ω is the space of permutations of size n

Permutation Flowshop Scheduling Problem
Quadratic Assignment Problem
Linear Ordering Problem



Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 6

Introduction

Combinatorial Optimization Problem

Definition
A Combinatorial Optimization Problem consists of finding the
points σ∗ that minimize or maximize a function f :

σ∗ = arg min
σ∈Ω

f (σ)

where Ω is a finite or countable infinite set

Permutation-based COP
A COP where Ω is the space of permutations of size n

Permutation Flowshop Scheduling Problem
Quadratic Assignment Problem
Linear Ordering Problem



Hill-Climbing Algorithm: let’s go for a walk before finding the optimum 7

Introduction

Permutation Flowshop Scheduling Problem

n jobs
m machines
Each job consists of m operations
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Introduction

Permutation Flowshop Scheduling Problem

1M1

M2

M3

2 3 4 5

1 2 3 4 5

2 3 4 51

flow time 1

flow time 2

flow time 3

flow time 4

flow time 5

Total Flow Time = FT1 + FT2 + FT3 + FT4 + FT5
minimize TFT
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Introduction

Neighborhood

A neighborhood N in a search space Ω is a mapping that
assigns a set of neighboring solutions N(σ) ∈ P(Ω) to each
solution σ ∈ Ω:

N : Ω −→ P(Ω)
σ 7−→ N(σ)
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Introduction

Neighborhoods. Examples

2-exchange or Swap

Swap two items, not necessarily adjacent

(2134) (3214)

(4231) (1234) (1324)

(1432) (1243)
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Introduction

Distance

σ1 and σ2 are at distance i if, starting from σ1, and moving
from neighboring to neighboring solutions, the length of the
shortest path to reach σ2 is i .

Two neighboring permutations are at distance one.

Under the 2-exchange and the insert neighborhoods the
maximum distance between two permutations is n − 1.
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Introduction

Local Optima

A solution σ∗ ∈ Ω is a local optimum if

f (σ∗) ≤ f (σ), ∀σ ∈ N(σ∗) (local minimum)

12345

21345

13245

12435
12354

f

(                )

(               )

(                )

(                )
(                )
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Introduction

Attraction basins of local optima

The attraction basin of a local optimum σ∗:

Bσ∗ = {σ ∈ Ω| H(σ) = σ∗},

where H is the operator that associates to each solution σ, the
local optimum obtained after applying the algorithm
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Introduction

Deterministic best-improvement local search
algorithm

Choose an initial solution σ ∈ Ω
repeat
σ∗ = σ
for each σ′i ∈ N (σ∗) do

if f (σ′i ) < f (σ) then
σ = σ′i

end if
end for

until σ = σ∗
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Introduction

Deterministic best-improvement local search
algorithm

Choose an initial solution σ ∈ Ω
repeat
σ∗ = σ
for each σ′i ∈ N (σ∗) do

if f (σ′i ) < f (σ) then
σ = σ′i

end if
end for

until σ = σ∗

The attraction basins are sets of
paths!
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Results

Experimental Design

9 PFSP instances of Taillard’s benchmark.

10 jobs and 5 machines (n=10).

The local optima and the attraction basins are calculated
considering the 2-exchange and the insert neighborhoods.
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Results

No. of local optima and sizes of attraction basins
#
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Results

Distance to local optima vs. number of solutions in
attraction basins
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Results

Distance to local optima vs. number of steps of the
algorithm
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Visualization

Visualization of paths: PFSP 2-exchange
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Visualization

Visualization of paths: PFSP insert
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