Algebraic Crossover Operators for Permutations

Valentino Santucci ^{1,2}, Marco Baioletti ², Alfredo Milani ²

¹ University for Foreigners of Perugia, Italy

² University of Perugia, Italy

Finitely Generated Group

- A group is a set X endowed with an operation $\circ: X \times X \to X$ that:
 - is associative $(x \circ y) \circ z = x \circ (y \circ z) \quad \forall x, y, z \in X$
 - has a neutral element
 - has inverse elements
- $e \in X$ s.t. $x \circ e = e \circ x = x$ $\forall x \in X$ $\exists x^{-1}$ s.t. $x \circ x^{-1} = x^{-1} \circ x = e$ $\forall x \in X$
- A group X is finitely generated if there exists a finite generating set $H \subseteq X$ such that every $x \in X$ can be expressed as a finite composition of the generators in H, i.e.,

$$x = h_{i_1} \circ h_{i_2} \circ \cdots \circ h_{i_k} \text{ with } h_* \in H$$

- The length of a minimal decomposition of x in terms of H is the weight of x, we denote it with |x|
- x ⊑ y iff there exists (at least) a minimal decomposition of x that is a prefix of a minimal decomposition of y

Permutations form a group

A permutation of [n] = {1,2, ..., n} is a bijective discrete function from [n] to [n], thus it is possible to compose permutations:

$$z = x \circ y$$
 iff $z(i) = x(y(i))$ for $1 \le i \le n$

- The composition:
 - is associative

- $(x \circ y) \circ z = x \circ (y \circ z)$
- has neutral element
- has inverse elements

$$e = \langle 1, 2, \dots, n \rangle$$

$$x^{-1}(i) = j \text{ iff } x(j) = i$$

• The permutations of [n], together with the \circ operation, form a group structure called the symmetric group S(n)

Permutations form a F.G. group

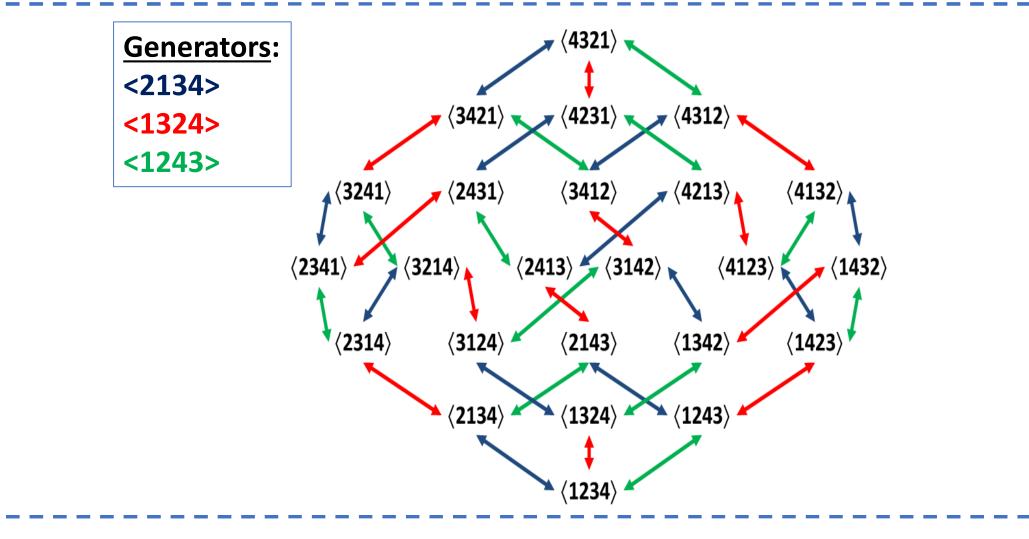
• Adjacent swap moves as generating set $ASW = \{\sigma_1, \sigma_2, \dots, \sigma_{n-1}\}$ where, for any $1 \le i < n$: $\sigma_i(j) = \begin{cases} i+1 & \text{if } j = i \\ i & \text{if } j = i+1 \\ j & \text{otherwise} \end{cases}$

• $(x \circ \sigma_i)$ is the permutation x where the items at positions i and i + 1 have been swapped

Cayley graph

- A finitely generated group induces a colored digraph (namely, a Cayley graph) where:
 - X are the vertices
 - there exists an arc $x \to (x \circ h)$ colored by h for every $x \in X$ and $h \in H \subseteq X$
- Connection between a Cayley graph and a combinatorial search space:
 - *X* is the set of solutions
 - $H \subseteq X$ represents simple search moves in the space of solutions
- The Cayley graph induces:
 - neighborhood relationships among solutions
 - a distance between solutions (shortest path distance)
 - a single representation for both solutions and displacements

Cayley graph



Vector-like operations

- Paths on the Cayley graph can be encoded by composing the labels on the arcs => paths can be encoded using permutations!
- Permutations encode both «points» and «vectors» in the search space
- Let's define ⊕, ⊖, ⊙ in such a way that they work consistently w.r.t. their usual numerical counterparts!

Sum and Difference of Permutations

- Given two *n*-length permutations *x* and *y*:
 - $x \oplus y \coloneqq x \circ y$
 - $x \ominus y \coloneqq y^{-1} \circ x$
- They are geometrically meaningful:
 - $x \oplus y$ is the point reachable starting from point x and following the path y
 - $x \ominus y$ represents a path connecting the point y to the point x

• They are algebraically consistent:

$$x = y \oplus (x \ominus y) = y \circ (y^{-1} \circ x) = x$$

Multiply a permutation by a scalar in [0,1]

- Given a *n*-length permutation *z* and a scalar $a \in [0,1]$
- Let's assume:
 - *z* represents a path
 - $z = \sigma_{i_1} \circ \sigma_{i_2} \circ \cdots \circ \sigma_{i_L}$ is a minimal decomposition of z with length L
- $a \odot z \coloneqq \sigma_{i_1} \circ \sigma_{i_2} \circ \cdots \circ \sigma_{i_k}$ where $k = [a \cdot L]$
- Geometrically, $a \odot z$ is a «truncation» of the path z

- \oplus and \ominus simply require permutations composition and inversion
- • requires an algorithm for computing minimal decomposition(s)
- There can be multiple minimal decompositions
- They can be computed using a «bubble sort»-like algorithm: Iteratively choose (and apply) an adjacent swap moving the permutation closer to the identity permutation (the only sorted permutation)
- Two different strategies:
 - <u>RandBS</u>: randomly choose one suitable adjacent swap
 - <u>GreedyBS</u>: choose the best (and suitable) adjacent swap basing on the fitness function

RandBS and GreedyBS

1: function RANDBS($x \in S_n$) 2: $s \leftarrow \langle \rangle$ $A \leftarrow \{\sigma_i \in ST : i < i+1 \text{ and } x(i) > x(i+1)\}$ 3: while $A \neq \emptyset$ do 4: $\sigma \leftarrow$ select a generator from A uniformly at random 5: 6: $x \leftarrow x \circ \sigma$ $s \leftarrow \text{Concatenate}(\langle \sigma \rangle, s)$ 7: $A \leftarrow \text{Update}(A, \sigma)$ 8: $\triangleright O(1)$ complexity end while 9: 10: return s 11: end function

```
1: function GREEDYBS(x \in S_n, f : S_n \to \mathbb{R})
 2:
          s \leftarrow \langle \rangle
          A \leftarrow \{\sigma_i \in ST : i < i+1 \text{ and } x(i) > x(i+1)\}
 3:
          while A \neq \emptyset do
 4:
                \sigma \leftarrow select \sigma \in A with the best value of f(x \circ \sigma)
 5:
 6:
        x \leftarrow x \circ \sigma
                s \leftarrow \text{Concatenate}(\langle \sigma \rangle, s)
 7:
                A \leftarrow \text{Update}(A, \sigma)
                                                          \triangleright done in O(1) complexity
 8:
          end while
 9:
10:
          return s
11: end function
```

What can we do with them?

- Algebraic Differential Evolution
- Algebraic Particle Swarm Optimization
- Discretize numerical EAs whose «move rules» are linear combinations of solutions
- ... design an algebraic crossover

- We propose 3 classes of algebraic crossovers:
 - Group-based algebraic crossovers
 - Lattice-based algebraic crossovers
 - Hybrid algebraic crossovers

Group-based Algebraic Crossovers (AXG)

- Reasonably, a crossover between two permutations x and y should return a permutation z that is «in the middle» between x and y
- The interval [x,y] can be formally defined in many equivalent ways:

 $[x,y] = \{z \in \mathcal{S}_n : \exists p \in SP_{x,y} \text{ s.t. } z \text{ appears in } p\},$ $[x,y] = \{z \in \mathcal{S}_n : z \ominus x \sqsubseteq y \ominus x\},$ $[x,y] = \{z \in \mathcal{S}_n : d(x,z) + d(z,y) = d(x,y)\}.$ $[x,y] = \{z \in \mathcal{S}_n : D(x,z) \subseteq D(z,y)\}.$

 A group-based algebraic crossover operator AXG can be abstractly defined as any operator which, given two permutations x and y, returns a permutation z = AXG(x,y) such that z ∈ [x, y]

A property on pairwise precedences of items

- z = AXG(x,y)
- AXG is <u>precedence-respectful</u>:

z contains all the common precedences between x and y

• AXG transmits precedences:

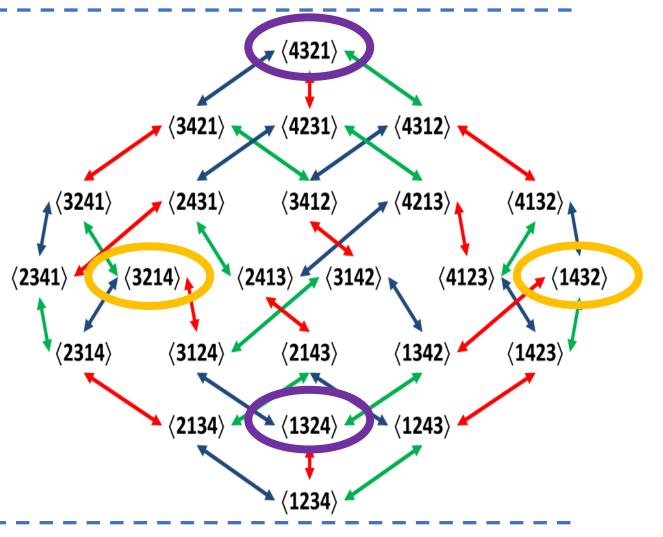
all the common precedences of z come from x or y (no new precedence is generated)

How to compute AXG?

- Ideally:
 - $z = x \bigoplus a \odot (y \bigoplus x)$, with $a \in [0,1]$
 - Different strategies basing on the value of a and the \odot computation strategy
- Practically:
 - We enumerate all the permutations in a shortest path from x to y by running RandBS (R) or GreedyBS (G) on $y \ominus x$
 - We select one permutation in the path: a random one (R), the middle one (T), the best one (B)
- 6 different implementations:
 - AXG-RR, AXG-RT, AXG-RB
 - AXG-GR, AXG-GT, AXG-GB

The partial order \sqsubseteq is a Lattice

- Meet: $z = x \land y$ iff
 - *1.* $z \sqsubseteq x$ and $z \sqsubseteq y$
 - *2. z* is the «longest» permutation with prop.1
- Join: $z = x \lor y$ iff
 - *1.* $x \sqsubseteq z$ and $y \sqsubseteq z$
 - *2. z* is the «shortest» permutation with prop.1



Meet and Join as Crossover Operators

1: function AXL-MEET($x \in S_n, y \in S_n$) $x' \leftarrow x^{-1}$ 2: 3: $y' \leftarrow y^{-1}$ 4: $z \leftarrow e$ $A \leftarrow \{\sigma_i \in ST : x'(i) > x'(i+1) \text{ and } y'(i) > y'(i+1)\}$ 5: while $A \neq \emptyset$ do 6: $\sigma \leftarrow$ select a generator from A 7: $x' \leftarrow x' \circ \sigma$ 8: $y' \leftarrow y' \circ \sigma$ 9: 10: $z \leftarrow z \circ \sigma$ $A \leftarrow \text{Update2}(A, \sigma)$ \triangleright done in O(1) complexity 11: end while 12: return z 13: 14: end function

AXL-Join exploits the «De Morgan»-like property: $x \lor y = \left(x^R \land y^R\right)^R$

Hybrid Algebraic Crossovers

- Let AXG be any group-based algebraic crossover
- Let m = AXL-Meet(x, y)
- Let j = AXL-Join(x, y)
- An hybrid algebraic crossover AXH is defined as
 AXH(x,y) := AXG(m,j)
- 6 hybrid alg. crossovers: one for each AXG crossover

AXH-* are more explorative than AXG-*

- AXH crossovers produce an offspring $z \in [x \lor y, x \land y]$
- $[x, y] \subseteq [x \lor y, x \land y]$
- It is possible to introduce precedences not appearing in the parents

Experimental Setting

- Benchmark instances from LOP, PFSP, QAP, TSP
- Comparison against 7 popular permutation crossover from literature: PMX, OX1, OX2, CX, AP, POS, ER
- Three scenarios:
 - Randomly generated permutations
 - Local optima permutations
 - Crossovers embedded in standard steady-state GA (population size = 50, random selection, crossover prob = 1, mutation prob = 0.05, μ+1 replacement)

Experimental Results

AVERAGE RANKS IN THE RANDOM EXPERIMENT

AVERAGE RANKS IN THE LOCAL OPTIMA EXPERIMENT

AVERAGE RANKS IN THE GA EXPERIMENT

Crossover	LOP	PFSP	QAP	TSP	Overall	Crossover	LOP	PFSP	QAP	TSP	Overall	Crossover	LOP	PFSP	QAP	TSP	Overall
AXH-GB	1.12	1.55	1.33	1.12	1.28	AXG- GB	1.28	1.31	1.22	1.29	1.28	PMX	9.33	2.33	1.33	6.67	4.92
AXG-GB	3.04	2.74	1.70	5.40	3.22	AXG-RB	1.78	1.82	1.91	1.78	1.82	POS	6.67	2.00	2.33	9.33	5.08
AXH- RB	7.39	3.92	5.83	3.25	5.10	AXG- GR	3.93	5.47	8.44	7.20	6.26	AX-Comb	3.33	7.67	8.00	2.33	5.33
AXG-RB	8.10	5.10	5.76	7.78	6.69	CX	8.31	6.12	4.43	10.52	7.35	OX2	5.67	6.00	4.00	8.00	5.92
AXH- GT	3.90	11.91	5.79	5.50	6.78	PMX	9.38	6.84	6.44	6.80	7.37	CX	2.33	3.00	7.67	11.67	6.17
AXH- GR	5.52	10.14	6.62	5.39	6.92	AXG- GT	5.08	7.05	9.36	8.41	7.48	AXG-GB	4.00	5.67	7.33	8.67	6.42
AXG- GT	5.94	9.15	5.97	10.75	7.95	OX2	8.80	6.93	9.12	10.82	8.92	OX1	8.67	5.00	8.00	4.00	6.42
AXG- GR	7.75	8.77	6.10	10.55	8.29	POS	8.80	7.00	9.04	10.87	8.93	AXG-RB	5.33	7.33	11.33	10.00	8.50
AXL-Meet	12.54	11.21	16.53	8.50	12.20	OX1	10.22	10.84	11.97	4.08	9.28	AXG- GR	3.33	9.00	10.00	14.00	9.08
AXH- RR	14.46	14.14	15.38	10.96	13.74	AXH-GB	12.84	12.64	4.40	9.50	9.85	AXG-RR	8.33	8.33	14.00	13.33	11.00
AXH- RT	14.86	13.70	14.51	11.88	13.74	AP	6.03	7.11	16.33	16.58	11.51	AXH- RB	14.33	13.33	7.33	10.00	11.25
AXL-Join	16.53	15.79	16.29	8.44	14.26	AXG-RR	6.45	9.51	15.54	14.60	11.53	AXG- GT	9.00	12.67	7.67	18.00	11.84
ER	14.09	13.42	14.35	15.58	14.36	AXH- RB	15.49	12.48	9.93	11.65	12.39	AP	13.67	13.33	16.00	5.00	12.00
OX1	14.35	13.54	14.31	15.74	14.49	AXG-RT	8.31	11.34	16.36	16.32	13.08	AXH- GB	15.33	16.67	11.00	11.00	13.50
CX	14.41	13.69	14.33	15.75	14.55	AXH- GT	14.19	16.23	9.70	14.90	13.76	AXG-RT	14.67	13.33	12.33	18.00	14.58
OX2	14.45	13.60	14.44	15.75	14.56	AXH- GR	16.36	16.48	10.25	14.37	14.37	AXH- RR	16.67	15.00	15.00	11.67	14.59
AP	14.52	13.70	14.34	15.72	14.57	ER	20.60	19.67	16.27	3.99	15.13	AXH- GR	14.33	18.33	14.67	12.33	14.92
PMX	14.42	13.74	14.36	15.74	14.57	AXH-RT	16.34	15.73	16.83	20.08	17.25	AXH- GT	16.33	15.67	16.00	16.00	16.00
POS	14.46	13.74	14.38	15.70	14.57	AXL-Meet	19.22	19.11	18.10	13.95	17.60	AXH- RT	18.67	15.33	16.00	15.67	16.42
AXG-RR	14.53	13.74	14.35	15.73	14.59	AXH- RR	17.61	17.36	17.37	19.38	17.93	ER	20.00	20.00	21.33	11.67	18.25
AXG-RT	14.61	13.70	14.33	15.75	14.60	AXL-Join	19.97	19.94	18.01	13.87	17.95	AXL-Join	21.33	21.00	21.00	17.67	20.25
												AXL-Meet	21.67	22.00	20.67	18.00	20.59

AXG crossovers loss diversity very quickly when inside a GA AXH crossovers slow down the diversity loss but only slightly

Conclusion and Future Work

• What's new:

Group and lattice structures of the search space exploited to build crossovers and derive some properties of them

Issues to address:

Need to better balance intensification and diversification

- Other future work:
 - AXG operators using different generating sets (EXC and INS)
 - AXL operators using semi-lattice
 - Build a clever GA using AX operators
 - Precedence properties may help to design a good recombination for LOP

Thanks!!!