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Abstract. This paper is the result of a literature study carried out by the authors. It is a review of
the different attempts made to solve the Travelling Salesman Problem with Genetic Algorithms.
We present crossover and mutation operators, developed to tackle the Travelling Salesman
Problem with Genetic Algorithms with different representations such as: binary representation,
path representation, adjacency representation, ordinal representation and matrix representation.
Likewise, we show the experimental results obtained with different standard examples using
combination of crossover and mutation operators in relation with path representation.
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1. Introduction

In nature, there exist many processes which seek a stable state. These
processes can be seen as natural optimization processes. Over the last 30
years several attempts have been made to develop global optimization algo-
rithms which simulate these natural optimization processes. These attempts
have resulted in the following optimization methods:
� Simulated Annealing, based on natural annealing processes.
� Artificial Neural Networks, based on processes in central nervous

systems.
� Evolutionary Computation, based on biological evolution processes.
The algorithms inspired by Evolutionary Computation are calledevolu-

tionary algorithms. These evolutionary algorithms may be divided into
the following branches:genetic algorithms(Holland 1975),evolutionary
programming(Fogel 1962),evolution strategies(Bremermann et al. 1965),
classifier systems(Holland 1975),genetic programming(Koza 1992) and
other optimization algorithms based on Darwin’s evolution theory of natural
selection and “survival of the fittest”.
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130 P. LARRAÑAGA ET AL.

In this paper we will only examine one of the above mentioned types
of algorithms: genetic algorithms, although some of the exposed mutation
operators have been developed in relation to evolutionary programming.
We consider these algorithms in combination with theTravelling Salesman
Problem(TSP). The TSP objective is to find the shortest route for a travelling
salesman who, starting from his home city, has to visit every city on a given
list precisely once and then return to his home city. The main difficulty of this
problem is the immense number of possible tours: (n� 1)!/2 for n cities.

Artificial Intelligence can be applied to different problems in different
domains such as: scheduling, cryptoanalysis, molecular biology, Bayesian
networks, clustering, etc. Some of the problems are in someway related to
what we will discuss here (see Section 3.2). For this reason, this revision
could be of interest, not only to people interested in the TSP, but also, to
people interested in the application of Artificial Intelligence techniques in
any of the topics mentioned above.

The structure of this paper is as follows. In Section 2 we introduce genetic
algorithms. Next, we give a brief introduction of the Travelling Salesman
Problem. In Section 4 we describe several representations which may be
used for a problem instance of the TSP, and we introduce operators with
which they can be combined. We look at how we can include local search
in an evolutionary algorithm in Section 5. In Section 6 we present some
experimental results carried out with different combinations between some
of the crossover and mutation operators developed for the path representation.
Lastly, conclusions are given in Section 7.

2. Genetic Algorithms

Evolutionary algorithms are probabilistic search algorithms which simulate
natural evolution. They were proposed about 30 years ago (Bremermann et
al. 1965; Rechenberg 1973). Their application to combinatorial optimization
problems, however, only recently became an actual research topic. In recent
years numerous papers and books on the evolutionary optimization of NP-
hard problems have been published, in very different application domains
such as biology, chemistry, computer aided design, cryptoanalysis, identifica-
tion of systems, medicine, microelectronics, pattern recognition, production
planning, robotics, telecommunications, etc.

Holland (1975) introducedgenetic algorithms. In these algorithms the
search space of a problem is represented as a collection ofindividuals. These
individuals are represented by character strings (or matrices, see Section 4.6),
which are often referred to aschromosomes. The purpose of using a genetic
algorithm is to find the individual from the search space with the best “genetic
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BEGIN AGA

Make initial population at random.

WHILE NOT stopDO
BEGIN

Select parentsfrom the population.

Produce childrenfrom the selected parents.

Mutatethe individuals.

Extendthe population adding the children to it.

Reducethe extend population.

END
Output the best individual found.

END AGA

Figure 1. The pseudo-code of the Abstract Genetic Algorithm (AGA).

material”. The quality of an individual is measured with an evaluation func-
tion. The part of the search space to be examined is called thepopulation.
Roughly, a genetic algorithm works as follows (see Figure 1).

First, the initial population is chosen, and the quality of this population is
determined. Next, in every iteration parents are selected from the population.
These parents produce children, which are added to the population. For all
newly created individuals of the resulting population a probability near to
zero exists that they will “mutate”, i.e. that they will change their heriditary
distinctions. After that, some individuals are removed from the population
according to a selection criterion in order to reduce the population to its initial
size. One iteration of the algorithm is referred to as ageneration.

The operators which define the child production process and the mutation
process are called the crossover operator and the mutation operator respec-
tively. Mutation and crossover play different roles in the genetic algorithm.
Mutation is needed to explore new states and helps the algorithm to avoid
local optima. Crossover should increase the average quality of the population.
By choosing adequate crossover and mutation operators, the probability that
the genetic algorithm results in a near-optimal solution in a reasonable number
of iterations is increased. There can be various criterias for stopping AGA.
For example, if it is possible to determine previously the number of itera-
tions needed. But the stopping criteria should normally take into account the
uniformity of the population, the relationship between the average objective
function with respect to the objective function of the best individual, as well
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132 P. LARRAÑAGA ET AL.

as not producing an increase in the objective function of the best individual
during a fixed number of cycles. Further description of genetic algorithms
can be found in Goldberg (1989) and Davis (1991).

3. The Travelling Salesman Problem

3.1. Introduction

As already started, in Section 1 theTravelling Salesman Problemis, given a
collection of cities, in order to determine the shortest route which visits each
city precisely once and then returns to its starting point. More mathematically
we may define the TSP as follows:

Given an integern� 3 and ann� n matrixC = (cij), where eachcij is
a nonnegative integer.

Which cyclic permutation� of the integers from 1 ton minimizes the sumP
n

i=1ci�(i)?
The Travelling Salesman Problem is a relatively old problem: it was docu-

mented as early as 1759 by Euler (though not by that name), whose interest
was in solving the knights’ tour problem. A correct solution would have a
knight visit each of the 64 squares of a chessboard exactly once on its tour.
The term ‘travelling salesman’ was first used in 1932, in a German book
written by a veteran travelling salesman. The TSP was introduced by the
RAND Corporation in 1948. The Corporation’s reputation helped to make
the TSP a well known and popular problem. The TSP also became popular at
that time due to the new subject of linear programming and attempts to solve
combinatorial problems.

Through the years the Travelling Salesman Problem has occupied the
thoughts of numerous researchers. There are several reasons for this. Firstly,
the TSP is very easy to describe, yet very difficult to solve. No polynomial
time algorithm is known with which it can be solved. This lack of any polyno-
mial time algorithm is a characteristic of the class of NP-complete problems,
of which the TSP is a classic example. Second, the TSP is broadly applica-
ble to a variety of routing and scheduling problems. Thirdly, since a lot of
information is already known about the TSP, it has become a kind of “test”
problem; new combinatorial optimization methods are often applied to the
TSP so that an idea can be formed of their usefulness. Finally, a great number
of problems actually treated with heuristic techniques in Artificial Intelli-
gence are related with the search of the best permutation ofn elements, as we
will explain in the next paragraph.
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Numerous heuristic algorithms have been developed for the TSP. Many of
them are described in Lawler et al. (1985). Kirkpatrick et al. (1983) were the
first who tried to solve the TSP with simulated annealing. The first researcher
to tackle the Travelling Salesman Problem with genetic algorithms was Brady
(1985). His example was followed by Grefenstette et al. (1985); Goldberg
and Lingle (1985); Oliver et al. (1987) and many others. Other evolutionary
algorithms have been applied to the TSP, amongst others, Fogel (1988);
Banzhaf (1990) and Ambati et al. (1991).

For an extensive discussion on the TSP we refer you to Lawler et al.
(1985). Problem instances of the Travelling Salesman Problem, with parts of
the optimal solutions, can be found in a TSP library which is available via ftp
from:

ftp sfi.santafe.edu

Name (sfi.santafe.edu: foobar): anonymous

Password: he-mail addressi

ftp > cd pub/EC/etc/data/TSP

ftp > type binary

ftp > get tsplib-1.2tar.gz

This library was compiled by G. Reinelt. More information about it can be
found in Reinelt (1991).

3.2. Problems in artificial intelligence related with the TSP

Similar types of problems in relation to the TSP could be the ordering of genes
on a chromosome (Gunnels et al. 1994), problems in cryptoanalysis, such as
the discovery of a key of a simple substitution cipher (Spillmann et al. 1993),
or the breaking of transposition ciphers in cryptographic systems (Matthews
1993). In addition work carried out on systems identification, specifically
those related with induction of stochastic models, could benefit on the infor-
mation about the genetic operators compiled in this revision. Likewise, on
the topic of Bayesian networks, a problem of evidence propagation accord-
ing to Lauritzen and Spiegelhalter’s algorithm (1988), can use this revision
thanks to the search of the optimal order of elimination of vertexes that cause
triangularization of moral graph associated to the Bayesian network. Opti-
mality is defined according to the weight of the triangulated graph (Larrañaga
et al. 1996a). See also Larrañaga et al. (1996b) for an approximation to the
problem of learning the optimal Bayesian network structure.

In another classic problem in Statistics, called Cluster Analysis, which
consists of obtaining the optimal classification of a set of individuals charac-
terized by any number of variables, Lozano et al. (1996) developed one
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method which used the genetic crossover and mutation operators, related
with path representation (see Section 4).

4. Representations and Operators

4.1. Introduction

There have been many different representations used to solve the TSP problem
using the Genetic Algorithms. Some of them, such asbinary representation
(Section 4.2) andmatrix representation(Section 4.6), use binary alphabets
for the tour’s representation. Although these binary alphabets constitute the
standard way of representation in Genetic Algorithms, in the TSP the problem
is that the crossover and mutation operators don’t constitute closed operations,
that is that the results obtained using the above mentioned operators are not
valid tours. This is the reason why repair operators have been designed.

The most natural representation of one tour is denominated bypath repre-
sentation(See Section 4.3). In this representation, then cities that should
be visited are put in order according to a list ofn elements, so that if the
city i is the j-th element of the list, cityi is the j-th city to be visited.
This representation has allowed a great number of crossover and mutation
operators to have been developed. We can affirm that nowadays most of
the TSP approximation using Genetic Algorithms, are realized using this
representation. Fundamental reason lie in its intuitive representation as well
as in the good results obtained with it.

From a historic perspective the problems appear to carry out aschemata
analysis, a theoretic element for the study of Genetic Algorithm’s behavior,
which is based on the concept of schema. A schema is a chain formed by
any characters, apart from the elements of the original alphabet, amplified
by the symbol� which can be interpreted as a lack of information. From a
geometric point of view, a schema is equivalent to a hyperplane in the search
space. The objective of schemata analysis is to provide the lower bound of
the expected number of individuals that in the following generation will be
associated with a determined schema. This was what inspired Grefenstette
et al. (1985) to develop two new representations: adjacency representation
and ordinal representation. Theadjacency representation(Section 4.4) allows
schemata analysis, although the empirical results obtained with this represen-
tation have been poor. Theordinal representation(Section 4.5) presents the
advantage that classics crossover and mutation operators can be used without
the necessity of designing new operators. However just as with the previous
representation, experimental results obtained have been generally poor.
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Table 1. Summary of representations and operators

Representation Operators Authors

Binary Classical + repair operator Lidd (1991)

Path Partially-mapped crossover Goldberg and Lingle (1985)
Order-crossover Davis (1985)
Order based crossover Syswerda (1991)
Position based crossover Syswerda (1991)
Heuristic crossover Grefenstette (1987b)
Edge recombination crossover Whitley et al. (1989)
Sorted match crossover Brady (1985)
Maximal preservative crossover Mühlenbein et al. (1988)
Voting recombination crossover M̈uhlenbein (1989)
Alternating-positions crossover Larrañaga et al. (1996a)
Displacement mutation Michalewizc (1992)
Exchange mutation Banzhaf (1990)
Insertion mutation Fogel (1988)
Simple inversion mutation Holland (1975)
Inversion mutation Fogel (1990)
Scramble mutation Syswerda (1991)

Adjacency Alternating edge crossover Grefenstette et al. (1985)
Subtour chunks crossover Grefenstette et al. (1985)
Heuristic crossover 1 Grefenstette et al. (1985)
Heuristic crossover 2 Jog et al. (1989)
Heuristic crossover 3 Suh and Van Gucht (1987)

Ordinal Classical operators Grefenstette et al. (1985)

Matrix Intersection crossover operator Fox and McMahon (1987)
Union crossover operator Fox and McMahon (1987)
Repair operators Seniw (1981)
Repair operators Homaifar and Guan (1991)
Heuristic inversion mutation Homaifar and Guan (1991)

Table 1 shows the names of representations and crossover and mutation
operators which are explained in the rest of this section.
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Table 2. Binary representation of the 6-cities TSP

i City i i City i

1 000 4 011
2 001 5 100
3 010 6 101

4.2. Binary representation

In abinary representationof then-cities TSP, each city is encoded as a string
of [log2n] bits, an individual is a string ofn[log2n] bits. For example, in the
6-cities TSP the cities are represented by 3-bit strings (see Table 2).

Following the binary representation defined in Table 2, the tour 1-2-3-4-5-6
is represented by

(000 001 010 011 100 101):

Note that there exist 3-bit strings which do not correspond to any city: the
strings are 110 and 111.

4.2.1. Classical crossover
Theclassical crossover operatorwas proposed by Holland (1975). It works
as follows. Consider, for example, the following two solutions of the 6-cities
TSP:

(000 001 010 011 100 101) and

(101 100 011 010 001 000):

Randomly a crossover point is selected, where the strings are broken into
separate parts. Suppose, for example, that we choose the crossover point to
be between the ninth and the tenth bit. Hence,

(000 001 010j011 100 101) and

(101 100 011j010 001 000):

Recombinating the different parts results in

(000 001 010 010 001 000) and

(101 100 011 011 100 101);

which do not represent legal tours. To change the created offspring into legal
tours we need some sort ofrepair algorithm. From a general point of view, a
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repair algorithm is one that transfers those individuals that do not belong to
the search space into individuals of that search space.

4.2.2. Classical mutation
The classical mutation operatorwas also developed by Holland (1975). It
alters one or more bits with a probability equal to the mutation rate, which
is close to zero. For example, consider again the following string which
represent the tour 1-2-3-4-5-6:

(000 001 010 011 100 101):

Suppose that the first and the second bit are selected for mutation. Hence,
these bits change from a 0 into a 1. The result is

(110 001 010 011 100 101);

which does not represent a tour.
Lidd (1991) applied a binary vector approach for the TSP. However,

although he managed to get some high quality results for small TSPs (his
highest test case consisted of 100 cities), the binary representation is not con-
sidered to be very appropriate for the TSP as commented by Whitley et al.
(1989):

Unfortunately, there is no practical way to encode a TSP as a binary string
that does not have ordering dependencies or to which operators can be
applied in a meaningful fashion. Simply crossing strings of cities produces
duplicates and omissions. Thus, to solve this problem some variation
on standard genetic crossover must be used. The ideal recombination
operator should recombine critical information from the parent structures
in a non-destructive, meaningful manner.

4.3. Path representation

Thepath representationis probably the most natural representation of a tour.
Again a tour is represented as a list ofn cities. If city i is thej-th element of
the list, cityi is thej-th city to be visited. Hence, the tour 3-2-4-1-7-5-8-6 is
simply represented by

(3 2 4 1 7 5 8 6):

Since for the TSP in combination with the path representation the classical
operators are also not suitable, other crossover and mutation operators have
been defined.
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Figure 2. Partially-mapped crossover operator (PMX).

4.3.1. Partially-mapped crossover (PMX)
Thepartially-mapped crossover operator(Figure 2) was suggested by Gold-
berg and Lingle (1985). It passes on ordering and value information from the
parent tours to the offspring tours. A portion of one parent’s string is mapped
onto a portion of the other parent’s string and the remaining information is
exchanged. Consider, for example the following two parent tours:

(1 2 3 4 5 6 7 8) and

(3 7 5 1 6 8 2 4):

The PMX operator creates an offspring in the following way. First, it selects
uniformly at random two cut points along the strings, which represent the
parent tours. Suppose that the first cut point is selected between the third and
the fourth string element, and the second one between the sixth and seventh
string element. For example,

(1 2 3j4 5 6j7 8) and

(3 7 5j1 6 8j2 4):

The substrings between the cut points are called the mapping sections. In
our example they define the mappings 4$ 1, 5$ 6 and 6$ 8. Now the
mapping section of the first parent is copied into the second offspring, and
the mapping section of the second parent is copied into the first offspring,
growing:

offspring 1: (x x xj1 6 8jx x) and

offspring 2: (x x xj4 5 6jx x):

Then offspringi (i = 1,2) is filled up by copying the elements of thei-th
parent. In case a city is already present in the offspring it is replaced according
to the mappings. For example, the first element of offspring 1 would be a 1
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like the first element of the first parent. However, there is already a 1 present
in offspring 1. Hence, because of the mapping 1$ 4 we choose the first
element of offspring 1 to be a 4. The second, third and seventh elements of
offspring 1 can be taken from the first parent. However, the last element of
offspring 1 would be an 8, which is already present. Because of the mappings
8$ 6, and 6$ 5, it is chosen to be a 5. Hence,

offspring 1: (4 2 3j1 6 8j7 5):

Analogously, we find

offspring 2: (3 7 8j4 5 6j2 1):

Note that the absolute positions of some elements of both parents are
preserved.

A variation of the PMX operatoris described in Grefenstette (1987b):
given two parents the offspring is created as follows. First, the second parent
string is copied onto the offspring. Next, an arbitrary subtour is chosen from
the first parent. Lastly, minimal changes are made in the offspring necessary
to achieve the chosen subtour. For example, consider parent tours

(1 2 3 4 5 6 7 8) and

(1 5 3 7 2 4 6 8);

and suppose that subtour (3 4 5) is chosen. This gives offspring

(1 3 4 5 7 2 6 8):

4.3.2. Cycle crossover (CX)
Thecycle crossover operator(Figure 3) was proposed by Oliver et al. (1987).
It attempts to create an offspring from the parents where every position is
occupied by a corresponding element from one of the parents. For example,
consider again the parents

(1 2 3 4 5 6 7 8) and

(2 4 6 8 7 5 3 1):

Now we choose the first element of the offspring equal to be either the first
element of the first parent tour or the first element of the second parent tour.
Hence, the first element of the offspring has to be a 1 or a 2. Suppose we
choose it to be 1,

(1 � � � � � � �):
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Figure 3. Cycle crossover (CX).

Now, consider the last element of the offspring. Since this element has to
be chosen from one of the parents, it can only be an 8 or a 1. However, if a 1
were selected, the offspring would not represent a legal tour. Therefore, an 8
is chosen,

(1 � � � � � � 8):

Analogously, we find that the fourth and the second element of the offspring
also have to be selected from the first parent, which results in

(1 2� 4 � � � 8):

The positions of the elements chosen up to now are said to be a cycle. Now
consider the third element of the offspring. This element we may choose from
any of the parents. Suppose that we select it to be from parent 2. This implies
that the fifth, sixth and seventh elements of the offspring also have to be
chosen from the second parent, as they form another cycle. Hence, we find
the following offspring:

(1 2 6 4 7 5 3 8):

The absolute position of on average half of the elements of both parents
are preserved. Oliver et al. (1987) concluded from theoretical and empirical
results that the CX operator gives better results for the Travelling Salesman
Problem than the PMX operator.

4.3.3. Order crossover (OX1)
Theorder crossover operator(Figure 4) was proposed by Davis (1985). The
OX1 exploits a property of the path representation, that the order of cities
(not their positions) are important. It constructs an offspring by choosing a
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Figure 4. Order crossover (OX1).

subtour of one parent and preserving the relative order of cities of the other
parent. For example, consider the following two parent tours:

(1 2 3 4 5 6 7 8) and

(2 4 6 8 7 5 3 1);

and suppose that we select a first cut point between the second and the third
bit and a second one between the fifth and the sixth bit. Hence,

(1 2j3 4 5j6 7 8) and

(2 4j6 8 7j5 3 1):

The offspring are created in the following way. First, the tour segments
between the cut point are copied into the offspring, which gives

(� �j3 4 5j� � �) and

(� �j6 8 7j� � �):

Next, starting from the second cut point of one parent, the rest of the
cities are copied in the order in which they appear in the other parent, also
starting from the second cut point and omitting the cities that are already
present. When the end of the parent string is reached, we continue from its
first position. In our example this gives the following children:

(8 7j3 4 5j1 2 6) and

(4 5j6 8 7j1 2 3);

4.3.4 Order based crossover (OX2)
The order based crossover operator(Syswerda 1991) selects at random
several positions in a parent tour, and the order of the cities in the selected
positions of this parent is imposed on the other parent. For example, consider
again the parents

(1 2 3 4 5 6 7 8) and

(2 4 6 8 7 5 3 1);
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Figure 5. Position based crossover (POS).

and suppose that in the second parent the second, third, and sixth positions are
selected. The cities in these positions are city 4, city 6 and city 5 respectively.
In the first parent these cities are present at the fourth, fifth and sixth positions.
Now the offspring is equal to parent 1 except in the fourth, fifth and sixth
positions:

(1 2 3� � � 7 8):

We add the missing cities to the offspring in the same order in which they
appear in the second parent tour. This results in

(1 2 3 4 6 5 7 8):

Exchanging the role of the first parent and the second parent gives, using
the same selected positions,

(2 4 3 8 7 5 6 1):

4.3.5 Position based crossover (POS)
The position based operator(Syswerda 1991) also starts by selecting a
random set of positions in the parent tours. However, this operator imposes
the position of the selected cities on the corresponding cities of the other
parent. For example, consider the parent tours

(1 2 3 4 5 6 7 8) and

(2 4 6 8 7 5 3 1);

and suppose that the second, third and the sixth positions are selected. This
leads (Figure 5) to the following offspring:

(1 4 6 2 3 5 7 8) and

(4 2 3 8 7 6 5 1):

4.3.6. Heuristic crossover
Grefenstette (1987b) developed a class ofheuristic crossover operatorswhich
emphasize edges. These operators create an offspring in the following way:
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1. They first select at random a city to be the current city of the offspring.
2. Second, they consider the four (undirected) edges incident to the current

city. Over these edges a probability distribution is defined based on their
cost. The probability associated with an edge incident to a previously
visited city is equal to zero.

3. An edge is selected on this distribution. (If none of the parental edges
leads to an unvisited city a random edge is selected.)

4. The steps 3 and 4 are repeated until a complete tour has been constructed.
In case a uniform probability is chosen, the offspring inherits about 30% of

the edges of every parent, and about 40% of the edges are randomly selected.
The operator described above was also used by Liepins et al. (1987).

4.3.7. Genetic edge recombination crossover (ER)
The geneticedge recombination crossover operatorwas developed by
Whitley et al. (1989, 1991).

It is an operator which is suitable for the symmetrical TSP; it makes the
assumption that only the values of the edges are important, not their direction.
In accordance with this assumption, the edges of a tour can be seen as the
carriers of the heriditary information. The ER operator attempts to preserve
the edges of the parents in order to pass on a maximum amount of information
to the offspring. The breaking of edges is seen as unwanted mutation.

The problem that normally occurs with operators which follow an edge
recombination strategy, is that they often leave cities without a continuing
edge (Grefenstette 1987). These cities become isolated and new edges have to
be introduced. The ER operator tries to avoid this problem by first choosing
cities which have few unused edges. Of course, there has to be a connection
with a city before it can be selected. The only edge that the ER operated fails
to enforce is the edge from the final city to the initial city. Therefore, a limited
amount of mutation may occur. The mutation rate will be at most 1/n, wheren
is the number of cities. In practice the mutation rate turned out to be between
1–5%.

Now, how does the ER operator work? It uses a co-called “edge map”,
which gives for each city the edges of the parents that start or finish in it.
Consider for example these tours:

(1 2 3 4 5 6) and

(2 4 3 1 5 6):

The edge map for these tours is shown in Table 3.
The genetic edge recombination operator works according to the following

algorithm:
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Table 3. The edge map for the tours (1 2 3 4 5 6)
and (2 4 3 1 5 6)

City Connected cities

1 2, 6, 3, 5
2 1, 3, 4, 6
3 2, 4, 1
4 3, 5, 2
5 4, 6, 1
6 1, 5, 2

1. Choose the initial city from one of the two parent tours. (It can be chosen
at random or according to criteria outlined in step 4). This is the “current
city”.

2. Remove all occurrences of the “current city” from the left-hand side of
the edge map. (These can be found by referring to the edge list for the
current city).

3. If the current city has entries in its edge list go to step 4; otherwise, go to
step 5.

4. Determine which of the cities in the edge list of the current city has
the fewest entries in its own edge list. The city with the fewest entries
becomes the “current city”. Ties are broken at random. Go to step 2.

5. If there are no remaining “unvisited” cities, then STOP. Otherwise, choose
at random an “unvisited” city and go to step 2.

For our example tours we get:
1. The new child tour is initialized with one of the two initial cities from its

parents. Initial cities 1 and 2 both have four edges; randomly choose city
2.

2. The edge list for city 2 indicates the candidates for the next city are the
cities 1, 3, 4, and 6. The cities 3, 4 and 6 all have two edges: the initial
three minus the connection with city 2. City 1 now has three edges and
therefore it is not considered. Assume that city 3 is randomly chosen.

3. City 3 now has edges to city 1 and city 4. City 4 is chosen next, since it
has fewer edges.

4. City 4 only has an edge to city 5, so city 5 is chosen next.
5. City 5 has edges to the cities 1 and 6, both of which have only one edge

left. Randomly choose city 1.
6. City 1 must now go to city 6.

The resulting tour is
(2 3 4 5 1 6);

and is composed entirely of edges taken from the two parents.
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The ER operator does not take into account the common sequences of the
parent tours. Therefore, an enhancement of the ER operator was developed
in which the edges starting from the current city which are present in both
parents have priority above the edges which are unique for one of the parents.
There also exist modifications for making better choices, when random edge
selection is necessary (Starkweather et al. 1991).

On the other hand, the edge recombination operator indicates clearly that
the path representation might be too poor to represent important properties of
a tour – it is for this reason that it was complemented by the edge list.

The ER operator was tested by Whitley et al. (1989) on three TSPs with 30,
50, and 75 cities – in all cases it returned a solution better than the previously
“best known” sequence.

Whitley et al. (1989, 1991) showed that the ER operator may also be used
in combination with the second type of binary representation described in
Section 4.2. If we define the ordered list: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3),
(2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6), the parents of our
example may be written as

parent 1: 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1;

parent 2: 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1:

In our example, the created offspring is represented by

0 0 0 1 1 1 0 0 1 1 0 0 1 0 0:

It is easy to see that all of the edges of the offspring except its last one are
taken from one of the parents:

parent 1: 1 00 0 1 1 0 0 0 10 0 1 0 1;

parent 2: 01 0 1 0 0 1 01 1 0 0 0 01;

offspring: 00 0 1 1 1 0 0 1 1 0 0 1 0 0:

The edge (5,6) occurred in both parents. However, it was not passed on to
the offspring.

4.3.8. Sorted match crossover
Thesorted match crossover operatorwas proposed by Brady (1985). It (see
also Mühlenbein et al. 1988) searches for subtours in both the parent tours
which have the same length, which start in the same city, which end in the
same city and which contain the same set of cities. If such subtours are found
the cost of these substrings are determined. The offspring is constructed from
the parent which contains the subtour with the highest cost by substituting
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this subtour for the subtour with the lowest cost. Consider, for example, the
parent tours

(1 2 3 4 5 6 7 8) and

(3 4 6 5 7 2 8 1):

The first parent contains the subtour (4 5 6 7), and the second parent the
subtour (4 6 5 7). These subtours have the same length, both begin in city 4,
both end in city 7, and both contain the same cities. Suppose that the cost of
the subtour (4 5 6 7) is higher than the cost of the subtour (4 6 5 7). Then, the
following offspring is created:

(1 2 3 4 6 5 7 8):

Mühlenbein et al. (1988) concluded that the sorted match crossover was
useful in reducing the computation time, but that it is a weak scheme for
crossover.

4.3.9. Maximal preservative crossover (MPX)
The maximal preservative operatorwas introduced by M̈uhlenbein et al.
(1988). It works in a similar way to the PMX operator. It first selects a
random substring of the first parent whose length is greater than or equal to
10 (except for very small problem instances), and smaller than or equal to the
problem size divided by 2. These restrictions on the length of the substring
are given to assure that there is enough information exchange between the
parent strings without losing too much information from any of these parents.
Next, all the elements of the chosen substring are removed from the second
parent. After this, the substring chosen from parent 1 is copied into the first
part of the offspring. Finally, the end of the offspring is filled up with cities
in the same order as they appear in the second parent. Hence, if we consider
the parent tours

(1 2 3 4 5 6 7 8) and

(2 4 6 8 7 5 3 1);

and we select the substring (3 4 5) from the first parent. The MPX operator
gives the following offspring

(3 4 5 2 6 8 7 1):

The advantage of the MPX operator is that it only destroys a limited
number of edges; the maximum number of edges which may be destroyed
is equal to the length of the chosen substring. Sometimes, at the beginning
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of the execution of an algorithm this maximum number might be reached.
However, with the progress of the computation, solutions have more common
edges, so that the number of destroyed edges decreases. Mühlenbein et al.
(1988) performed additional mutation in case less than 10% of the edges were
destroyed.

4.3.10. Voting recombination crossover (VR)
The voting recombination operator(Mühlenbein 1989) does not originate
from biology. It can be seen as a p-sexual crossover operator, where p is a
natural number greater than or equal to 2. It starts by defining a threshold,
which is a natural number smaller than or equal to p. Next, for everyi 2 f1,
2, : : : , ng the set ofi-th elements of all the parents is considered. If in this set
an element occurs at least the threshold number of times, it is copied into the
offspring. For example, if we consider the parents (p = 4)

(1 4 3 5 2 6), (1 2 4 3 5 6);

(3 2 1 5 4 6), (1 2 3 4 5 6)

and we define the threshold to be equal to 3 we find

(1 2 x x x 6):

The remaining positions of the offspring are filled with mutations. Hence,
our example might result in

(1 2 4 5 3 6):

We remark that M̈uhlenbein (1989) used the voting recombination operator
in an evolutionary algorithm for theQuadratic Assignment Problem(QAP)
instead of for the TSP. This is an assignment problem in which generalizing
the conditions, the objective function changes from a lineal one to a quadratic
one.

4.3.11. Alternating-position crossover (AP)
Thealternating position crossover operator(Larrañaga et al. 1996a) simply
creates an offspring by selecting alternately the next element of the first
parent and the next element of the second parent, omitting the elements
already present in the offspring. For example, if parent 1 is

(1 2 3 4 5 6 7 8)

and parent 2 is
(3 7 5 1 6 8 2 4);
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Figure 6. Alternating-position crossover (AP).

Figure 7. Displacement mutation (DM).

the AP operator gives (Figure 6) the following offspring

(1 3 2 7 5 4 6 8):

Exchanging the parents results in

(3 1 7 2 5 4 6 8):

4.3.12. Displacement mutation (DM)
The displacement mutation operator(Michalewicz 1992) first selects a
subtour at random. This subtour is removed from the tour and inserted in
a random place. For example, consider the tour represented by

(1 2 3 4 5 6 7 8);

and suppose that the subtour (3 4 5) is selected. Hence, after the removal of
the subtour we have

(1 2 6 7 8):

Suppose that we randomly select city 7 to be the city after which the subtour
is inserted. This results in (Figure 7)

(1 2 6 7 3 4 5 8):

Displacement mutation is also calledcut mutation(Banzhaf 1990).
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Figure 8. Exchange mutation (EM).

4.3.13. Exchange mutation (EM)
Theexchange mutation operator(Banzhaf 1990) randomly selects two cities
in the tour and exchanges them. For example, consider the tour represented
by

(1 2 3 4 5 6 7 8);

and suppose that the third and the fifth city are randomly selected. This results
in (Figure 8)

(1 2 5 4 3 6 7 8):

The exchange mutation operator is also referred to as theswap mutation
operator (Oliver et al. 1987), thepoint mutation operator(Ambati et al.
1991), thereciprocal exchange mutation operator(Michalewicz 1992), or the
order based mutation operator(Syswerda 1991). Ambati et al. (1991) used
repeated exchange mutation. They choose the probability of the performance
of exactlymexchanges equal top(m�1)(1� p), wherep was a parameter and
p2 (0,1). Beyer (1992) also used repeated exchange mutation. He, however,
introduced a control parameters to determine the number of exchanges. Each
individual had its owns-value, thes-value of an offspring was determined by
thes-values of its parents. At the beginning of the algorithm a high number
of exchanges was carried out. Via the algorithm, the number of exchanges
was lowered to 1. This method is adopted from Schwefel (1975).

4.3.14. Insertion mutation (ISM)
The insertion mutation operator(Fogel 1988; Michalewicz 1992) randomly
chooses a city in the tour, removes it from this tour, and inserts it in a randomly
selected place. For example, consider again the tour

(1 2 3 4 5 6 7 8);

and suppose that the insertion mutation operator selects city 4, removes it,
and randomly inserts it after city 7. Hence, the resulting offspring is (Figure
9)

(1 2 3 5 6 7 4 8):
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Figure 9. Insertion mutation (ISM).

Figure 10. Simple inversion mutation (SIM).

The insertion mutation operator is also called theposition based mutation
operator(Syswerda 1991).

4.3.15. Simple inversion mutation (SIM)
The simple inversion mutation operator(Holland 1975; Grefenstette 1987)
selects randomly two cut points in the string, and it reverses the substring
between these two cut points. For example, consider the tour

(1 2 3 4 5 6 7 8);

and suppose that the first cut point is chosen between city 2 and city 3, and the
second cut point between the fifth and the sixth city. This results in (Figure
10)

(1 2 5 4 3 6 7 8):

The simple inversion mutation operator served as the basis for the 2-opt
heuristic for the TSP developed by Lin (1965) and is also used in the appli-
cation of simulated annealing to the TSP (Kirkpatrick et al. 1983).

4.3.16. Inversion mutation (IVM)
The inversion mutation(Fogel 1990, 1993) is similar to the displacement
operator. It also randomly selects a subtour, removes it from the tour and
inserts it in a randomly selected position. However, the subtour is inserted in
reversed order. Consider again our example tour

(1 2 3 4 5 6 7 8);

and suppose that the subtour (3 4 5) is chosen, and that this subtour is inserted
in reversed order immediately after city 7. This gives (Figure 11)

(1 2 6 7 5 4 3 8):
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Figure 11. Inversion mutation (IVM).

Figure 12. Scramble mutation (SM).

Banzaf (1990) referred to the insertion mutation operator as thecut-inverse
mutation operator.

4.3.17. Scramble mutation (SM)
Thescramble mutation operator(Syswerda 1991) selects a random subtour
and scrambles the cities in it. For example, consider the tour

(1 2 3 4 5 6 7 8);

and suppose that the subtour (4 5 6 7) is chosen. This might result in (Figure
12)

(1 2 3 5 6 7 4 8):

We would like to point out that it was suggested in connection with schedul-
ing problems instead of with the TSP.

In this section we have included different crossover and mutation oper-
ators that had been developed for the dominated path representation. The
majority of the work in which the optimal permutation is obtained uses this
representation. However, from a historic point of view, the detection of the
problems done by Grefenstette et al. (1985), problems that appear with this
representation in hyperplans analysis, are those that have caused the intro-
duction of two new representations (ordinal and adjacency) which offer some
of improvements over the path representation.

According to Grefenstette et al. (1985):

: : : there is a problem in applying the hyperplane analysis of GA’s to this
representation. The definition of a hyperplane is unclear in this represen-
tation. For example (a,�,�,�,�) appears to be a first order hyperplane, but
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it contains the entire space. The problem is that in this representation,
the semantics of an allele in a given position depends on the surround-
ing alleles. Intuitively, we hope that GA’s will tend to construct good
solutions by identifying good building blocks and eventually combining
these to get larger building blocks. For the TSP, the basic building blocks
are edges. Larger building blocks correspond to larger subtours. The path
representation does not lend itself to the description of edges and longer
subtours in ways which are useful to the GA.

4.4. Adjacency representation

In theadjacent representation(Grefenstette et al. 1985) a tour is represented
as a list ofn cities. City j is listed in positioni if, and only if, the tour leads
from city i to city j. Thus, the list

(3 5 7 6 4 8 2 1)

represents the tour

1-3-7-2-5-4-6-8:

Note that any tour has one unique adjacency list representation.
An adjacency list may represent an illegal tour. For example,

(3 5 7 6 2 4 1 8)

represents the following collection of cycles:

1-3-7, 2-5, 4-6 and 8:

It is easy to see that for the adjacency representation the classical crossover
operator may result in illegal tours. A repair algorithm might be necessary.
Other crossover operators were defined and investigated for the adjacency
representation. We will describe them one by one.

4.4.1. Alternating edge crossover
Thealternating edge crossoverworks as follows (Grefenstette et al. 1985):
first it chooses an edge from the first parent at random. Second, the partial
tour created in this way is extended with the appropriate edge of the second
parent. This partial tour is extended by the adequate edge of the first parent,
etc. The partial tour is extended by choosing edges from alternating parents.
In case an edge is chosen which would produce a cycle into the partial tour,
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the edge is not added. Instead, the operator selects randomly an edge from
the edges which do not produce a cycle.

For example, the result of an alternating edge crossover of the parent

(2 3 8 7 9 1 4 5 6)

(7 5 1 6 9 2 8 4 3)

might be

(2 5 8 7 9 1 6 4 3):

The first edge chosen is (1,2); it is chosen from the first parent. The second
edge chosen, edge (2,5), is selected from the second parent, etc. Note that the
only random edge introduced is edge (7,6) instead of edge (7,8).

Experimental results with the alternating edges operator have been
uniformly discouraging. The obvious explanation seems to be that good
subtours are often disrupted by the crossover operator. Ideally, an operator
ought to promote the development of coadapted alleles, or in the TSP, longer
and longer high performance subtours. The next operator was motivated by
the desire to preserve longer parental subtours.

4.4.2. Subtour chunks crossover

Using thesubtour chunks operator(Grefenstette et al. 1985), an offspring is
constructed from two parent tours as follows: first it takes a random length
subtour of the first parent. This partial tour is extended by choosing a subtour
of random length from the second parent. The partial tour is extended by
taking subtours from alternating parents. If a subtour is selected from one of
the parents which would lead to an illegal tour, it is not added. Instead an
edge is added which is chosen at random from the edges that do not produce
a cycle into the partial tour.

4.4.3. Heuristic crossover
The heuristic crossover operator(Grefenstette et al. 1985) first selects at
random a city to be the starting point of the offspring’s tour. Then, the edges
which start from this city are compared and the shorter of these two edges is
chosen. Next, the city on the other side of the chosen edge is selected as a ref-
erence city. The edges which start from this reference city are compared and
the shortest one is added to the partial tour, etc. If, at some stage, a new edge
would introduce a cycle into the partial tour, then the tour is extended with
an edge chosen at random from the remaining edges which do not introduce
cycles.
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4.4.3.1.Modifications.Jog et al. (1989) suggested the following modification.
In case choosing the shortest edge produces a cycle into the partial tour, the
largest edge is checked. If choosing this edge does not lead to an illegal tour, it
is accepted. Otherwise, the shortest edge from a pool ofq randomly selected
edges is chosen, whereq is a parameter. This variation of the heuristic operator
tries to combine short subpaths of the different parent tours. However, it might
be possible that the operator is not able to remove all undesirable crossings
of edges. Therefore, it is not suitable for fine local tuning.

Suh and Van Gucht (1987) introduced a heuristic crossover operator which
is based on the 2-opt algorithm of Lin (1965). This operator selects two
random edges, (k,l) and (m,n) and checks whether

d(k; l) + d(m;n) > d(k; n) + d(m; l);

whered(i,j) represents the distance between cityi and city j. In case the
inequality above is true, the edges (k,l) and (m,n) are replaced by the edges
(k,n) and (m,l).

The main advantage of the adjacency representation is that it allows hyper-
plane analysis, also called schemata analysis (Oliver et al. 1987; Grefenstette
et al. 1985; Michalewicz 1992).

Unfortunately, all the operators described above give poor results. In partic-
ular, the experimental results with the alternating edge operator have been
uniformly discouraging. This is because this operator often destroys good
subpaths of the parent tours. Therefore, the subtour chunk operator by choos-
ing subpaths instead of edges from the parent tours, performs better than
the alternating edge operator. However, it still has quite a low performance,
because it does not take into account any information available about the
edges. The heuristic crossover operator on the other hand, selects the better
edge of the two possible edges, and therefore it performs far better than the
other two operators. However, the performance of the heuristic operator is
not remarkable either (Grefenstette et al. 1985). Note that also other mutation
operators have to be developed, since the classical mutation operator is only
defined for binary strings.

4.5. Ordinal representation

Also in theordinal presentation, which was introduced by Grefenstette et al.
(1985) a tour is represented as a list ofn cities. Thei-th element of the list
is a number in the range from 1 ton� i + 1. There exists an ordered list of
cities, which serves as a reference point.

The easiest way to explain the ordinal representation is by giving an exam-
ple. Assume, for example, that the ordered list is given by

L = (1 2 3 4 5 6 7 8):
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Now the tour 1-5-3-2-8-4-7-6 is represented by

T = (1 4 2 1 4 1 2 1):

This should be interpreted as follows. The first number of T is a 1. This
means that to get the first city of the tour we have to take the first element of
list L and remove it fromL. The partial tour is: 1. The second element of T
is a 4. Therefore, to get the second city of the tour we have to get the fourth
element of listL, which is city 5. We remove city 5 from listL. The partial
tour is: 1-5. If we continue in the above described way until all the elements
of L have been removed, we finally find the tour 1-5-3-2-8-4-7-6.

The advantage of the ordinal presentation is that the classical crossover
operator can be used. This follows from the fact that thei-th element of the
tour representation is always a number in the range from 1 ton� i + 1. It is
easy to see that partial tours to the left of the crossover point do not change,
whereas partial tours to the right of the crossover point are disrupted in a quite
random way.

As predicted by the above consideration of subtour disruptions, experi-
mental results using the ordinal representation have been generally poor.

4.6. Matrix representation

At least three attempts have been done to use abinary matrix representation.

1. Fox and McMahon (1987) suggested representing a tour as a matrix in
which the element in rowi and columnj is a 1 if, and only if, in the tour city
i is visited before cityj. For example, the tour 2-3-1-4 is represented by the
matrix:

0
BB@

0 0 0 1
1 0 1 1
1 0 0 1
0 0 0 0

1
CCA :

Suppose that a solution of then-cities TSP is represented by matrixM. M
has the following properties:

1.
P

n

j=1
P

n

i=1mij = n(n�1)
2 (i,j 2 f1, 2,: : : , ng),

2. mii = 0 (i 2 f1, 2,: : : , ng),
3. (mij = 1^ mjk = 1)) mik = 1 (i,j,k 2 f1, 2,: : : , ng).
In case the number of 1’s in the matrix is less than1

2n(n� 1) and the other
requirements are satisfied, it is possible to complete the matrix in such a way
that it represents a legal tour.
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For this matrix representation two new crossover operators were developed:
the intersection operator and the union operator. Theintersection operator
constructs an offspringO from parentP1 andP2 in the following way. First,
for all i,j 2 f1, 2,: : : , ng it defines

oij : =
�

1 if p1;ij = p2;ij = 1;
0 otherwise:

Second, some 1’s which are unique for one of the parents are “added” toO,
and the matrix is completed with the help of an analysis of the sum of rows
and columns, in such a way that the result is a legal tour. For example, the
parent tours 2-3-1-4 and 2-4-1-3 which are represented by0

BB@
0 0 0 1
1 0 1 1
1 0 0 1
0 0 0 0

1
CCAand

0
BB@

0 0 1 0
1 0 1 1
0 0 0 0
1 0 1 0

1
CCA ;

give after the first phase 0
BB@

0 0 0 0
1 0 1 1
0 0 0 0
0 0 0 0

1
CCA :

This matrix can be completed in six different ways, since the only restriction
on the offspring tour is that it starts in city 2. One possible offspring is the
tour 2-1-4-3 which is represented by:0

BB@
0 0 1 1
1 0 1 1
0 0 0 0
0 0 1 0

1
CCA :

Theunion operatordivides the set of cities into two disjoint groups. See
Fox and McMahon (1987) for a special method of making this division. For
the first group of cities the matrix elements of the offspring are taken from
the first parent, for the second group they are selected from the second parent.
The resulting matrix is completed by an analysis of the sum of the rows
and columns. For example, consider again the two parents given above, and
suppose that we divide the set of cities intof1,2g andf3,4g. Hence, after the
first step of the union operator we have0

BB@
0 0 x x

1 0 x x

x x 0 0
x x 1 0

1
CCA ;
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which might be completed to

0
BB@

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

1
CCA ;

which represents the tour 4-3-2-1.
Fox and McMahon did not define a mutation operator.
The experimental results on different topologies of the cities reveal an inter-

esting characteristic of the union and intersection operators, which allows
progress to be made even when the elitism (preserving the best) option was
not used. This was not the case for either ER or PMX operators.

2. Seniw (1991) had another approach. He defined the matrix element in
the i-th row and thej-th column to be 1 if, and only if, in the tour cityj is
visited immediately after cityi. This implies that a legal tour is represented
by a matrix of which each row and each column contains precisely one 1.
We remark that a matrix which has precisely one 1 in each row and in each
column does not necessarily represent a legal tour. For example, consider the
matrices

0
BB@

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

1
CCAand

0
BB@

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

1
CCA ;

where the first matrix represents the tour 2-3-1-4, and the second one the set
of subtoursf1-2, 3-4g.

Mutation is defined as follows: first several rows and columns are selected.
The elements in the intersections of these rows and columns are removed and
randomly replaced, though in such a way that the result is a matrix of which
each row and each column contains precisely one 1. For example, consider
again the matrix representation of the tour 2-3-1-4 and suppose that we select
the first and the second row and the third and the fourth column. First, the
matrix elements in the intersections of the rows and columns are removed.
Hence,

0
BB@

0 0 x x

0 0 x x

1 0 0 0
0 1 0 0

1
CCA :
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Randomly replacing the elements may give

0
BB@

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1
CCA :

Note that this matrix does not represent a legal tour. The crossover operator
which was defined creates an offspringO from parentsP1 andP2 as follows.
First, for all i,j 2 f1, 2,: : : , ng it defines

oij : =
�

1 if p1;ij = p2;ij = 1;
0 otherwise:

Second, it alternatively takes a 1 from one of the parents, which is unique
for that parent, and changes the corresponding matrix element of the offspring
from a 0 into a 1. Finally, if any rows in the offspring still do not contain a 1,
1s are added randomly, though in such a way that the result is a matrix which
has precisely one 1 in each row and in each column. For example, the parent
tours 2-3-1-4 and 2-4-1-3, which are represented by

0
BB@

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

1
CCAand

0
BB@

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

1
CCA ;

may create the following offspring:

0
BB@

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1
CCA ;

which is again not a representation of a legal tour.
We have seen that the defined operators do not necessarily result in legal

tours. It is possible that the operators convert the parent tour(s) into a collection
of subtours. These subtours are allowed in the hope that natural clustering
takes place (however, subtours which contain less thanqcities are not allowed,
whereq is a parameter). After the execution of the genetic algorithm the best
solution found is converted into a legal tour. This is done with the help of a
deterministic algorithm which combines pairs of subtours.

This evolution program gave a reasonable performance on several test cases
from 30 cities to 512 cities.
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3. The last approach based on a binary matrix representation was proposed
by Homaifar and Guan (1991). They used the same representation as Seniw
(1991), but in combination with different crossover and mutation operators.
The crossover operators they used exchange all entries of the parent matrices
either after a 1-point crossover or a 2-point crossover. Afterwards, an addi-
tional “repair algorithm” is run to assure that the result is a matrix of which
each row and each column contains precisely one 1, and to connect any cycles
to produce a legal tour.

A 1-point crossover can be seen as follows. Consider the representations
of the tours 1-2-3-4 and 4-3-2-1. These are

0
BB@

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

1
CCAand

0
BB@

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

1
CCA ;

respectively. Suppose, that the crossover point is chosen between the second
and the third column.

Hence,

0
BB@

0 1 0 0
0 0 1 0
0 0 1 0
1 0 0 0

1
CCAand

0
BB@

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

1
CCA :

Crossover results in

0
BB@

0 1 0 1
0 0 0 0
0 0 0 0
1 0 1 0

1
CCAand

0
BB@

0 0 0 0
1 0 1 0
0 1 0 1
0 0 0 0

1
CCA ;

which of course do not represent legal tours.
A 2-point crossover works according to the same idea. Consider again the

two parent tours given above, and suppose that we choose the first crossover
point to be between the first and the second column, and the second to be
between the third and the fourth column. Hence,

0
BB@

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

1
CCAand

0
BB@

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

1
CCA :
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The result of the crossover is
0
BB@

0 0 0 0
0 0 0 0
0 1 0 1
1 0 1 0

1
CCAand

0
BB@

0 1 0 1
1 0 1 0
0 0 0 0
0 0 0 0

1
CCA ;

which again do not represent legal tours.
The mutation operator used by Homaifar and Guan (1991) was heuristic

inversion. This operator reverses the order of the cities between two randomly
chosen cut points. If the distance between two cut points is large, the operator
explores connections between “good” paths, otherwise the operator performs
local search.

The reported results (Homaifar et al. 1993) indicate that this approach
performed successfully on 30–100 city TSP problems.

5. Hybridization with Local Search

Genetic algorithms can be applied to problems of which very little knowledge
is available. However, Grefenstette (1987b) showed that in many occasions
it is possible to incorporate problem-specific knowledge in these algorithms.
One example of incorporated knowledge we have already seen: the heuristic
crossover operator (see Section 4.4.3).

Another opportunity to use problem-specific knowledge is in the deter-
mination of the initial population. The initial population can be chosen at
random. However, it is also possible to start with a population which already
has some quality. This is calledseeding. Lawler et al. (1985) and Johnson
(1990) described how a population of medium quality can be created. Note
that seeding has to be done very carefully, since a genetic algorithm started
with an initial population of little variety may quickly converge to a local
optimum. Banzhaf (1990) and Grefenstette (1987b) defined measures of the
population variance. An algorithm which is frequently used for seeding is the
2-optalgorithm (Lin 1965).

While the genetic algorithms are not well suited for finely tuned local
search, Goldberg (1989) suggested crossing them with a local search algo-
rithm. In this way the evolutionary algorithm searches for the “hills”, and
the local search algorithm climbs them. Several attempts have been done to
implement Goldberg’s suggestion, amongst others by Ackley (1987); Gorges-
Schleuter (1989); Jog et al. (1989); Mühlenbein (1989, 1991); M̈uhlenbein
and Kindermann (1989); M̈uhlenbein et al. (1987, 1988); Suh and Van Gucht
(1987) and Ulder et al. (1990). They all used algorithms of the following
structure:
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1. Construct a (random or seeded) initial population.
2. Apply local search to every individual of the initial population and replace

every individual by the better individual (e.g. local optimum), which was
reached by applying local search to it.

3. Create new individuals with the help of genetic operators and add them
to the population.

4. Use local search to replace each new created individual in the current
population by a better individual (e.g. local optimum).

5. Reduce the extended population to its original size in accordance with a
selection criterion.

6. If it does not comply with a stopping criteria: go to step 3.
The local search in the steps 2 and 4 may be performed with, e.g. the

2-opt algorithm (Lin 1965) or the Or-opt algorithm (Or 1976; Lawler et al.
1985). Ulder et al. (1990) used a local search algorithm based on Lin and
Kernighan neighbourhoods (Lin and Kernighan 1973). Lin et al. (1993) even
applied simulated annealing. They worked with neighbourhoods determined
by the following swapping strategies: random 2-exchange and locally adjacent
swap. Also a combination of different local search techniques may be chosen:
Prinetto et al. (1993) applied in every generation Or-opt, 2-opt, and Group
Optimization with a probability of 0.5, 0.3 and 0.2 respectively. They also
used a combination of several crossover operators.

Instead of using local search in every iteration of a genetic algorithm it
is also possible to wait the algorithm has reached an interesting stage in the
search process. Another possibility is to perform local search only when the
genetic algorithm has terminated.

Mühlenbein and Gorges-Schleuter developed a parallel genetic algorithm
based on the above described structure (Gorges-Schleuter 1989; Mühlenbein
1989, 1991; M̈uhlenbein et al. 1987, 1988). They called their algorithm
ASPARAGOS (ASynchronous PARAllel Genetic Optimization Strategy).
Another parallel genetic algorithm for the Travelling Salesman Problem is
described in Fogel (1990).

6. Experimental Results with the Path Representation

6.1. Introduction

Faced with the impossibility of carrying out an analytic comparison of the
different operators presented in the previous section, we have carried out an
empirical comparison between the different combination of crossover and
mutation operators presented in relation with the path representation.
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The Genetic Algorithm that we used follows the principles of GENITOR
(Whitely et al. 1989). In the mentioned algorithm, only one new individual
is created in each iteration of the algorithm. This new individual replaces
the worst of the individuals existing in the population, only if its evaluation
function is better. The criteria for stopping the algorithm is double. In this
way, if in 1000 successive iterations the average cost of the population has
not decreased, the algorithm will be stopped, not allowing, whatsoever more
than 50000 evaluations in each search. In the experiments presented here
the following parameters have been established: size of population (� =
200), probability of mutation (pm = 0.01) and selective pressure (b = 1.90).
The last parameter, introduced in GENITOR, is related with the assigning of
probability for the selection of the parents. In short, it indicates the preference
of the selection awarded to the best of the individuals of the population making
a comparison with the average individual. In this way, for example, if b =
2 this signifies that the best individual has been assigned the probability of
converting itself into the father which is double that of the average individual.

For each of the 48 (8� 6) combinations between crossover and mutation
operators considered, 10 searches have been realized. The searches have
been realized using the SPARC-server 100 computer, under the Solaris 2.3
operating system. The treatment of the data obtained in the experiments
has been realized with the SPSS package (1988), studying the statistical
significance (� = 0.05) of the average results using Kruskal–Wallis test.

6.2. Results

The following files have been used in the empirical study: Distances in
kilometers between the 47 capitals of the Spanish peninsular provinces, as
well as the well known Gr̈otschels24, and Grötschels48, which have been
used previously in the empirical comparisons. These are two files that can be
obtained via ftp in many sites, that represent the distances between 24 and 48
imaginary cities. They are often used in TSP problems to know the fitness of
the algorithm we use, and can be defined like a classical experiment in the
TSP.

Capitals of the Spanish peninsular provinces
Table 4 shows the best results and the average results obtained for each
possible combination between the crossover and mutation parameters con-
sidered. Distances in kilometers have been used. They have been provided by
Center of Publications of the General Technical Secretary of the Department
of Public Works, Transport and Environment.

We are not aware of any other work on these characteristics that have been
applied to this file, so a comparison with other references is not possible.
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Table 4. Tour lengths for capitals of Spanish provinces

AP CX ER OX1 OX2 PMX POS VR

DM best results 7309 7552 6238 6564 6333 7114 6238 8256 6238
DM average results 12021 10610 8644 8785 9486 10407 9013 15956 10615
EM best results 7510 7559 6238 6472 6412 7666 6245 8272 6238
EM average results 12195 10703 8649 9175 9850 11710 9331 16178 10974
ISM best results 7452 8240 6238 6437 6238 6470 6238 7826 6238
ISM average results 11950 10544 8649 8850 9644 10744 9112 15796 10661
IVM best results 7266 7964 6238 6396 6558 6803 6238 8064 6238
IVM average results 11944 10593 8545 8883 9507 10400 8922 16077 10609
SIM best results 10596 8813 6245 6305 6364 7322 6238 9685 6238
SIM average results 14763 10661 9243 9831 11045 13073 10188 16589 11924
SM best results 10364 8440 6238 6311 6472 7985 6388 9797 6238
SM average results 15014 10672 9461 10085 11077 13335 10189 16739 12071

7266 7552 6238 6305 6238 6470 6238 7826 6238
12981 10630 8865 9268 10101 11612 9459 16222 11142

The tour with the lowest cost has been evaluated in 6238 km, which has
been obtained ten times (5 of them with ER crossover operator, 4 of them
with POS, and the resting one with OX2). All of the mutation operators have
been capable of finding this tour, although the ISM was the one which found
it the most number of times. The statistically significant differences have
been found in relation with average behavior, related with crossover operator
likewise with the mutation operator. The best crossover operators were in
the following order: ER, OX1, POS, OX2 and CX, while the best mutation
operators were: IVM, DM, and ISM.

In relation to the speed of the convergence, measured by the number of
evaluations made until the convergence of the algorithm, the fastest crossover
operators, were the following: ER, PMX, OX1, POS, and OX2, likewise the
mutation operators were: SIM and SM.There is a more profound study of the
above mentioned data, that work with different sizes of population, mutation
probabilities and selective pressure, which you can refer to in Larrañaga et
al. (1996c).

Grötschels24
This file, the same as the following one, has been used as a bank of tests in
several approximations to TSP using the Genetic Algorithm.

Table 5 shows the results obtained. The best results, 1272 km, has been
achieved with the following crossover operators: ER, OX1, OX2, PMX and
POS. All the mutation operators find the above mentioned value.
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Table 5. Tour lengths for the Grötschels24 problem

AP CX ER OX1 OX2 PMX POS VR

DM best results 1349 1316 1272 1272 1289 1272 1272 1340 1272
DM average results 1470 1416 1274 1305 1322 1355 1305 1777 1403
EM best results 1369 1388 1272 1272 1289 1296 1272 1380 1272
EM average results 1487 1474 1274 1299 1311 1416 1312 1903 1434
ISM best results 1300 1289 1272 1272 1272 1313 1272 1565 1272
ISM average results 1406 1461 1272 1307 1316 1368 1298 1993 1428
IVM best results 1301 1344 1272 1272 1272 1298 1272 1390 1272
IVM average results 1406 1408 1277 1303 1329 1369 1315 1904 1414
SIM best results 1421 1302 1272 1272 1272 1327 1289 1390 1272
SIM average results 1588 1441 1276 1313 1342 1393 1329 1737 1428
SM best results 1396 1330 1272 1272 1300 1306 1279 1537 1272
SM average results 2996 1423 1277 1300 1367 1388 1316 1920 1623

1300 1289 1272 1272 1272 1272 1272 1340 1272
1725 1437 1275 1305 1331 1382 1313 1872 1455

At the average results level, improvements have been reached with the
following crossover operators: ER, OX1, POS, OX2, and PMX, likewise
with the mutation operators: DM and IVM.

Fast crossover operators in this example were: ER, PMX, OX1 and OX2,
while SIM likewise SM can be considered as fast mutation operators.

Grötschels48
In Table 6 the average and the best results are shown. The best search corre-
sponds to the tour of 5074 km, worse than optimal of this problem (5046
km). This optimal has been reached using the combination of the ER + SIM
operators relaxing the stopping conditions, and increasing the size of the
population.

The statistically significant differences has been found in relation with
average behavior, related with crossover operator, with the best being ER,
POS, OX1 and OX2 operators. The best behavior of the mutation operators
were ISM, DM and IVM operators.

The number of necessary iterations to reach the convergence, ER, PMX
and POS could be considered as fast crossover operators, likewise with the
mutation operators SIM and SM.

6.3. Conclusions

Although we are aware that the experiments made over three tests files don’t
allow us to generalize the results obtained in other TSP problem, a certain
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Table 6. Tour lengths for the Grötschels48 problem

AP CX ER OX1 OX2 PMX POS VR

DM best results 6403 10387 5137 5142 5123 5560 5186 14931 5123
DM average results 7082 11398 5208 5368 5390 6150 5459 15595 7706
EM best results 6606 9719 5134 5194 5150 6420 5168 14760 5134
EM average results 7220 10649 5232 5458 5651 7103 5361 15325 7750
ISM best results 6311 9514 5107 5234 5080 6092 5158 15228 5080
ISM average results 6905 10543 5176 5422 5536 6496 5401 15554 7629
IVM best results 6769 9905 5100 5145 5169 5519 5174 15267 5100
IVM average results 7276 11139 5238 5436 5455 6139 5395 15702 7723
SIM best results 9847 9356 5074 5424 5097 7010 5179 15205 5074
SIM average results 10304 10610 5154 5538 5451 7430 5493 15663 8205
SM best results 8802 9786 5074 5280 5251 6663 5164 15014 5074
SM average results 10220 11014 5138 5516 5715 7523 5413 15580 8265

6311 9356 5074 5142 5080 5519 5158 14760 5074
8168 10892 5191 5456 5533 6807 5420 15570 7880

uniformity of behavior of the operators in the different examples can be seen.
In this way, the crossover operators ER, OX1, POS and OX2, likewise the
mutation operators DM, IVM, and ISM were those which had the best results.
If we consider speed related with the number of evaluations until convergence,
the classification for the crossover operators was: ER, PMX, OX1 and POS,
likewise for the mutation operators: SIM and SM. The operators of special
interest, i.e. the ones that had the best results and at the same time were the
quickest, are ER, OX1 and POS.

Starkweather et al. (1991) present an empirical comparison of six crossover
operators, designed for the path representation: ER, OX1, OX2, POS, PMX
and CX. Each of the above operators was used to solve the 30 city TSP. None
of the operators use mutation. The results obtained indicate how good ER,
OX1, OX2, and POS operators are.

Although, at the start it was considered that the tasks of sequencing were
similar, so only one genetic operator would be enough for any problem of
sequencing, results indicate that the effectiveness of different operators is
dependent on the problem domain; operators which work well in problem
where adjacency is important (e.g. TSP) may not be effective for other types
of sequencing problems.

Likewise, for example, in the problem of the search of the optimal permu-
tation with which we have recently been working in Bayesian networks
(Larrañaga et al. 1996a, 1996b) using crossoverand mutation operators devel-
oped in relation with path representation, the crossover operators that provided
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the best results, in both cases, were: CX, OX2 and POS operators. Comparing
this with the results obtained here, the difference is that the CX operator is
included and the ER operator is excluded. Note that in the last two problems
the search is made over the non cyclic permutations ofn integer numbers,
in contradiction with TSP, in which the optimal cyclic permutation is to be
searched.

7. Conclusions

We have considered several representations and operators which may be
used in genetic algorithms meant to solve the Travelling Salesman Problem.
The first representation at which we looked was thebinary representation.
This representation might be useful for small problem instances of the TSP.
However, for larger problem instances the binary strings which represent
the tours become unmanageably large. Another disadvantage of the binary
representation is that the classical operators do not necessarily result in legal
offspring tours; repair algorithms would be necessary.

The second representation described, was thepath representation. This
representation can be seen as the most natural of those considered. It is also
the one that is used most often, and a large variety of operators have been
developed for it. These operators try to pass on two types of information to
the offspring: the absolute position of the cities in the parent tours and the
relative order of the cities in the parent tours. Some operators, e.g. the CX
operator and the position based operator, pay most attention to the former
type of information transfer. Other operators, e.g. the order based operator,
the ER operator and the heuristic operator, pay more attention to the latter
type. Since the TSP searches for a cycle of which the cost is independent of
the chosen starting city, it can be expected that information about the relative
order of the cities is more important to pass on than the information about the
absolute position of the cities.

Few results can be found on the comparison of the performance of the
different operators from a mathematical point of view. This, amongst other
reasons, is due to the fact that, for most operators, schemata analysis is quite
difficult. Some results can be found. Oliver et al. (1987) concluded from
theoretical and empirical results that the OX operator is better than the PMX
operator and that the PMX operator is better than the CX operator. Grefenstette
et al. (1985) showed that it was better to use a heuristic crossover operator.
However, Whitley et al. (1989, 1991) showed that their ER operator worked
even better than the heuristic crossover operator. Our results, obtained with 3
different examples, using 48 combinations between 8 crossover operators and
6 mutation operators, show the superiority of the following operators: ER,
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OX1, POS and OX2 (crossover operators), and DM, IVM and ISM (mutation
operators).

The third representation considered was theadjacency representation. We
have seen that for this representation several crossover operators have been
developed. However, unfortunately all the described crossover operators give
a low performance. The created offspring does not inherit enough adequate
information from its parents.

The penultimate representation which we described was theordinal repre-
sentation. The advantage of this representation is that the classical operators
can be used. However, it gives poor results.

The last representation to which we paid attention to was thematrix repre-
sentation. In fact we did not consider one matrix representation, but two:
the representation used by Fox and McMahon (1987), and the representation
used by Seniw (1991) and by Homaifar and Guan (1991). The main difficulty
using these matrix representations is to define operators which lead to legal
offspring. In both the approaches of Seniw (1991) and Homaifar and Guan
(1991), additional repair algorithms are necessary to assure that the offspring
is a legal tour.

Although it may be bit out of the reach of this paper, we also discussed
briefly the hybridization of a genetic algorithm with local search. We did
this since the creation of a good evolutionary algorithm seems to inevitably
include local search techniques.

Another aspect that could be of interest is to compare the results obtained
with the approximations based on the Genetic Algorithms examined here, with
other techniques included in the Evolutionary Computation – Evolutionary
Programming, Evolutionary Strategies: : : –, as well as other heuristics of
optimization – Simulated Annealing, Tabu Search, Threshold Accepting,
: : : –.
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