
EUROCON 2003 Ljubljana, Slovenia

Abstract--This paper shows the way that genetic algorithms

can be used to solve n-Queen problem. Custom chromosome
representation, evaluation function and genetic operators are
presented. Also, a global parallel genetic algorithm is
demonstrated as a possible way to increase GA speed. Results
are shown for several large values of n and several conclusions
are drawn about solving NP problems with genetic algorithms.

Index Terms--global parallel genetic algorithm, n-queen
problem, tournament selection.

I. INTRODUCTION

ROBLEMS with no deterministic solutions that run in
polynomial time are called NP-class problems. Because

of their high complexity (e.g. O(2n) or O(n!)) they cannot be
solved in a realistic timeframe using deterministic techniques.
To solve these problems in a reasonable amount of time,
heuristic methods must be used.

Genetic algorithms (GAs) are powerful heuristic methods,
capable of efficiently searching large spaces of possible
solutions. However, due to intense computations performed
by GAs, some form of parallelization is desirable to increase
performance.

This paper will present an implementation of global
parallel GA for solving n-Queen problem.

II. N-QUEEN PROBLEM

The classic combinatorial problem is to place eight queens
on a chessboard so that no two attack. This problem can be
generalized as placing n nonattacking queens on an n×n
chessboard. Since each queen must be on a different row and
column, we can assume that queen i is placed in i-th column.
All solutions to the n-queens problem can therefore be
represented as n-tuples (q1, q2, …, qn) that are permutations
of an n-tuple (1, 2, 3, …, n). Position of a number in the tuple
represents queen's column position, while its value represents
queen's row position (counting from the bottom) Using this
representation, the solution space where two of the
constraints (row and column conflicts) are allready satistfied
should be searched in order to eliminate the diagonal
conflicts. Complexity of this problem is O(n!). Figure 1
ilustrates two 4-tuples for the 4-queen problem.

Figure 1: n-tuple notation examples

The problem with determining a good fitness function for
n-Queen problem is the same as for any combinatory
problem: the solution is either right or wrong. Thus, a fitness
function must be able to determine how close a wrong
solution is to a correct one. Since n-tuple representation
eliminates row and column conflicts, wrong solutions have
queens attacking each other diagonally. A fitness function
can be designed to count diagonal conflicts: more conflicts
there are, worse the solution. For a correct solution, the
function will return zero.

For a simple method of finding conflicts [4], consider an n-
tuple: (q1,..., qi,..., qj, ..., qn). i-th and j-th queen share a
diagonal if:

ji qjqi −=− (1)

or

ji qjqi +=+ (2)

which reduces to:

jiqq ji −=− (3)

This simple approach results in fitness function with
complexity of O(n2). It is possible to reduce complexity to
O(n) by observing diagonals on the board. There are 2n-1
"left" (top-down, left to right) and 2n-1 "right" (bottom-up,
right to left) diagonals (see figures 2 and 3)

Figure 2: Third "left" diagonal

Solving n-Queen problem using
global parallel genetic algorithm

Extended Abstract

Marko Božiković, Marin Golub, Leo Budin

P

Q Q
 Q Q
 Q Q
 Q Q

(4, 1, 3, 2) (2, 4, 1, 3)

EUROCON 2003 Ljubljana, Slovenia

set left and right diagonal counters to 0

for i= 1 to n
 left_diagonal[i+qi]++
 right_diagonal[n-i+qi]++
end
sum = 0
for i = 1 to (2n-1)
 counter = 0
 if (left_diagonal[i] > 1)
 counter += left_diagonal[i]-1
 if (right_diagonal[i] > 1)
 counter += right_diagonal[i]-1
 sum += counter / (n-abs(i-n))
end

Figure 3: Second "right" diagonal

A queen that occupies i-th column and qi-th row is located
on i+qi-1 left and n-i+qi right diagonal. A fitness function
first allocates counters for all diagonals. Then, for each
queen, counters for one left and one right diagonal that queen
occupies are increased by one. After evaluation, if a counter
has a value greater than 1, there are conflicts on the
corresponding diagonal. Fitness value is obtained by adding
counter values decreased by 1 (except for counters with value
0) 4 shows a pseudocode for such a function. Note that each
counter value is normalized with respect to length of
corresponding diagonals.

Figure 4: Fitness function for n-queen problem

III. GENETIC ALGORITHMS

Genetic algorithms are search and optimization procedures
based on 3 biological principles: selection, crossover and
mutation. Potential solutions are represented as individuals
that are evaluated using a fitness function representing a
problem being optimized. Basic structure of a genetic
algorithm is shown in the following list:

1. A random population of individuals (potential
solutions) is created. All individuals are evaluated
using a fitness function.

2. Certain number of individuals that will survive into
next generation is selected using selection operator.
Selection is somewhat biased, favoring "better"
individuals.

3. Selected individuals act as parents that are combined
using crossover operator to create children.

4. A mutation operator is applied on new individuals. It
randomly changes few individuals (mutation
probability is usually low)

5. Children are also evaluated. Together with parents
they form the next generation.

Steps 2.-5. are repeated until a given number of iterations
have been run, solution improvement rate falls below some
threshold, or some other stop condition has been satisfied.

One modification of this basic structure is a 3-way
tournament selection used here. Instead of selecting
individuals from one generation to the next, selection and
crossover are performed continuously. First, 3 individuals are
selected completely at random. Then, two individuals with
the highest fitness are combined using crossover to produce
an offspring that will replace the worst individual. There is
no clear distinction between generations.

Individual representation and fitness function for n-Queen
problem were presented in the previous chapter. It is also
necessary to design proper crossover and mutation operators
that will operate on n-tuple representation.

Mutation operator used is very simple: for a given tuple,
we randomly select two positions and swap the numbers.
This creates a new individual, similar to the original one, and
validity of the tuple is preserved. An example is given in
figure 5:

(5 1 3 2 7 4 6)

Becomes

(5 7 3 2 1 4 6)

Figure 5: Mutation operator

There are several possibilities for a crossover operator.
First version is equivalent to the mutation operator: swapping
two random positions in a tuple. Obvious drawback of this
operator is that it does not combine genetic material of
parents.

Another crossover operator is PMX1 crossover. It is similar
to two-point binary crossover operator. First step is random
selection of two positions within chromosomes and exchange
of genetic material:

(2 5 1 | 3 8 4 | 7 6)

(8 4 7 | 2 6 1 | 3 5)

Becomes

(2 5 1 | 2 6 1 | 7 6)

(8 4 7 | 3 8 4 | 3 5)

Figure 6: PMX crossover – first step

In most cases, this will result in invalid tuples, since
numbers in a tuple must be unique. Second step in PMX
crossover eliminates duplicates. In the example above,
number 2 occurs at positions 1 and 4 in the first offspring.
The 2 at position 4 is newer (from the crossover), so the 2 at
position 1 is changed into 3 that was at position 4 before the
crossover.

1 Partially Matched Crossover

EUROCON 2003 Ljubljana, Slovenia

create initial population
evaluate initial population

create slaves

while not done
 start slaves
 wait for slaves to finish
 run mutation operator
end

for i = 1 to slave_iterations
 select 3 individuals
 run crossover operator
 evaluate offspring
 if solution found set done=true;
end

(2 5 1 | 3 8 4 | 7 6)

(8 4 7 | 2 6 1 | 3 5)

Becomes

(3 5 4 | 2 6 1 | 7 8)

(6 1 7 | 3 8 4 | 2 5)

Figure 7: PMX crossover – second step

The third operator is designed for 3-way tournament
selection: parents are compared, and equivalent positions are
copied to the offspring. Other positions in the offspring tuple
are filled in randomly, but care is taken to preserve tuple
validity. If parents are equivalent, one of them is replaced by
a randomly created tuple to avoid chromosome duplication.

(2 5 1 3 8 4 7 6)

(2 4 7 3 6 1 8 5)

(2 8 6 3 1 4 7 5)

Figure 8: 3-way tournament crossover

IV. GLOBAL PARALLEL GENETIC ALGORITHM

For solving n-Queen problem, a Global Parallel Genetic
Algorithm (GPGA) was used. Figure 9 shows basic structure
of a GPGA:

Figure 9: Basic structure of a GPGA

The main idea is to distribute expensive tasks across slaves
(controlled by a master process) to be executed in parallel. In
a classic configuration, the master maintains a population and
executes genetic operators (selection, crossover and
mutation), while slaves perform evaluation. Master assigns a
part of population to each slave and waits for them to finish2.
GPGA can achieve significant increase in speed, especially
for expensive evaluation functions or large populations.
However, due to communication between the master and
slaves, there is an upper limit for the number of slave
processes. Further speed gains are limited by master-slave
communication overhead.

A slightly modified configuration was used for solving n-
Queen problem. Since 3-way tournament selection is used as

2 Synchronous GPGA. In an asynchronous GPGA, the master continues

with execution while slaves are running.

a selection operator, several slaves can run tournament
selection and crossover in parallel, while master performs
only mutation. Figure 10 shows master pseudocode, and
figure 11 shows slave pseudocode:

Figure 10: Master pseudocode

Figure 11: Slave pseudocode

V. EXPERIMENTS AND RESULTS

For testing purposes, a custom C++ program was written.
The master and each of the slaves are run in separate threads,
so the program can be executed on a multi-processor machine
for full speed benefits. Also, since each thread keeps track of
its own running time, the program can be used to simulate a
multi-processor execution on a single-processor machine.

Experiments showed that PMX [3] and 3-way tournament
crossover operators don't behave well, since they tend to
generate close solutions rather quickly, but fail to produce
correct solutions in a reasonable amount of time. They also
tend to unify the solution pool, so the only force of change in
a GA run becomes the mutation operator.

As a final crossover operator, simple mutation operator
was used, slightly modified to fit 3-way tournament selection.
After selection, evaluation and comparison, one of the two
surviving individuals is selected at random and a mutated
copy is used to replace the third individual.

Convergence rate and speed of the algorithm were greatly
improved this way. Also, convergence rate was much more
uniform across runs, obtaining a solution for a given size of
the problem within a rather narrow range of iterations. All
results presented here were obtained using mutation as a
crossover operator.

Problem sizes used were 100, 200, 500, 1000 and 2000
queens. For all problem sizes, two slaves were running 100
iterations per one master iteration each, with population sizes
of 100 individuals, and mutation rate was 0.02.

Ten runs were performed for each problem size, and
average results are given in the table 1. The machine used

master

slaves

EUROCON 2003 Ljubljana, Slovenia

was a P4@2.4GHz, running Windows XP Professional.

Queens IM TM TS1 TS2
100 537 0.015 0.547 0.540
200 1346 0.062 1.435 1.447
500 6073 0.553 24.74 24.74
1000 11395 1.96 93.18 93.30
2000 26132 8.7 433.5 433.7

IM - total number of master iterations
TM - total master running time (sec)
TS1 - total slave 1 running time (sec)
TS2 - total slave 2 running time (sec)

Table 1: Average values of test runs

Table 2 shows results for 1000-queen problem with
different number of slaves. Since these experiments were just
simulations on the same single-processor P4@2.4GHz
machine, the values differ from results that would be
obtained on a real multi-processor system. Still, even the
simulation clearly shows increase in execution speed. Each
table entry represents average values for 5 runs.

Slaves IM TM TS

1 17236 2.967 142.1
2 9198 1.595 75.20
3 5770 1.300 65.10
4 4457 0.794 40.51

IM - total number of master iterations
TM - total master running time (sec)
TS - average slaves running time (sec)

Table 2: GPGA execution times for different number of slaves

VI. CONCLUSION

This paper showed that n-Queen problem can be
successfully solved using genetic algorithms. Although n-
Queen problem does not have much practical use, it
represents a large class of NP problems that cannot be solved
in a reasonable amount of time using deterministic methods.

Although they were conceived as heuristic methods for
solving problems with "better" and "worse" solutions, genetic
algorithms proved able to solve combinatory problems with
simple "yes" and "no" answers. Furthermore, tests showed
that GA is able to find different solutions for a given number
of queens.

Since GAs perform large number of computations,
parallelization can significantly improve their performance.
One parallelization scheme, a global parallel genetic
algorithm (GPGA) was presented here. 3-way tournament
selection enabled slaves to run simultaneous selections and
crossovers, freeing master process from most tasks
(population initialization and mutations during the run were
still performed by the master thread) GPGA is not suitable
for massive parallel processing, but it shows increase in
performance for a small number of parallel-processing units.

To obtain expected nearly linear increase in computation

speed, experiments should be performed on a real multi-
processor system, since thread context switching influences
results during simulation on a single-processor machine

APPENDIX A: 500-QUEEN SOLUTION
 137 90 153 300 413 154 460 419 116 426 332 322
 129 182 155 125 273 189 307 132 334 326 193 255
 459 403 9 243 183 367 414 156 26 430 393 395
 385 144 192 226 346 317 333 88 69 237 486 355
 284 170 279 97 293 268 336 342 59 100 303 201
 405 245 311 203 80 161 195 17 412 445 330 191
 169 283 257 474 262 331 25 421 286 123 434 439
 104 340 401 359 101 351 278 148 488 428 377 381
 219 497 259 358 224 173 397 75 43 451 66 118
 301 202 119 57 343 94 46 12 93 260 418 467
 197 478 130 287 113 288 458 249 479 234 171 146
 362 236 319 269 111 218 32 205 391 491 246 71
 469 423 274 121 267 185 73 384 196 214 42 50
 37 124 406 127 199 396 472 141 425 220 296 315
 48 242 337 47 470 206 379 492 294 20 471 347
 14 261 56 139 2 338 38 86 39 304 432 394
 8 372 422 96 67 5 354 462 477 117 172 33
 27 89 230 265 493 107 447 126 10 82 106 241
 41 435 109 145 499 128 480 285 498 490 321 465
 16 276 496 4 484 410 35 187 72 476 388 398
 158 320 13 357 248 436 281 49 375 142 29 61
 91 235 365 399 290 390 51 473 15 387 427 482
 222 54 166 335 60 204 415 190 0 475 227 411
 63 328 21 487 392 143 258 120 115 442 468 256
 160 162 368 22 291 345 84 325 382 221 212 186
 244 440 402 373 327 370 83 314 176 270 70 223
 299 369 36 240 250 371 400 95 494 452 79 3
 135 344 420 443 24 1 165 352 364 179 7 444
 389 275 122 200 112 431 103 252 62 310 305 277
 99 23 323 302 138 30 446 64 31 215 356 178
 378 77 433 380 105 429 441 114 297 456 360 188
 198 58 18 466 404 28 228 217 247 147 163 177
 34 271 92 461 53 438 164 489 233 495 207 134
 481 424 231 383 306 208 180 308 167 353 44 324
 408 110 318 289 376 253 416 463 225 81 272 45
 55 157 108 181 386 152 78 329 457 409 363 65
 238 213 313 348 131 312 136 52 254 140 194 11
 149 437 417 68 102 211 292 266 464 448 374 133
 159 361 407 450 175 6 282 366 449 309 298 453
 150 264 239 87 263 339 74 454 168 483 232 216
 485 210 341 251 40 174 76 184 316 98 19 85
 295 350 151 229 349 280 455 209

REFERENCES
[1] David E. Goldberg, Genetic algorithms in search, optimization and

machine learning, Addison-Wesley Publishing Company Inc., Reading,
MA, 1989.

[2] M. Golub, D. Jakobovic, A new model of global parallel genetic
algorithm, Proceedings of the 22nd International Conference ITI2000,
Pula, 2000, pp. 363-368.

[3] Kelly D. Crawford, Solving n-Queen problem using genetic algorithms,
Tulsa University

[4] Ellis Horowitz and Sartaj Sahni, Fundamentals of computer algorithms,
Computer Science Press Inc., Rockville, MD, 1978.

[5] Eric Cantú-Paz, A summary of research on parallel genetic algorithms,
Computer Science Department and The Illinois Genetic Algorithms
Laboratory (IlliGAL), University of Illinois at Urbana-Champaign,
cantupaz@uiuc.edu

[6] Eric Cantú-Paz, A survey of parallel genetic algorithms, Computer
Science Department and The Illinois Genetic Algorithms Laboratory,
University of Illinois at Urbana-Champaign,
cantupaz@illigal.ge.uiuc.edu

