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Abstract--This paper shows the way that genetic algorithms 

can be used to solve n-Queen problem. Custom chromosome 
representation, evaluation function and genetic operators are 
presented. Also, a global parallel genetic algorithm is 
demonstrated as a possible way to increase GA speed. Results 
are shown for several large values of n and several conclusions 
are drawn about solving NP problems with genetic algorithms. 
 

Index Terms--global parallel genetic algorithm, n-queen 
problem, tournament selection.  

I. INTRODUCTION 

ROBLEMS with no deterministic solutions that run in 
polynomial time are called NP-class problems. Because 

of their high complexity (e.g. O(2n) or O(n!)) they cannot be 
solved in a realistic timeframe using deterministic techniques. 
To solve these problems in a reasonable amount of time, 
heuristic methods must be used. 

Genetic algorithms (GAs) are powerful heuristic methods, 
capable of efficiently searching large spaces of possible 
solutions. However, due to intense computations performed 
by GAs, some form of parallelization is desirable to increase 
performance. 

This paper will present an implementation of global 
parallel GA for solving n-Queen problem. 

II. N-QUEEN PROBLEM 

The classic combinatorial problem is to place eight queens 
on a chessboard so that no two attack. This problem can be 
generalized as placing n nonattacking queens on an n×n 
chessboard. Since each queen must be on a different row and 
column, we can assume that queen i is placed in i-th column. 
All solutions to the n-queens problem can therefore be 
represented as n-tuples (q1, q2, …, qn) that are permutations 
of an n-tuple (1, 2, 3, …, n). Position of a number in the tuple 
represents queen's column position, while its value represents 
queen's row position (counting from the bottom) Using this 
representation, the solution space where two of the 
constraints (row and column conflicts) are allready satistfied 
should be searched in order to eliminate the diagonal 
conflicts. Complexity of this problem is O(n!). Figure 1 
ilustrates two 4-tuples for the 4-queen problem. 

Figure 1: n-tuple notation examples 

The problem with determining a good fitness function for 
n-Queen problem is the same as for any combinatory 
problem: the solution is either right or wrong. Thus, a fitness 
function must be able to determine how close a wrong 
solution is to a correct one. Since n-tuple representation 
eliminates row and column conflicts, wrong solutions have 
queens attacking each other diagonally. A fitness function 
can be designed to count diagonal conflicts: more conflicts 
there are, worse the solution. For a correct solution, the 
function will return zero. 

For a simple method of finding conflicts [4], consider an n-
tuple: (q1,..., qi,..., qj, ..., qn). i-th and j-th queen share a 
diagonal if: 

ji qjqi −=−  (1) 

or  

ji qjqi +=+  (2) 

which reduces to: 

jiqq ji −=−  (3) 

This simple approach results in fitness function with 
complexity of O(n2). It is possible to reduce complexity to 
O(n) by observing diagonals on the board. There are 2n-1 
"left" (top-down, left to right) and 2n-1 "right" (bottom-up, 
right to left) diagonals (see figures 2 and 3) 

 
    
    
    
    

Figure 2: Third "left" diagonal 
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set left and right diagonal counters to 0 
 
for i= 1 to n 
   left_diagonal[i+qi]++ 
   right_diagonal[n-i+qi]++ 
end 
sum = 0 
for i = 1 to (2n-1) 
   counter = 0 
   if (left_diagonal[i] > 1) 
      counter += left_diagonal[i]-1 
   if (right_diagonal[i] > 1) 
      counter += right_diagonal[i]-1 
   sum += counter / (n-abs(i-n)) 
end 

 

    
    
    
    

Figure 3: Second "right" diagonal 

A queen that occupies i-th column and qi-th row is located 
on i+qi-1 left and n-i+qi right diagonal. A fitness function 
first allocates counters for all diagonals. Then, for each 
queen, counters for one left and one right diagonal that queen 
occupies are increased by one. After evaluation, if a counter 
has a value greater than 1, there are conflicts on the 
corresponding diagonal. Fitness value is obtained by adding 
counter values decreased by 1 (except for counters with value 
0) 4 shows a pseudocode for such a function. Note that each 
counter value is normalized with respect to length of 
corresponding diagonals. 

 

Figure 4: Fitness function for n-queen problem 

III. GENETIC ALGORITHMS 

Genetic algorithms are search and optimization procedures 
based on 3 biological principles: selection, crossover and 
mutation. Potential solutions are represented as individuals 
that are evaluated using a fitness function representing a 
problem being optimized. Basic structure of a genetic 
algorithm is shown in the following list: 

1. A random population of individuals (potential 
solutions) is created. All individuals are evaluated 
using a fitness function. 

2. Certain number of individuals that will survive into 
next generation is selected using selection operator. 
Selection is somewhat biased, favoring "better" 
individuals. 

3. Selected individuals act as parents that are combined 
using crossover operator to create children. 

4. A mutation operator is applied on new individuals. It 
randomly changes few individuals (mutation 
probability is usually low) 

5. Children are also evaluated. Together with parents 
they form the next generation. 

Steps 2.-5. are repeated until a given number of iterations 
have been run, solution improvement rate falls below some 
threshold, or some other stop condition has been satisfied. 

One modification of this basic structure is a 3-way 
tournament selection used here. Instead of selecting 
individuals from one generation to the next, selection and 
crossover are performed continuously. First, 3 individuals are 
selected completely at random. Then, two individuals with 
the highest fitness are combined using crossover to produce 
an offspring that will replace the worst individual. There is 
no clear distinction between generations. 

Individual representation and fitness function for n-Queen 
problem were presented in the previous chapter. It is also 
necessary to design proper crossover and mutation operators 
that will operate on n-tuple representation. 

Mutation operator used is very simple: for a given tuple, 
we randomly select two positions and swap the numbers. 
This creates a new individual, similar to the original one, and 
validity of the tuple is preserved. An example is given in 
figure 5: 

 

(5   1   3   2   7   4   6) 

Becomes 

(5   7   3   2   1   4   6) 

Figure 5: Mutation operator 

There are several possibilities for a crossover operator. 
First version is equivalent to the mutation operator: swapping 
two random positions in a tuple. Obvious drawback of this 
operator is that it does not combine genetic material of 
parents. 

Another crossover operator is PMX1 crossover. It is similar 
to two-point binary crossover operator. First step is random 
selection of two positions within chromosomes and exchange 
of genetic material: 

 
(2   5   1 |  3   8   4 |  7   6) 

(8   4   7 |  2   6   1 |  3   5) 

Becomes 

(2   5   1 |  2   6   1 |  7   6) 

(8   4   7 |  3   8   4 |  3   5) 

Figure 6: PMX crossover – first step 

In most cases, this will result in invalid tuples, since 
numbers in a tuple must be unique. Second step in PMX 
crossover eliminates duplicates. In the example above, 
number 2 occurs at positions 1 and 4 in the first offspring. 
The 2 at position 4 is newer (from the crossover), so the 2 at 
position 1 is changed into 3 that was at position 4 before the 
crossover. 
                                                           

1 Partially Matched Crossover 
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create initial population 
evaluate initial population 
 
create slaves 
 
while not done 
   start slaves 
   wait for slaves to finish 
   run mutation operator 
end 

for i = 1 to slave_iterations 
   select 3 individuals 
   run crossover operator 
   evaluate offspring 
   if solution found set done=true; 
end 
 

 
(2   5   1 |  3   8   4 |  7   6) 

(8   4   7 |  2   6   1 |  3   5) 

Becomes 

(3   5   4 |  2   6   1 |  7   8) 

(6   1   7 |  3   8   4 |  2   5) 

Figure 7: PMX crossover – second step 

The third operator is designed for 3-way tournament 
selection: parents are compared, and equivalent positions are 
copied to the offspring. Other positions in the offspring tuple 
are filled in randomly, but care is taken to preserve tuple 
validity. If parents are equivalent, one of them is replaced by 
a randomly created tuple to avoid chromosome duplication. 

 

(2   5   1   3   8   4   7   6) 

(2   4   7   3   6   1   8   5) 

 

(2   8   6   3   1   4   7   5) 

Figure 8: 3-way tournament crossover 

IV. GLOBAL PARALLEL GENETIC ALGORITHM 

For solving n-Queen problem, a Global Parallel Genetic  
Algorithm (GPGA) was used. Figure 9 shows basic structure 
of a GPGA: 

 
 
 
 
 
 
 
 

Figure 9: Basic structure of a GPGA 

The main idea is to distribute expensive tasks across slaves 
(controlled by a master process) to be executed in parallel. In 
a classic configuration, the master maintains a population and 
executes genetic operators (selection, crossover and 
mutation), while slaves perform evaluation. Master assigns a 
part of population to each slave and waits for them to finish2. 
GPGA can achieve significant increase in speed, especially 
for expensive evaluation functions or large populations. 
However, due to communication between the master and 
slaves, there is an upper limit for the number of slave 
processes. Further speed gains are limited by master-slave 
communication overhead. 

A slightly modified configuration was used for solving n-
Queen problem. Since 3-way tournament selection is used as 

                                                           
2 Synchronous GPGA. In an asynchronous GPGA, the master continues 

with execution while slaves are running. 

a selection operator, several slaves can run tournament 
selection and crossover in parallel, while master performs 
only mutation. Figure 10 shows master pseudocode, and 
figure 11 shows slave pseudocode: 

 

Figure 10: Master pseudocode 

Figure 11: Slave pseudocode 

V. EXPERIMENTS AND RESULTS 

For testing purposes, a custom C++ program was written. 
The master and each of the slaves are run in separate threads, 
so the program can be executed on a multi-processor machine 
for full speed benefits. Also, since each thread keeps track of 
its own running time, the program can be used to simulate a 
multi-processor execution on a single-processor machine. 

Experiments showed that PMX [3] and 3-way tournament 
crossover operators don't behave well, since they tend to 
generate close solutions rather quickly, but fail to produce 
correct solutions in a reasonable amount of time. They also 
tend to unify the solution pool, so the only force of change in 
a GA run becomes the mutation operator. 

As a final crossover operator, simple mutation operator 
was used, slightly modified to fit 3-way tournament selection. 
After selection, evaluation and comparison, one of the two 
surviving individuals is selected at random and a mutated 
copy is used to replace the third individual. 

Convergence rate and speed of the algorithm were greatly 
improved this way. Also, convergence rate was much more 
uniform across runs, obtaining a solution for a given size of 
the problem within a rather narrow range of iterations. All 
results presented here were obtained using mutation as a 
crossover operator. 

Problem sizes used were 100, 200, 500, 1000 and 2000 
queens. For all problem sizes, two slaves were running 100 
iterations per one master iteration each, with population sizes 
of 100 individuals, and mutation rate was 0.02. 

Ten runs were performed for each problem size, and 
average results are given in the table 1. The machine used 

master 

slaves 



EUROCON 2003 Ljubljana, Slovenia 

was a P4@2.4GHz, running Windows XP Professional. 
 

Queens IM TM TS1 TS2 
100 537 0.015 0.547 0.540 
200 1346 0.062 1.435 1.447 
500 6073 0.553 24.74 24.74 
1000 11395 1.96 93.18 93.30 
2000 26132 8.7 433.5 433.7 

IM - total number of master iterations 
TM - total master running time (sec) 
TS1 - total slave 1 running time (sec) 
TS2 - total slave 2 running time (sec) 

Table 1: Average values of test runs 

Table 2 shows results for 1000-queen problem with 
different number of slaves. Since these experiments were just 
simulations on the same single-processor P4@2.4GHz 
machine, the values differ from results that would be 
obtained on a real multi-processor system. Still, even the 
simulation clearly shows increase in execution speed. Each 
table entry represents average values for 5 runs. 

 
Slaves IM TM TS 

1 17236 2.967 142.1 
2 9198 1.595 75.20 
3 5770 1.300 65.10 
4 4457 0.794 40.51 

IM - total number of master iterations 
TM - total master running time (sec) 
TS - average slaves running time (sec) 

Table 2: GPGA execution times for different number of slaves 

VI. CONCLUSION 

This paper showed that n-Queen problem can be 
successfully solved using genetic algorithms. Although n-
Queen problem does not have much practical use, it 
represents a large class of NP problems that cannot be solved 
in a reasonable amount of time using deterministic methods. 

Although they were conceived as heuristic methods for 
solving problems with "better" and "worse" solutions, genetic 
algorithms proved able to solve combinatory problems with 
simple "yes" and "no" answers. Furthermore, tests showed 
that GA is able to find different solutions for a given number 
of queens. 

Since GAs perform large number of computations, 
parallelization can significantly improve their performance. 
One parallelization scheme, a global parallel genetic 
algorithm (GPGA) was presented here. 3-way tournament 
selection enabled slaves to run simultaneous selections and 
crossovers, freeing master process from most tasks 
(population initialization and mutations during the run were 
still performed by the master thread) GPGA is not suitable 
for massive parallel processing, but it shows increase in 
performance for a small number of parallel-processing units. 

To obtain expected nearly linear increase in computation 

speed, experiments should be performed on a real multi-
processor system, since thread context switching influences 
results during simulation on a single-processor machine  

APPENDIX A: 500-QUEEN SOLUTION 
 137  90 153 300 413 154 460 419 116 426 332 322 
 129 182 155 125 273 189 307 132 334 326 193 255 
 459 403   9 243 183 367 414 156  26 430 393 395 
 385 144 192 226 346 317 333  88  69 237 486 355 
 284 170 279  97 293 268 336 342  59 100 303 201 
 405 245 311 203  80 161 195  17 412 445 330 191 
 169 283 257 474 262 331  25 421 286 123 434 439 
 104 340 401 359 101 351 278 148 488 428 377 381 
 219 497 259 358 224 173 397  75  43 451  66 118 
 301 202 119  57 343  94  46  12  93 260 418 467 
 197 478 130 287 113 288 458 249 479 234 171 146 
 362 236 319 269 111 218  32 205 391 491 246  71 
 469 423 274 121 267 185  73 384 196 214  42  50 
  37 124 406 127 199 396 472 141 425 220 296 315 
  48 242 337  47 470 206 379 492 294  20 471 347 
  14 261  56 139   2 338  38  86  39 304 432 394 
   8 372 422  96  67   5 354 462 477 117 172  33 
  27  89 230 265 493 107 447 126  10  82 106 241 
  41 435 109 145 499 128 480 285 498 490 321 465 
  16 276 496   4 484 410  35 187  72 476 388 398 
 158 320  13 357 248 436 281  49 375 142  29  61 
  91 235 365 399 290 390  51 473  15 387 427 482 
 222  54 166 335  60 204 415 190   0 475 227 411 
  63 328  21 487 392 143 258 120 115 442 468 256 
 160 162 368  22 291 345  84 325 382 221 212 186 
 244 440 402 373 327 370  83 314 176 270  70 223 
 299 369  36 240 250 371 400  95 494 452  79   3 
 135 344 420 443  24   1 165 352 364 179   7 444 
 389 275 122 200 112 431 103 252  62 310 305 277 
  99  23 323 302 138  30 446  64  31 215 356 178 
 378  77 433 380 105 429 441 114 297 456 360 188 
 198  58  18 466 404  28 228 217 247 147 163 177 
  34 271  92 461  53 438 164 489 233 495 207 134 
 481 424 231 383 306 208 180 308 167 353  44 324 
 408 110 318 289 376 253 416 463 225  81 272  45 
  55 157 108 181 386 152  78 329 457 409 363  65 
 238 213 313 348 131 312 136  52 254 140 194  11 
 149 437 417  68 102 211 292 266 464 448 374 133 
 159 361 407 450 175   6 282 366 449 309 298 453 
 150 264 239  87 263 339  74 454 168 483 232 216 
 485 210 341 251  40 174  76 184 316  98  19  85 
 295 350 151 229 349 280 455 209 
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