EUROCON 2003 Ljubljana, Slovenia

Solving n-Queen problem using
global parallel genetic algorithm

Extended Abstract

Marko Bozikovi, Marin Golub, Leo Budin

Q Q
Abstract--This paper shows the way that genetic algorithms Q Q
can be used to solve n-Queen problem. Custom chromosome Q Q
representation, evaluation function and genetic operators are Q Q
presented. Also, a global parallel genetic algorithm is 4,1,3,2) (2,4,1,3)
demonstrated as a possible way to increase GA speed. Results
are shown for several large values of n and several conclusions Figure 1:n-tuple notation examples

are drawn about solving NP problemswith genetic algorithms.
The problem with determining a good fitness function for
Index Terms-global parallel genetic algorithm, n-queen . Queen problem is the same as for any combinatory
problem, tournament selection. problem: the solution is either right or wrong. Thuéitreess
function must be able to determine how close a wrong
solution is to a correct one. Sincetuple representation
PROBLEMS with no deterministic solutions that run ingjiminates row and column conflicts, wrong solutions have
polynomial time are called NP-class problems. Becauggeens attacking each other diagonally. A fitness function
of their high complexity (e.g. O(Ror O(!)) they cannot be can be designed to count diagonal conflicts: more conflicts
solved in a realistic timeframe using deterministic techniquegere are, worse the solution. For a correct solution, the
To solve these problems in a reasonable amount of timMgnction will return zero.
heuristic methods must be used. For a simple method of finding conflicts [4], consideman
Genetic algorithms (GAs) are powerful heuristic method@ume; @w-er Gevnr Gy onr G). i-th andj-th queen share a
capable of efficiently searching large spaces of possibigagonal if:
solutions. However, due to intense computations performed

I. INTRODUCTION

wense ¢ ' . i—g =i|—-0.
by GAs, some form of parallelization is desirable to increase 4 =174 @
performance. or
This paper will present an implementation of global i + q = J + o} @)
parallel GA for solvingh-Queen problem. which reduces to:
Il. N-QUEEN PROBLEM HQi —-q H = ”' - J” ®)

The classic combinatorial problem is to place eight queensThis simple approach results in fithess function with
on a chessboard so that no two attack. This problem candwzenplexity of O(n®). It is possible to reduce complexity to
generalized as placing nonattacking queens on amn O(n) by observing diagonals on the board. There ard 2
chessboard. Since each queen must be on a different row daét" (top-down, left to right) and r21 "right" (bottom-up,
column, we can assume that quéémnplaced iri-th column. right to left) diagonals (see figures 2 and 3)

All solutions to then-queens problem can therefore be
represented as-tuples €, Oz, -.., Qn) that are permutations

of ann-tuple (1, 2, 3, ...n). Position of a number in the tuple
represents queen's column position, while its value represents
gueen's row position (counting from the bottom) Usinig t
representation, the solution space where two of the
constraints (row and column conflicts) are allready satistfied
should be searched in order to eliminate the diagonal
conflicts. Complexity of this problem i©(n!). Figure 1
ilustrates two 4-tuples for the 4-queen problem.

Figure 2: Third "left" diagonal

EUROCON 2003 Ljubljana, Slovenia

5. Children are also evaluated. Together with parents
they form the next generation.
Steps 2.-5. are repeated until a given number of iterations
have been run, solution improvement rate falls below some
-q threshold, or some other stop condition has been satisfied.

One modification of this basic structure is a 3-way
tournament selection used here. Instead of selecting
individuals from one generation to the next, selection and
crossover are performed continuously. First, 3 individaeds
on i+g-1 left andn-i+q right diagonal. A fitness function selected completely at random. Then, two individuals with

first allocates counters for all diagonals. Then, for eac € highest fitness are combined using crossover to produce

: . an offspring that will replace the worst individual. There is
gueen, counters for one left and one right diagonal that queen 2)
clear distinction between generations.

. . N . (0]
occupies are increased by one. After evaluation, if a counf&? ¢ . . .
has a value greater than 1, there are conflicts on theInd|V|duaI representation and fitness function fieQueen

.)problem were presented in the previous chapter. It is also
corresponding diagonal. Fitness value is obtained by addi) .
: cessary to design proper crossover and mutation operators
counter values decreased by 1 (except for counters with valye

0) 4 shows a pseudocode for such a function. Note that e C%\jll\j\:glticc))aegatsrzgrtuupslgdreizrszsnt;tnlr?nl.e' for a aiven tuple
counter value is normalized with respect to length of P y pe: 9 p'e,

. . we randomly select two positions and swap the numbers.
corresponding diagonals. : Lo - -

This creates a new individual, similar to the original one, and

validity of the tuple is preserved. An example is given in

Figure 3: Second "right" diagonal

A queen that occupiasth column andy-th row is located

set left and right diagonal counters to O figure 5:
for i=1ton
| eft _di agonal [i +q;] ++ 5 3 207 4 6
ri ght _di agonal [n-li +q;] ++ (I I)
end Becomes
sum= 0
for i =1 to (2n-1) G 3201 4069
counter = 0]]
if (left_diagonal[i] > 1) Figure 5: Mutation operator
~counter += left_diagonal [i]-1
if (ri gPt_d' agoﬂamlh_ > 1) [i]-1 There are several possibilities for a crossover operator.
counter += right_diagonal [i]- ; PR ; : . :
sum += counter / (n-abs(i-n)) First version is eg_uwalgnt to the mutat|_on operator: sweppi-
end two random positions in a tuple. Obvious drawback of this
- operator is that it does not combine genetic material of
parents.

Figure 4: Fitness function for n-queen problem . L
Another crossover operator is PMrossover. It is similar

to two-point binary crossover operator. First step is sand
. GENETICALGORITHMS selection of two positions within chromosomes and exchange

Genetic algorithms are search and optimization procedurc(’efsgenenc material:

based on 3 biological principles: selection, crossover and

mutation. Potential solutions are represented as individuals (2 51]3 8 4|7 6
that are evaluated using a fitness function representing a 8 4 7|26 1|3 59)
problem being optimized. Basic structure of a genetic Becomes
algorithm is shown in the following list: 2 51|26 1|7 6)
1. A rqndom population Qf ?n.dividuals (potential (8 4 7|3 8 4|3 5)
solutions) is created. All individuals are evaluated
using a fitness function. Figure 6: PMX crossover — first step

2. Certain number of individuals that will survive into

next generation is selected using selection operator.n Most cases, this will result in invalid tuples, since
Selection is somewhat biased, favoring "hettefiUMbers in a tuple must be unique. Second step in PMX

individuals. crossover eliminates duplicates. In the example above,

3. Selected individuals act as parents that are combin@MPer 2 occurs at positions 1 and 4 in the first offgpri
using crossover operator to create children. The 2 at position 4 is newer (from the crossover), so the 2

4. A mutation operator is applied on new individuals. IPOStion 1 is changed into 3 that was at position 4 befare

randomly changes few individuals (mutation®"OSSOVEr:
probability is usually low)

! Partially Matched Crossover

EUROCON 2003 Ljubljana, Slovenia

a selection operator, several slaves can run tournament
(2 5 1|3 8 4|7 6) selection and crossover in parallel, while master performs
8 4 7|12 6 1|3 5) only mutation. Figure 10 shows master pseudocode, and
figure 11 shows slave pseudocode:

Becomes

35 4]261]78 create initial population
initi ul ati
6 1 73 8 4|25 evaluate initial population

Figure 7: PMX crossover — second step create sl aves

The third operator is designed for 3-way tournamentwhile not done
selection: parents are compared, and equivalent positions [are Start slaves o
ied to the offspring. Other positions in the offsgrinple wait for slaves to finish
copie _ pring. pos| sgnap run nutation operator
are filled in randomly, but care is taken to preserve tupleend

validity. If parents are equivalent, one of them is replaced by

a randomly created tuple to avoid chromosome duplication. Figure 10: Master pseudocode
@ 5 1B 8 47 6 for i =1 to slave_iterations
sel ect 3 individuals
@4 7B 6185 run crossover operator

eval uate of fspring

if solution found set done=true;
2 86 314705 end -

Figure 8: 3-way tournament crossover

Figure 11: Slave pseudocode

IV. GLOBAL PARALLEL GENETIC ALGORITHM

For solvingn-Queen problem, a Global Parallel Genetic V. EXPERIMENTS AND RESULTS
Algorithm (GPGA) was used. Figure 9 shows basic structure For testing purposes, a custom C++ program was written.
of a GPGA: The master and each of the slaves are run in separate threads,
so the program can be executed on a multi-processor machine
master for full speed benefits. Also, since each thread keeps track of
its own running time, the program can be used to simulate a
multi-processor execution on a single-processor machine.
Experiments showed that PMX [3] and 3-way tournament
crossover operators don't behave well, since they tend to
generate close solutions rather quickly, but fail to produce
correct solutions in a reasonable amount of time. They also
tend to unify the solution pool, so the only force of cfeam
a GA run becomes the mutation operator.
The main idea is to distribute expensive tasks across slaveés a final crossover operator, simple mutation operator
(controlled by a master process) to be executed in parallel.Was used, slightly modified to fit 3-way tournament selectio
a classic configuration, the master maintains a population afifier selection, evaluation and comparison, one of the two
executes genetic operators (selection, crossover asirviving individuals is selected at random and a mutated
mutation), while slaves perform evaluation. Master assignscapy is used to replace the third individual.
part of population to each slave and waits for them to finish Convergence rate and speed of the algorithm were greatly
GPGA can achieve significant increase in speed, especidjproved this way. Also, convergence rate was much more
for expensive evaluation functions or large populationginiform across runs, obtaining a solution for a given efze
However, due to communication between the master atte problem within a rather narrow range of iterations. All
slaves, there is an upper limit for the number of slavgsults presented here were obtained using mutation as a
processes. Further speed gains are limited by master-sigi@ssover operator.
communication overhead. Problem sizes used were 100, 200, 500, 1000 and 2000
A slightly modified configuration was used for solving queens. For all problem sizes, two slaves were running 100

Queen problem. Since 3-way tournament selection is useditggations per one master iteration each, with population sizes
of 100 individuals, and mutation rate was 0.02.

Ten runs were performed for each problem size, and

? Synchronous GPGA. In aasynchronous GPGA, the master continues average results are given in the table 1. The machine used
with execution while slaves are running.

L slaves

Figure 9: Basic structure of a GPGA

EUROCON 2003 Ljubljana, Slovenia

was a P4@2.4GHz, running WindoWXP Professional.

speed, experiments should be performed on a real multi-
processor system, since thread context switching influences

Queens] Tm Tss Tso results during simulation on a single-processor machine
100 537 0.015 0.547 0.540
200 1346 0.062 1.435 1.447 APPENDIXA: 500-QUEEN SOLUTION
500 6073 0.553 24.74 24914 137 90 153 300 413 154 460 419 116 426 332 322
1000 11395 1.96 093.18 03.30 129 182 155 125 273 189 307 132 334 326 193 255
= 5 459 403 9 243 183 367 414 156 26 430 393 395
2000 26132 8.7 433.p 43317 385 144 192 226 346 317 333 88 69 237 486 355
Iv - total number of master iterations 284 170 279 97 293 268 336 342 59 100 303 201
T.. - total master running time (sec 405 245 311 203 80 161 195 17 412 445 330 191
M ng 1 (sec) 169 283 257 474 262 331 25 421 286 123 434 439
Ts1 - total slave 1 running time (sec) 104 340 401 359 101 351 278 148 488 428 377 381
Ts» - total slave 2 running time (sec) 219 497 259 358 224 173 397 75 43 451 66 118
301 202 119 57 343 94 46 12 93 260 418 467
Table 1: Average values of test runs 197 478 130 287 113 288 458 249 479 234 171 146
362 236 319 269 111 218 32 205 391 491 246 71
. 469 423 274 121 267 185 73 384 196 214 42 50
Table 2 shows results for 1000-queen problem with 37 124 406 127 199 396 472 141 425 220 296 315
different number of slaves. Since these experiments Werejusﬁi ggi 322 13; 478 ggg 3;3 42% Zgg 332 ig% ggz
simulations on the same single-processor PA@2.4GHZ'g 375 422 "96 67 5 354 462 477 117 172 33
machine, the values differ from results that would be 27 89 230 265 493 107 447 126 10 82 106 241
; ; : 41 435 109 145 499 128 480 285 498 490 321 465
optalne_d on a real multl_processolr system: Still, even the16 276 496 4 484 410 35 187 72 476 388 398
simulation clearly shows increase in execution speed. Eactss 320 13 357 248 436 281 49 375 142 29 61
91 235 365 399 290 390 51 473 15 387 427 482
table entry represents average values for 5 runs. 927 ‘54 160 335 80 204 415 190 O 475 297 411
63 328 21 487 392 143 258 120 115 442 468 256
Slaves U Tu Ts 160 162 368 22 291 345 84 325 382 221 212 186
1 17236 5967 Tap] 244 440 402 373 327 370 83 314 176 270 70 223
: : 299 369 36 240 250 371 400 95 494 452 79 3
2 9198 1.595 75.20 135 344 420 443 24 1 165 352 364 179 7 444
77 1 1 389 275 122 200 112 431 103 252 62 310 305 277
3 5770 300 65.1 99 23 323 302 138 30 446 64 31 215 356 178
4 4457 0.794 40.51 378 77 433 380 105 429 441 114 297 456 360 188
Iy - total number of master iterations 198 58 18 466 404 28 228 217 247 147 163 177
— 34 271 92 461 53 438 164 489 233 495 207 134
Tu - total master running time (sec) 481 424 231 383 306 208 180 308 167 353 44 324
Ts - average slaves running time (sec) 408 110 318 289 376 253 416 463 225 81 272 45
__ _ 55 157 108 181 386 152 78 329 457 409 363 65
Table 2: GPGA execution times for different numbgslaves 238 213 313 348 131 312 136 52 254 140 194 11
149 437 417 68 102 211 292 266 464 448 374 133
159 361 407 450 175 6 282 366 449 309 298 453
150 264 239 87 263 339 74 454 168 483 232 216
VI. CONCLUSION 485 210 341 251 40 174 76 184 316 98 19 85
. 295 350 151 229 349 280 455 209
This paper showed than-Queen problem can be
successfully solved using genetic algorithms. Althoungh REFERENCES

Queen problem does not have much practical use,

represents a large class of NP problems that cannot be soI(/éd

in a reasonable amount of time using deterministic methods.
Although they were conceived as heuristic methods fd#l
solving problems with "better" and "worse" solutions, genetic
algorithms proved able to solve combinatory problems witfa)
simple "yes" and "no" answers. Furthermore, tests showed
that GA is able to find different solutions for a givermier
of queens. 5]
Since GAs perform large number of computations,
parallelization can significantly improve their performance.
One parallelization scheme, a global parallel genet[g]
algorithm (GPGA) was presented here. 3-way tournament
selection enabled slaves to run simultaneous selections and
crossovers, freeing master process from most tasks
(population initialization and mutations during the ruarev
still performed by the master thread) GPGA is not suitable
for massive parallel processing, but it shows increase in
performance for a small number of parallel-processing units.
To obtain expected nearly linear increase in computation

David E. Goldberg,Genetic algorithms in search, optimization and
machine learning, Addison-Wesley Publishing Company Inc., Reading,
MA, 1989.

M. Golub, D. JakobovicA new model of global parallel genetic
algorithm, Proceedings of the 22nd International Conferdit2000,
Pula, 2000, pp. 363-368.

Kelly D. Crawford,Solving n-Queen problem using genetic algorithms,
Tulsa University

Ellis Horowitz and Sartaj Sahrffundamentals of computer algorithms,
Computer Science Press Inc., Rockville, MD, 1978.

Eric Cant(-PazA summary of research on parallel genetic algorithms,
Computer Science Department and The lllinois GenAtgorithms
Laboratory (IlliGAL), University of lllinois at Urbna-Champaign,
cantupaz@uiuc.edu

Eric Cantd-PazA survey of parallel genetic algorithms, Computer
Science Department and The lllinois Genetic Aldons Laboratory,
University of lllinois at Urbana-Champaign,
cantupaz@illigal.ge.uiuc.edu

