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ABSTRACT 
This paper presents a procedure to optimize the construction of mass concrete structures using genetic 

algorithms. Due to cement hydration, thermal and shrinkage strains take place in concrete at early ages and, 
if they are restrained, tensile stresses develop in the concrete structure. As a consequence, cracks may 
appear if the magnitude of the generated stresses reaches the concrete tensile strength. In this study, 
transient hydration and thermal and stress fields were calculated using a coupled 
thermo-chemo-mechanical model implemented in a 3D finite element code. The optimization criterion is 
construction cost and the decision variables are material types, characterized by their mechanical and 
hydration properties; placing temperature, the height of lifts and time intervals between lifts. The constraint 
imposed on the decision variables is the early age cracking of the structure. A dynamic penalty scheme that 
allowed a certain level of cracking for the preliminary generations proved to be efficient in driving the 
genetic algorithm to an optimal solution. To show the potential of the proposed methodology, the 
construction phase of a small hydropower plant dam was optimized. The results indicated that the 
procedure can be successfully used in the design of massive concrete structures. 

Keywords: mass concrete, hydration reaction, autogenous shrinkage, thermal stress, early age 
cracking, numerical modeling, optimization, genetic algorithms 

INTRODUCTION 
Massive concrete structures such as dams, foundation slabs and bridge decks may be subject 

to early age cracking due to thermal stresses and autogenous shrinkage-induced stresses. From 
the engineering point of view, if cracking must be avoided, several measures can be undertaken 
to reduce the early effects of the hydration reaction, such as: 

1. choosing a material composition that gives lower rates of hydration and/or limiting the 
autogenous shrinkage potential; 

2. controlling lift thickness and the time intervals between lifts to allow heat to dissipate; 
3. reducing the placing temperature of concrete. 

Because of the large volume of concrete and the logistics involved in construction of massive 
structures, an accurate and feasible procedure that could be used consistently to optimize the 
variables intervening in mass concrete construction would be very helpful to both the designer 
and the contractor. 

Iñaki Inza
Nota
La parte de "The thermo-chemo-mechanical model" es muy específica al problema, muy técnica, y no veo que os aporte nada leerla. Si os gusta el tema de la construcción de estructuras, presas, puentes, centrales... es un trabajo interesante. Todavía no me queda claro a qué se refiere con "lifts"...
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An extensive survey on Cost Optimization of Concrete Structures (Sarma, K. C. and Adeli, 
1998) showed that the great majority of papers dealing with structural optimization concerned 
weight minimization. Of the small number of papers on cost optimization, most were dedicated 
to simple elements such as beams and girders, and very few used costs functions that considered 
the costs of placement and construction. Since 1998, the panorama has not essentially changed 
and no reference on the optimization of mass concrete structures was found, although mass 
concrete cost optimization can result in substantial savings. 

This paper presents a procedure for optimizing the construction phase of mass concrete 
structures. This is a cost optimization problem that involves the cost of the raw material and 
construction costs associated with placing, cooling, formwork, lift height and time intervals. 

The procedure presented in this paper systematizes the cost optimization problem of mass 
concrete construction using: 

1. a coupled thermo-chemo-mechanical model (Ulm & Coussy, 1995,1996) implemented in a 
3D FEM code (Silvoso et al, 2001) to simulate the effects of the hydration reaction; 

2. a genetic algorithm procedure (Castro, 2001) to optimize construction costs. 
The potential of the the procedure presented in this paper is demonstrated through the 
optimization of the construction phase of a concrete dam for a small hydropower plant. The 
results indicate that the proposed procedure is both accurate and feasible and should  become a 
useful tool for optimizing mass concrete construction. 

THE THERMO-CHEMO-MECHANICAL MODEL 
For simulating the evolution of the hydration reaction and its effects we used the well-known 

model of Ulm and Coussy (1995,1996). The general concepts of this model are as follows: 
• The model considers concrete as a reactive porous media composed by a solid skeleton 

of anhydrous cement grains and CSH hydrates and porous that may be filled either by air 
or by water.  

• The thermo-activation and the exothermic behavior of the hydration reaction are taken 
into account by the model. 

• The evolution of the hydration reaction is given by the following equation: 

( ) ( ) 





−== ∞ RT

EAm
dt
d

dt
dm aexp1 ξ

ξη
ξ  (1)

where: 
dtdm  represents the variation of mass of the skeleton; 

10 << ξ  is the hydration degree. It can be understood as the relation between the  
mass of the skeleton at a time t  normalized by the mass of the skeleton at the end of the 
hydration, i.e., ( ) ( ) ∞= mtmtξ ; 

( )ξη  is a viscosity term corresponding to the growing of the physical barrier of CSH 
which tends to isolate the cement grain from the free water. It depends on the state of the 
hydration reaction;  

( )ξA  is the affinity of the chemical reaction (the thermodynamical force associated to 
the rate of hydrates formation); 

aE  is the apparent thermal activation energy considered constant with relation to the 
hydration degree; 

R  is the universal constant of gases, and T  is the temperature in Kelvin. 
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• The equation corresponding to the transient thermal and hydration fields, considering the 
thermo-chemical coupling is given by: 

TkLQTC 2∇++= ξε
&&  (2)

Here, the standard form for the evolution of the thermal fields TkQTC 2∇+=&ε  can 
be recognized , with εC  the specific heat and k  the thermal conductivity. The term 

ξ&L  represents the heat generated by the exothermic reaction, L  being the latent heat of 
hydration determined by means of experimental tests. Equation (2) can have a 
step-by-step solution if the values of ξ&  (and consequently the values of ξ ) are 
determined, for each time-step by means of equation (1). For this aim it is necessary to 
know the values of the normalized affinity ( ) ( ) ( )( )ξηξξ ∞= mAA /~ . This may be 
experimentally obtained by means of adiabatic or quasi-adiabatic tests (Ulm & Coussy, 
1995,1996). 

• The chemo-mechanical couplings may be represented by the following equation: 

( ) ξξ ddTdd baC ++= − σε :1  (3)

In this equation ε  is the strain tensor, ( )ξC  is the elastic compliance tensor 
dependent on the hydration degree, σ  is the stress tensor and , a  is the tensor of the 
thermal deformation coefficients and b  is the tensor of the chemical coefficients 
relating the hydration rate to the autogenous shrinkage. In this paper only the Young’s 
modulus is considered as depending on the degree of hydration, the Poisson’s ratio ν  
being constant, we can write: ( ) ( )( )ξξ ECC = . 

• The chemo-plastic coupling considers that the hardening forces ζ, which are associated 
with the sizes of the yield surfaces in the stress space, depend on both the plastic 
hardening/softening variables χ  and the evolution of the hydration reaction ξ, reading, 
formally, ζ(χ,ξ). Two yield surfaces are employed, namely, Drucker-Prager when the 
stress state is of the compressive type, and tension-cut-off when the stress state is of the 
tension type. Within the framework of associative plasticity, one can write the flow and 
the hardening rules as follows: 

∑
∈ ∂
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where Jact is the set of active surfaces, i.e. the surfaces for which fS(σ,ζ)=0; and dλS 
are plastic multipliers, defined as in standard plasticity. Given that only the Drucker-Prager 
criterion allows for hardening, the two criteria used in this paper, represented by the 
functions f1 and f2, can be written as: 

( )( ) 0J,3I 21
21111 ≤++= ξχζαf  ; 12

1
3

1
−

−
=

κ
κα  

(5)

0)(3I 212 ≤+= ξζf  (6)

where I1=tr(σ) and J2=(s : s)/2 are, respectively, the first invariant of the stress tensor 
and the second invariant of the deviator stress tensor and κ=fb(ξ)/fc(ξ) is the ratio between the 
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biaxial and the uniaxial compressive strengths, considered to be constant (κ=1.16) with 
hydration. The evolution laws for the compressive and tensile strengths, Young’s modulus, 
autogenous shrinkage, and plastic variables are described in detail by Silvoso (2003) and 
Fairbairn et al (2003). 
 
This model has been implemented in a 3D FEM code with vectorization facilities allowing a 

better computational performance. The code uses linear tetrahedral elements and the non-linear 
system of equations is solved by using a Newton-Raphson incremental iterative technique. An 
element-by-element strategy solution with preconditioned conjugate gradient solver with 
diagonal preconditioner of the elements matrices (Coutinho et al, 2001). The code has two 
modules. The first module computes the transient thermal and hydration fields. The second 
module calculates the stresses and strain fields for each time step. 

For simulating the construction process each element is associated to a construction phase and 
consequently to the activation time of this section of the structure. When the activation time is 
reached, the corresponding finite elements are activated and the boundary conditions are updated. 
It should be pointed out that the data structure of the computer code and the element-by-element 
solution improve the efficiency of the numerical analysis and make easier the simulation of the 
construction phases. 

GENETIC ALGORITHMS FOR THE OPTIMIZATION OF MASS CONCRETE 
CONSTRUCTION 

The design variables considered for the optimization problem of thermal cracking for massive 
concrete structures are: 

• The type of concrete (tc). The choice of the material is directly related to the evolution of 
the hydration reaction (heat generation, autogenous shrinkage) and also to the 
development of the properties of the skeleton such as the tensile strength and the Young’s 
modulus. As an example, use of a pozzolan as cement replacement further delays and 
reduces heat generation. The type of concrete is a discrete variable, reading tc∈{1,2,... 
Ntc}, where Ntc is the number of types of concrete. 

• The placing temperature (pt). Since the hydration reaction is thermo-activated, cooling 
the concrete will contribute to slow down the chemical reaction and to reduce the 
cracking risk. It is evident that in spite of the favorable effects, precooling the concrete 
will increase the construction cost. The variable can then be defined by taking its values 
from the discrete set pt∈{pt1=ptmin, pt2,...,ptNpt=ptmax=Tenv}, where ptmin is the minimum 
feasible placing temperature, Npt is the number of placing temperatures, and ptmax=Tenv 
is the maximum placing temperature, which corresponds to placing concrete at the 
ambient temperature (Tenv). 

• The height of lifts (hl). This variable influences the dissipation of the heat generated by 
the hydration reaction. The shallower the lift, the more heat of hydration will escape 
before the next lift is placed and the maximum temperature reached will be lower. On the 
other hand, the higher the lifts, the fewer the horizontal construction joints and the lower 
the construction costs. Since the values of hl are limited by a minimum and maximum 
feasible height, we can write hl∈{hl1=hlmin, hl2,..., hlNhl=hlmax}. 

• The placing frequency (pf). The time period after the construction of one lift, before 
placing the next lift, allows heat to dissipate. If this time period increases, the maximum 
temperature reached in the lift will be lower but the construction cost will increase. It is 
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also, generally, a discrete variable, since the construction frequency is not established on 
the basis of fractions of days. It is limited by a minimum and maximum feasible placing 
frequency, as follows pf∈{pf1=pfmin,pf2,...,pfNpf=pfmax}, where Npf is the number of 
placing frequencies, pfmin and pfmax being, respectively, the minimum and the maximum 
placing frequencies as established by the contractor. 

 
The vector of variables, designated by x, can then be defined as: 

xT={x1, x2, x3, x4}={tc,pt,hl,pf} (7)

Since the geometry of the structure is given, the cost function is established for a fixed total 
volume of concrete VCon,tot, as follows: 

C/VCon,tot = c = (cFixed + cRM(tc) +cCC(pt)+ cPO(hl,pf)) (8)

where:C is the total cost; c is the total unit cost; cFixed represents all the unit costs that do 
not vary with hl, pf, tc and pt, such as the cost of plant purchase, installation and other constant 
costs of the activities related to pfmin; cRM(tc) is the unit cost of the raw material, which is a 
function of the type of concrete; cCC(pt)  is the unit cost of concrete cooling, which is a function 
of the placing temperature; and cPO(hl,pf) is the unit cost of plant operation, which varies with the 
total construction time, which in turn depends on the height of the lifts and the placing frequency. 
This cost includes leasing and operation of equipment, concrete treatment, consolidation and 
placing (with the exception of cooling) and so on. 

The unit costs are expressed as proportions that indicate their weighting in the total cost. 
These weights are defined by the coefficients ω as follows: 

    cFixed=ωFixed⋅c;  cRM=ωRM⋅c;  cCC=ωCC⋅c;  cPO≅ωPO⋅c ;  ωFixed+ωRM+ωCC+ωPO=1 (9)

The values of these weights depend on factors such as the type of construction, local 
conditions, variations in the unit costs, etc. However, regardless of the fuzziness of these unit 
costs, it is always possible to estimate them when a project is being planned. 

If ( )xc~  is defined as the normalized variable unit cost: 

( ) ( ) ( ) ( ) ( ) [ ]1,~~,
,~

min
max,max,max,

cc
ccc

pfhlcptctcc
c

POCCRM

POCCRM ∈
++

++
= xx  (10)

where min
~c  is the minimum normalized cost, obtained for cRM=cRM,min, cCC=cCC,min and 

cPO=cPO,min, the objective function can be expressed as: 
( ) ( )xx cf ~=  (11)

We define ECr(x)∈[0,1] as a measure of the extent of cracking, taken in this paper to be the 
plastified finite elements volume ratio, such that ECr(x)=0 for an uncracked structure, the 
optimization problem can be stated as: 

• Minimize f(x) 
• Under the constraint defined as ECr(x)=0 
The constraint, i.e., the rejection of cracked structures, is handled by a penalty scheme. A 

fitness function, set out below, is therefore introduced: 
• F=f(x)     for an uncracked structure 
• F=f(x)+P(ECr(x),tg) for a cracked structure 
The penalty P(ECr(x),tg) is a function of both ECr(x), and tg, which represents the generation. 
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The penalty function is bilinear such that, in the first half of the generations (i.e., until 
tg=Ng/2, Ng being the number of generations) the individuals that present cracking under a 
certain cracking threshold (ECrlim(tg)), are not fully penalized. For generations after Ng/2, the 
penalty becomes static and all cracked structures are penalized by the same value 
P(x,tg)= min

~1 c− , the penalty function can be written as follows: 

( )( )
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(13)

 
A general sketch of the genetic algorithm used in this paper is presented in the form of a 
flowchart in Figure 1. The algorithm is terminated when the maximum number of generations (Ng) 
is achieved. 

 
Figure 1 – Flowchart of the Genetic Algorithm 

Example 
We analyze a typical project of a small hydropower concrete dam that is 10m high and its 

total concrete volume is 3000 m3. The main geometric characteristics and the finite element mesh 
used for the following simulations are shown in Figure 2. 
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The design variables, as defined in above, are: 
Type of Concrete (tc) – Eight types of concretes were used, all taken from a dam concrete 
laboratory data bank (Andrade, 1997). The variable tc is thus defined as tc∈{1,2,...,8}. The 
composition of these types of concretes is given in Table 1 and their thermo-chemo-mechanical 
parameters are given in Table 2. The activation energy and the parameter ξ0 were considered to be 
constant for all the materials, reading, respectively, Ea/R(1,...,8)=4000/OK and ξ0(1,...,8)=0.1. The 
curves of the adiabatic temperature rise are given in Figure 3. 
Placing temperature (pt): This variable is defined as pt(oC)∈{10,11,…,24,25}, where 10oC is the 
minimum cooling temperature available for the present application, and 25oC is the average 
ambient temperature. 
Height of the lifts (hl): The values used in the present application are 
hl(m)∈{0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.5}, with each value producing a corresponding number 
of lifts NL∈{20,14,10,8,7,6,5,4}.  
Placing frequency (pf): This variable was given a range of values pf(days)∈{6,7,…,20,21}. A 
minimum value of 6 days was chosen because it was assumed that 5 days is the minimum period 
of time needed to cure the concrete and prepare the horizontal joint and the formwork for the new 
lift. Given the limit values adopted for hl and pf, the construction time can vary between 24 and 
405 days. 

  

Figure 2 – Geometric characteristics of the dam and finite element mesh 

Table 1 – Composition of the eight types of concretes (kg/m3) 

tc B1(cement) B2(fly ash) B3(slag) W G1(fine) G2(coarse) 
1 139  170 165 626 1318 
2 338 57  190 664 1057 
3 299 50  187 700 1068 
4 336   185 745 1090 
5 335   160 603 1197 
6 323   178 852 1084 
7 127  237 163 655 1165 
8 239  80 171 621 1303 
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Table 2 – Thermo-chemo-mechanical parameters for the eight types of concretes 

tc Cε (J.kg/K) k W/(m.K)  α (10-6) fc,∞ (MPa) E∞ (MPa) sh
∞ε (10-6) 

1 1017 2.65 13.02 29.9 21.7 23.46 
2 1109 2.64 10.78 28.9 30.6 21.09 
3 1134 2.64 10.37 24.8 25.9 11.37 
4 1084 2.64 10.62 30.2 26.0 24.17 
5 1059 2.64 12.03 27.3 22.4 17.30 
6 1092 2.24 9.93 23.9 23.2 10.05 
7 1063 2.26 12.58 25.4 24.0 12.79 
8 1050 2.49 12.09 25.2 17.1 12.32 
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Figure 3 – Adiabatic temperature rise for the eight types of concretes 

In this example, the weighting of the cost components, as defined by formulas (9), was 
assumed to be, on average ωFixed=35%; ωRM=30%; ωCC=5%; and ωPO=30%. The unit costs cRM(tc), 
for the several types of concrete, are calculated using using the quantities of raw material shown 
in Table 1 and assuming that the unit cost of the components is that given in Table 3. The results 
are shown in Table 4, from which it can be deduced that the minimum and maximum costs are 
cRM,min= 24.08 US$/m3, and cRM,max= 34.60 US$/m3. The values used for cCC(pt) are given in Table 
5, where it can be seen that cCC,min= 0.0 US$/m3, and cCC,max= 21.88 US$/m3. 

Table 3 – Estimated unitary costs for the components of concrete (US$/kg) 

Component Unitary Cost 
Cement 0.077 
Fly ash 0.033 
Ground granulated blast furnace slag 0.033 
Aggregate 0.0077 
Water 0.0077 
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Table 4 – Unitary costs of the concretes (US$/m3) 

tc cRM  tc cRM 
1 24.08 5 34.60 
2 34.93 6 33.11 
3 30.88 7 26.73 
4 34.51 8 27.96 

Table 5 – Unitary costs for cooling concrete (US$/m3) 

pt (oC) CCC  pt (oC) CCC  pt (oC) CCC  pt (oC) CCC  
10 21.88 14 12.81 18 6.88 22 1.88 
11 18.75 15 11.25 19 5.63 23 0.94 
12 16.25 16 9.38 20 4.38 24 0.31 
13 14.38 17 8.13 21 3.13 25 0.00 

 
The unit cost cPO(ct(hl,pf)) is calculated based on the assumption that the relationship between 
the cost of plant operation and construction time is linear. The minimum and maximum costs are 
cPO,min= 11.2 US$/m3, and cPO,max= 189.00US$/ m3. With the values presented above, min

~c  is 
determined to be 0.144, using formula (10). The first cracking threshold for the penalty function 
was established as ECrlim,0=0.03. This value, which was chosen on the basis of experience, 
indicates that first generation individuals with cracking of less than 3% are not discarded from 
the evolutionary process. If the cracking exceeds the threshold, the finite element calculation for 
the individual is terminated, because penalty applied is the same for ECrlim<ECr≤100%. The 
control parameters of the genetic algorithm set at N = 50 individuals, Nt = 5 individuals, Pc=90% 
and Pm=5%. The algorithm terminates when the maximum number of generations is reached 
(Ng=50). Figure 4 shows the evolution of the fittest individual. From this Figure we can conclude 
that the use of a penalty function that allows for a certain amount of cracking in the first 
generations was effective in avoiding stagnation in the evolutionary process. The analysis 
showed that the minimum cost is attained with a construction scheme described by the following 
optimal values: tc=8; pt =19oC; hl=1.25m; pf=6 days (ct=48 days). 
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Figure 4 – Evolution of fitness of the best individual 
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Some results obtained for this optimal set are given in Figure 5, (temperature fields for 
several construction steps), and Figure 6 (principal stress fields for several construction steps). 

(a) (b)

(c) (d) 

(e) (f) 

Figure 5 – Temperature fields (days) ((a) 2, (b) 14, (c) 26 , (d) 38, (e) 45, (f) 55 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6 – Principal stress fields (days) (a) 2, (b) 14, (c) 26 , (d) 38, (e) 45, (f) 55 
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CONCLUDING REMARKS 
This paper presents a new procedure that can help the engineer in deciding on the construction 
process and in choosing the composition of mass concrete structures. The procedure combines an 
advanced thermo-chemo-mechanical model and optimization techniques based on genetic 
algorithms. The procedure was applied to optimize the hypothetical construction of a small 
concrete dam and the results indicated that the use of the cost optimization procedure can result 
in substantial savings. 
The procedure can readily be applied to the actual design of massive structures in which early 
age cracking is a predominant design constraint. The principal application of the procedure would 
therefore be in the optimization of concrete dams, massive foundation slabs and bridge decks and 
other structures made of high performance concretes for which autogenous shrinkage coupled 
with thermal stresses is a major concern. 
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