
GenJam: A Genetic Algorithm for Generating Jazz Solos

John A. Biles

Associate Professor
Information Technology Department

Rochester Institute of Technology
jab@cs.rit.edu

Abstract

This paper describes GenJam, a genetic algorithm-based model of a novice jazz musician
learning to improvise. GenJam maintains hierarchically related populations of melodic ideas
that are mapped to specific notes through scales suggested by the chord progression being
played. As GenJam plays its solos over the accompaniment of a standard rhythm section, a
human mentor gives real-time feedback, which is used to derive fitness values for the
individual measures and phrases. GenJam then applies various genetic operators to the
populations to breed improved generations of ideas.

1 Introduction

As with most problem-solving activities, musical
tasks like composition, arranging and improvising
involve a great deal of search. Composers search for
the right chords to fit a melody or the right melody to
fit a chord progression; arrangers search for the right
voicings and counterpoint for constituent parts;
improvisers search for the right phrases to play over a
particular set of chord changes. Certainly, the notion
of ÒrightÓ is individual, but a typical musician
Òknows what she likes,Ó and this aesthetic sense
guides the search through the various problem spaces
of notes, chords, or voicings.

Genetic algorithms (GAs) provide a powerful
technique for searching large, often ill-behaved
problem spaces. A GA solves problems by evolving
a population of potential solutions to a problem, using
standard genetic operations like crossover and
mutation, until an acceptable solution emerges. The
minimal requirements for using a GA are that the
solutions must map to a string of symbols (preferably
bits), and that there be some way of determining how
good one solution is at solving the problem, relative
to the other solutions in the population.

Given the power GAs possess for searching
strange problem spaces and their rather lax
requirements for use, it seems natural to apply GAs to
musical tasks. This paper describes one such
application, GenJam, which searches a large melodic
space for ÒgoodÓ material with which to build jazz
solos. GenJamÕs metaphor is an enthusiastic student
musician who sits in at jam sessions. When this
student plays well, the other musicians respond with
ÒYeah!Ó and other classically cool jazz exhortations.
When the student plays poorly, the other musicians
might respond by Ògonging him off,Ó as Jo Jones did
to a young Charlie Parker by sailing a cymbal at his
feet during a Kansas City jam session. GenJam uses
similar, though less dramatic, feedback to guide its
search through a melodic space.

2 Background

GAs [Holland, 1975; Goldberg, 1989; Koza,
1992] have been applied to music in the areas of
thematic bridging [Horner and Goldberg, 1991], and
FM parameter matching [Horner et al., 1993]. Both
of these applications employ a ÒstandardÓ GA in that
there is a population of potential solutions that
evolves until a single individual emerges whose
performance is acceptable. An individual in these
populations is represented by a chromosome-like bit
string, which maps to a sequence of melodic
transforms in thematic bridging and to a set of FM
parameter values in the other study. Each individual
also has a fitness, which is a numeric indication of the
success of that solution is at solving the problem.

Horner et al. [1993] provide an excellent
introduction to GAs with a clear musical example.
For the uninitiated, a ÒsimpleÓ GA looks like:

Initialize the individuals in the population
While not finished evolving the population

Figure the fitness of each individual
Select better individuals to be parents
Breed new individuals
Build next generation with new individuals

elihW

The initialization step is usually random, but one
may seed the initial population with individuals that
fit some criterion. The loop can be controlled in a
variety of ways. Searching can continue until 1) a
maximum number of generations has been bred; 2) an
individual emerges that meets some criterion for
performance; 3) the population converges on a single
individual; or 4) you run out of computer time,
memory, patience, or funding.

The fitness for an individual is usually
determined algorithmically (as in mathematical
function optimization problems, where the function
being optimized is the fitness function). Some GAs
have employed human Òfitness functionsÓ to generate

Iñaki Inza
Nota
Con algunos conocimientos de música creo que podéis considerarlo para escogerlo. En muchos aspectos del genético no sigue su formulación clásica como os la explicamos en clase, pero creo que a grosso modo la entenderéis

images. Sims [1993] evolved images by allowing the
user to select favorites from a population to serve as
parents for the next generation. Latham and Todd
[Haggerty, 1991] allowed the user to select a favorite
image in a small population to serve as a single
parent. As we shall see, human fitness functions in a
musical domain present some interesting problems.

The selection step in the algorithm reflects the
evolutionary principle that the fitter individuals in a
population tend to survive and mate. Selection in
GAs usually involves a random process, biased by the
fitness values, so that fitter individuals are more
likely, but not guaranteed, to reproduce.

Breeding new individuals is done by combining
the parent strings, usually with some form of
crossover and mutation. These operations typically
occur at the symbol (bit) level and mirror crossover
and mutation in chromosomes of natural organisms.
However, natural genetics have been more of an
inspiration than a constraint, and many clever
domain-specific operators have been invented.

In building the next generation, some old
individuals, usually the fittest from the past, may
survive intact, creating a generation gap between
them and the new children. The size of this gap,
along with the population size, helps control the
speed of the search. A large population with no
generation gap will cover the most ground but might
lose a promising individual. A small population with
a large gap will not lose its best individuals, but it
will sample the solution space much more slowly.

The most important aspect of designing a GA is
the representation of individual solutions. To mirror
natural genetics, an individual is represented by a
string of symbols. If those symbols are bits, the
representation more closely resembles the genes and
chromosomes in natural organisms, but many GA
applications use non-binary representations. In this
paper, however, we will focus only on bit strings.

An individual bit string (genotype) in a
population must somehow map to a potential solution
(phenotype). A clever representation that efficiently
represents alternative solutions, perhaps by excluding
clearly unacceptable solutions, will lead to a more
efficient search. However, if a representation
ÒcleverlyÓ excludes the best solution, its efficiency is
irrelevant. We can easily calculate the size of the
solution space by computing the number of different
solutions that can be represented by the bit string.
This is simply 2n, where n is the number of bits in the
string. The more bits in the string, the more potential
solutions, and the larger the search space (each added
bit doubles the size). GA designers walk a thin line
between too large a search space on one side and
inadequately sampled solutions on the other.

We turn now to a brief discussion of
computational jazz improvisation systems. Most
such systems reported in the literature [Fry, 1984;
Levitt, 1981; Giomi and Ligabue, 1991; Ames and
Domino, 1992] use knowledge based techniques to
derive an ÒimprovisedÓ solo from a given harmonic
progression in a constrained rhythmic style. These
systems process an abstract progression (set of chord

changes) before generating a solo, and usually take
the intermediate step of building a sequence of scales
from which melodic material will be drawn. This
activity mirrors what most ÒtrainedÓ improvisers do
when they prepare a tune for improvisation [Haerle,
1989].

The interactive jazz system being developed at
McGill University [Penneycook et al., 1993] holds
truer to jazzÕs aural tradition in that it listens to a
rhythm section in real time in order to determine what
the rhythm section is playing. The philosophy is to
give the system as little a priori knowledge as
possible about jazz harmony and rhythm.

Metamuse [Iverson and Hartley, 1990] also
avoids providing explicit a priori musical knowledge.
It uses autocatalytic set theory to assimilate music fed
to it and regenerate new pieces in a similar style.
While Metamuse uses string representations, it is not,
strictly speaking, a GA.

3 Design of GenJam

GenJam was developed in a Macintosh/Think C
environment on top of the CMU MIDI Toolkit
[Dannenberg, 1993]. Figure 1 shows GenJamÕs
system architecture and provides a visual overview of
its operation. To improvise on a tune, GenJam reads
a progression file, which provides it with the tempo
and rhythmic style (swing or even eighth notes), the
number of solo choruses it should take, and the chord
progression. It also reads MIDI sequences for piano,
bass and drums, which have been pre-generated using
Band-in-a-Box [Gannon, 1991].

MeasurePop

PhrasePop

PianoSeq

BassSeq

DrumSeq Progression

Mentor

GenJam

Solo ÔgÕ,ÔbÕ

Figure 1. GenJam System Architecture

GenJam improvises on the tune by building
choruses of MIDI events decoded from members of
the measure and phrase populations. Since, as we
shall see, a phrase is implemented as a sequence of
four measures, these two populations form a mutually
dependent hierarchy of melodic structures.

While listening to a solo, the mentor can type
one or more ÔgÕs if a portion is judged to be good, or
one or more ÔbÕs if a portion is judged to be bad.
The fitness for a given measure or phrase is
accumulated by incrementing counters for the
currently playing measure and phrase every time a ÔgÕ
is typed, and decrementing them every time a ÔbÕ is

typed. The modified fitness values are written back
to the population files after the solo terminates.

GenJam runs in one of three modes: learning,
breeding or demo. Learning mode is intended to
build up fitness values and uses no genetic operators.
Phrases are selected at random, ignoring fitness, and
presented for feedback. Demo mode is intended to be
a Òperformance.Ó Phrases are selected with a
tournament selection process that considers both the
phrase fitness and constituent measure fitnesses, and
feedback is ignored. In breeding mode the genetic
operators are applied, and half of each population is
replaced by new offspring before a solo is presented
for feedback. The rest of this section details
GenJamÕs representations, genetic operators and
fitness procedure.

3.1 Chromosome Representation

As alluded to above, the design of a string
representation is critical to a GAÕs success. GenJam
uses a cooperating, two-level, position-based, binary
representation scheme. The rest of this subsection
will try to explain what that means.

Two major differences exist between GenJam
and the simple GA described above. One is that
GenJam uses two populations, one of measures and
one of phrases. An individual in the measure
population maps to a sequence of MIDI events, as
will be detailed below. An individual in the phrase
population maps to indices of measures in the
measure population.

The other major difference is that GenJam uses
the entire populations of measures and phrases to
build a solo, not just a single ÒbestÓ measure or
phrase. In this way GenJam more closely resembles
a classifier system [Goldberg, 1989] or the Òmusical
strataÓ of Horner [1993b]. It is important to note that
GenJam is not trying to evolve the perfect solo on a
specific tune; it tries to evolve a workable collection
of melodic ideas that it can apply to any tune.

57 11 3857

57

23

 9 7 0 5 7 8 7 511

7 8 7 7 15 15 15 038

Phrase
Population

Measure
Population

-12

22 9 7 0 5 7 15 15 0

-4

6

Figure 2. Example Phrase and its Measures

Figure 2 shows a ÒcomposedÓ example phrase,
which maps to a rather unhip rendition of the first
four bars of Sonny RollinsÕs Tenor Madness,
transposed to C. In both populations, the single
number to the left of the heavy line in each individual
is the fitness value, and the remaining numbers
represent the chromosome.

The example focuses on phrase number 23 and
its constituent measures. Phrase 23 has a fitness of
-12, which means that it has not been particularly
well received by the mentor. Its chromosome is the
concatenation of four numbers, each of which is a
pointer (array index) into the measure population.
The current population sizes for GenJam are 48
phrases and 64 measures. The number 64 is not
arbitrary because in order to get maximum efficiency
from the phrase representation, the size of the
measure population should be a power of two. The
reason for this is illustrated in Figure 3.

111001 111001 001011 10011023

Figure 3. Phrase 23 Chromosome at the Bit Level

It is important that any possible configuration of
bits map to a legitimate structure, and it is preferable
to isolate specific pointers in specific bit substrings,
to make the mappings easier. In this case 64 different
measure indices require exactly six bits, and the
resulting chromosome of four measure pointers
requires 24 bits.

Individuals in the measure population are made
up of a fitness value and a chromosome that is
interpreted as a series of eight events, one for each
eighth note duration of a 4/4 measure. There are
three types of events: a new note, a rest, and a hold.
A new-note event causes a MIDI note-off followed
by a note-on. A rest causes a note-off only. A hold
causes nothing to happen, which has the effect of
holding a note already turned on or lengthening a
rest. A hold at the beginning of a measure holds
whatever ended the previous measure, so rhythmic
structures can flow across measure boundaries. If
swing rhythm is selected, a 62% swing is used
(events on the beat last 62% of the length of a quarter
note, while those occurring off the beat last the other
38%). If even rhythm is selected, all events have the
same duration, which is appropriate for Latin tunes.

There are 14 different new note events (encoded
as 1-14 in Figure 2), one rest (encoded as 0), and one
hold (encoded as 15), which adds up to 16 possible
events that can occur at each eighth-note position in a
measure. An event, then, can be represented in 4 bits
and a 4/4 measure in 32 bits, yielding a melodic space
of something less than 232 different measures (a rest
following a rest and a hold following a rest will
sound the same).

The major advantage to thinking in terms of
note-off followed by note-on, rather than the reverse,
is that note durations can be represented in half a bit
per event (two bit permutations out of 16 for each
four-bit event). This efficiently unifies pitch and

rhythmic structures in a single representation, as
opposed to the more typical approach of treating
pitch and rhythmic sequences separately [Ames and
Domino, 1992; Giomi and Ligabue, 1991; Fry, 1984].

Two obvious disadvantages to GenJamÕs scheme
are that notes occur only in eighth note multiples, and
there are only 14 pitches to choose from at any one
time. These certainly would be a noticeable
limitation on most human improvisers, but allowing
greater rhythmic and chromatic diversity would
increase the string lengths needed for measures,
thereby exploding the size of the space searched by
the measure population.

One other thing to note about Figure 2 is that it is
perfectly permissible to repeat a measure in a phrase.
When this happens, the listener tends to respond with,
ÒWow! Thematic development!Ó In this example, as
we shall see in the next section, the chord progression
will lead to different scales being used for the two
measures, which will result in a slight difference in
the actual pitches played.

3.2 Chord/Scale Maps

The 14 new-note events are mapped to actual
MIDI pitches through scales suggested by the chord
progression being played. As was shown in Figure 1,
a progression file is read and processed before the
solo is generated. This results in a note map for each
half measure of a chorus of the tune (maximum
harmonic tempo of two chords per measure). Each
note map is an array of 14 MIDI pitches, roughly in
the two octaves ascending from middle C.

A given chord is mapped to a scale strictly
vertically; that is, the window through which the
progression is viewed is only one chord wide. Table
1 summarizes the types of chords currently
recognized and the scale mappings for each chord
type, using a chord root of C for the examples.

Chord Scale Notes
Cmaj7 Major (avoid 4th) C D E G A B
C7 Mixolydian (~ 4th) C D E G A Bb
Cm7 Minor (avoid 6th) C D Eb F G Bb
Cm7b5 Locrian (~ 2nd) C Eb F Gb Ab Bb
Cdim W/H Diminished C D Eb F F# G# A B
C+ Lydian Augmented C D E F# G# A B
C7+ Whole Tone C D E F# G# A#
C7#11 Lydian Dominant C D E F# G A Bb
C7#9 Altered Scale C Db Eb E F# G# Bb
C7b9 H/W Diminished C Db Eb E F# G A Bb
Cm7b9 Phrygian C Db Eb F G A Bb
Cmaj7
#11

Lydian C D E F# G A B

Table 1. Chord/Scale Mappings

These mappings are a synthesis of several
sources in the jazz education literature [Russell,
1959; Hearle, 1980 and 1989; Sabatella, 1992;
Coker, 1964]. While this collection of chords is not

exhaustive, and the scale choices are certainly
debatable, they provide a rich enough set to handle
many jazz tunes in a variety of styles.

After a scale is selected, it is extended to 14
tones, beginning at or above middle C. For example,
a C7 chord would indicate a C mixolydian scale
without the somewhat controversial 4th (C D E G A
Bb), and the resulting note map would be (C3 D E G
A Bb C4 D E G A Bb C5 D). An F7 chord would
indicate an F mixolydian scale (F G A C D Eb), and
the resulting note map would be (C3 D Eb F G A C4
D Eb F G A C5 D). If the example in Figure 2 is
played against the first four bars of a typical blues
progression (C7 F7 C7 C7), the repeated measure 57
maps to two different sets of pitches: E C A C in the
C7 measure, and Eb C G C in the F7 measure.

The results of using these note maps is that
GenJam can develop ideas to fit different harmonic
contexts and will not play a ÒwrongÓ note. That is
not to say that all of its notes are Òright,Ó however,
which brings us to the role of the mentor in providing
fitness values for the phrases and measures.

3.3 The Fitness Bottleneck

The only really firm requirement for using a GA
is a method for determining fitnesses of the
individuals in a population. At the very least, a
method must exist for determining which of two
arbitrary individuals is Òbetter.Ó If a population can
be ranked unambiguously, or if an interval or ratio
scale can be developed for fitness, then greater
sophistication may be used in the genetic operators,
particularly selection and replacement.

The unspoken assumption is that this fitness
method is algorithmic. If a suitable algorithm can be
found, then fitness becomes just another routine in
the program, and while it may be computationally
expensive, it is at worst a performance bottleneck that
leads to days or weeks of computation rather than
minutes or hours. Thousands of generations still can
be generated with enough patience.

However, what if no suitable algorithm exists for
generating fitness, even in the minimal case of
deciding which of two individuals is better? After
initially considering a neural network trained to
respond as I do to pieces of music, I decided to put
off the search for an algorithm that implements ÒI
know what I like,Ó and use myself as a fitness
function.

As indicated above, this approach has been used
successfully in evolving images [Sims, 1993;
Haggerty, 1991], but the task for the human rater was
made easier by the presentation of several images
concurrently. Raters could easily compare images by
looking from one to another in whatever order they
chose. The presentation of several musical samples,
on the other hand, cannot be made concurrently,
Charles Ives not withstanding. Furthermore, the
presentation of a single image is essentially
instantaneous, while a piece of music must be played
from start to finish at the proper tempo.

The human who serves as GenJamÕs mentor,
then, is a very narrow bottleneck and is, in fact, the
limiting factor on population sizes, number of
generations, and size of any generation gap. This is
because the mentor must listen carefully to every
measure of every phrase to provide their fitnesses.

A typical solo will be three choruses of a 32-bar
form, which is about the upper limit for quality
feedback from the mentor. This works out to 24 four-
bar phrases, which, not coincidentally, is half the size
of the phrase population. In breeding mode, GenJam
replaces half of both populations (50% generation
gap) and then plays the new phrases first in its solo.
This leads to the phrase population size of 48 phrases
-- the mentor has to listen to all the new phrases, but
24 is the practical limit, so 24 must be half the
population size. Feedback for the measures is not a
problem because each measure is sampled an average
of three times in the phrase population (48 phrases *
4 measures per phrase / 64 measures).

Clearly, the mentor is a critical resource, and
GenJamÕs design reflects the need to minimize the
amount of listening required and to make the
mentorÕs interface as simple as possible. While
listening to GenJam play a solo, the mentor can type
ÔgÕ (for good) or ÔbÕ (for bad) whenever so moved.
Each time a ÔgÕ is typed, the fitnesses for the
currently playing measure and phrase are both
incremented. When a ÔbÕ is typed, both fitnesses are
decremented. Fitnesses have a floor of -30 and a
ceiling of +30, to guard against successful established
individuals overwhelming new ones, and to make it
easier for the mentor to thin out a nice lick that
becomes overused. The mentor can control the
magnitude of the feedback from neutral (no typing) to
intense (rapid keystrokes).

To allow time for the mentor to react,
empirically derived delays have been built into the
feedback mechanisms so that the feedback window
for measures is shifted two beats late and the window
for phrases one measure late. This means that when a
ÔgÕ or ÔbÕ is typed during the playing of beats three or
four of a measure, the counter for that measure is
incremented or decremented. Feedback typed during
beats one or two will affect the previous measure.
Similarly, feedback occurring in the first measure of a
phrase applies to the previous phrase, while feedback
in measures two, three and four affect the current
phrase.

3.4 Genetic Operators

Both the fitness bottleneck and the cooperative
nature of the two populations heavily influenced
GenJamÕs genetic operators. GenJam applies all its
operators only in breeding mode, but selection is also
used in demo mode. This section details GenJamÕs
initialization, selection, crossover, mutation, and
replacement operators.

The measure and phrase chromosomes are
initialized by generating random bit strings of the
appropriate length. Fitness values are initialized to

zero. For phrases the strings are uniformly random.
For measures the strings are interpreted as the eight
four-bit events (0 - 15), with 0 denoting a rest, 15 a
hold, and 1-14 new notes. Rests and holds each
occur with probability 5/24, and each new note
occurs with probability 1/24. This proportion of rests
and holds was derived empirically and seeds the
initial population with some modicum of Òrhythm.Ó
The encoding of rest and hold as mutual logical
complements protects the population from artificially
converging on high or low notes when a crossover
point occurs within a rest in one parent and a hold in
the other.

Selection and replacement in GenJam are merged
in a modified tournament selection process. Four
individuals are chosen at random, without regard to
fitness, to form a family. Of the four individuals in a
family, the two with the highest fitness are used as
parents, and the two worst are replaced by the two
offspring of the parentsÕ mating. In each generation,
half of the measure population is thus replaced, and
newly created children cannot participate in later
families in the same generation.

To insure that the 32 new measures will be heard
quickly by the mentor, they are each randomly
assigned to one of the first eight new phrases. Each
of these ÒmaternityÓ phrases replaces the loser of a
four-phrase tournament, based on phrase fitness. The
remaining 16 new phrases are bred in families as
described above.

GenJam performs a standard single-point
crossover at a random location in the 32-bit measure
strings (or 24-bit phrase strings). One of the resulting
two children is kept intact, while the other child is
mutated by one of several mutation operators, which
operate at the event level for measures and the index
level for phrases.

In an effort to accelerate learning by creating not
just new, but better offspring, these Òmusically
meaningful mutationÓ operators violate conventional
GA wisdom that genetic operators should be ÒdumbÓ
with respect to the structures they alter. Table 2
summarizes the six mutation operators for measures,
using measure 57 from Figure 2 above as an example.

Mutation Operator Mutated Measure
None (Original Measure) 9 7 0 5 7 15 15 0
Reverse 0 15 15 7 5 0 7 9
Rotate Right (e.g., 3) 15 15 0 9 7 0 5 7
Invert (15 - value) 6 8 15 10 8 0 0 15
Sort Notes Ascending 5 7 0 7 9 15 15 0
Sort Notes Descending 9 7 0 7 5 15 15 0
Transpose Notes (eg. +3) 12 10 0 8 10 15 15 0

Table 2. Musically Meaningful Measure Mutations

The rotation operator rotates events a random
number of event positions to the right (1 to 7). The
inversion operator has the effect of turning rests into
holds, holds into rests, and reflecting pitches roughly
around C4. The sorting and transposition operators
preserve the rhythmic structure of a measure in that

rests and holds are not affected. Transpositions are
performed a random number of steps (1 to 4) in the
direction of the greater minimum distance between a
note and an upper or lower bound (1 or 14). In other
words transpositions are done in the direction that
Òhas the most room.Ó If a note is transposed beyond
the allowed note range (1 - 14) it is reflected off that
bound back into the accepted range. For example, 12
transposed up 3 steps will become 13 (12-13, 13-14,
14-13).

The six mutation operators for phrases are
summarized in Table 3, which applies the operators
to our sample phrase from Figure 2. The reverse and
rotate operators are the same as those used on
measures. The genetic repair operator replaces the
index of the measure with the worst fitness (in this
case measure 38) with a random measure index (in
this case 29).

Mutation Operator Mutated Phrase
None (Original Phrase) 57 57 11 38
Reverse 38 11 57 57
Rotate Right (e.g., 3) 57 11 38 57
Genetic Repair 57 57 11 29
Super Phrase 41 16 57 62
Lick Thinner 31 57 11 38
Orphan Phrase 17 59 43 22

Table 3. Musically Meaningful Phrase Mutations

The super phrase operator generates a completely
new phrase by selecting the indices of the winners of
four independent three-measure tournaments, where
the winners are determined by greatest fitness. This
phrase will bear no relationship to its parents, which
is mutation in the extreme. Notice, by the way, that
measure 57 apparently won a tournament to stay in
this phrase.

The last two operators tend to combat the
convergence problem, the tendency of GA machinery
to converge on slight variations of a ÒsuperÓ
individual. In GAs that search for a single best
individual, convergence is seldom a real problem, but
in GenJam, convergence translates to Òthe lick that
ate my solo.Ó The lick thinner substitutes a random
measure for the measure in the phrase that occurs
most frequently in the phrase population as a whole.
This tends to thin out overly successful measures.

The orphan phrase operator generates a
completely new phrase by selecting the winners of
four independent three-measure tournaments where
the winners are the least frequently occurring
measures in the phrase population. This tends to
repopulate ÒorphanÓ measures that donÕt appear in
any phrase and insure that diversity is maintained.

In demo mode, where only selection is applied
and feedback is ignored, phrases are selected with
another tournament selection scheme. Three phrases
are selected at random, and a combined fitness value
is used -- the sum of the phraseÕs fitness and the
average fitness of its constituent measures. Once a
phrase has been selected, its combined fitness is

halved so that it is less likely to be selected again in
the same solo. The result is GenJamÕs Ògreatest hits.Ó

4 Training and Performance

After sufficient training, GenJamÕs playing can
be characterized as competent with some nice
moments. About two dozen tunes have been
prepared for GenJam, either as training tunes or ÒgigÓ
tunes. The best training tunes have tempos in the
range 120 to 180 or so. Faster tunes are too hard for
the mentor to keep up with, and slower tunes need
sixteenth notes to retain interest. Of the tunes I have
prepared, the most frequently used tunes for training
are summarized in Table 4, with tempo in beats per
minute and the column labeled ÒCÓ giving the
number of choruses in the solo.

Tune Form Tempo C
Boplicity 32-bar AABA 130 3
Stella by Starlight 32-bar AABA 160 3
Well You NeednÕt 32-bar AABA 174 3
Bye Bye Blackbird 32-bar AABA 135 3
Gentle Rain 40-bar ABABC 138 3
Lady Bird 16-bar AB 150 4
Bb Blues 12-bar Blues 135 6

Table 4. Tunes Used for Training

The typical training procedure begins by running
GenJam in learning mode for three or four solos, to
sufficiently sample the populations and provide initial
fitness values. Then one can alternate breeding and
learning runs until coherent solos begin to emerge.
The training tunes are cycled in a fairly random
order, with Lady Bird and the Bb Blues being used in
learning mode only, since they contain fewer than 24
phrases. Again, the constraint is that 24 new phrases
will be generated in a breeding run, and all 24 need to
be heard so that they can have some chance of
accumulating non-zero fitnesses.

The first few generations of a training session are
quite numbing for the mentor. Fitnesses are almost
all negative, melodic intervals tend to be large, and
the frequency of Ònice momentsÓ is very low. Sooner
or later, though, a few pleasant licks begin to emerge,
and one or two solid phrases tend to appear by the
fourth or fifth generation. If a very pleasing measure
appears too early, it can become overused in a
generation or two and may require the mentor start
punishing a previously rewarded lick to thin it out.
Typically, at around the tenth generation, a ÒgoldenÓ
generation occurs where almost all the new phrases
sound reasonable. At this point, the mentorÕs
standards can shift from rewarding anything that
sounds musical to rewarding only what really sounds
nice.

A preliminary analysis of population statistics
gathered over several training runs shows that pitch,
interval, and note length distributions shift in
expected directions. The initial pitch distribution is

uniform, as would be expected from the initialization
procedure, but it gradually Òhumps upÓ to look more
normal after several generations. Large intervals tend
to be bred out fairly quickly, particularly when the
note lengths are short. After several generations the
interval distribution is heavily skewed toward short
intervals, and the average interval shrinks from
around seven scale steps to around two. Note and
rest lengths also become skewed toward the short end
as very long notes and silences are bred out.

5 Extensions and Conclusions

Several enhancements and extensions are under
way to improve GenJamÕs performance. An overhaul
of the chord/scale mapping procedure is being
designed that will apply knowledge-based techniques
to a wider window on the chord progression. This
hopefully will correct a few bad scale choices
currently made in some progressions.

An attempt will be made to train a neural
network to serve as at least a preliminary fitness
function for at least the measure population. The
strategy will be to extract statistical features
correlating with measure fitness to form a feature
vector, which will be the input layer to a quick-prop-
style neural network. The output layer will be a
single node containing the fitness value. The training
data will come from the populations that have been
saved from the approximately two dozen controlled
training runs conducted so far.

Another experiment will seed GenJamÕs initial
population with measures and phrases taken from
existing tunes or transcribed solos. A similar exercise
will be to merge populations generated in separate
training sessions to hopefully get the best of both.
GenJamÕs two levels also could be extended upward
to section, chorus, and/or tune levels.

To place GenJam in a larger context, IÕll
conclude with a brief mention of the role GAs could
play in algorithmic composition. GenJam shows that
GAs can be a useful tool for searching a constrained
melodic space. Other specific compositional tasks
should be easy to find, for example, evolving a bass
line or percussion sequence or chord progression or
series of voicings. These small tasks might even be
done concurrently in a more comprehensive system.
Evolutionary programming techniques [Koza, 1992],
where individuals map to programs or program
fragments, also promise to broaden the uses of GAs
in music. Finally, the fact that ÒGenetic AlgorithmsÓ
is a special topic area at ICMC 94 indicates that
others are discovering GAs. It would seem that
GenJam is not alone!

References

[Ames and Domino] Cybernetic Composer: An
Overview. In M Balaban, K. Ebcioglu and O.
Laske (Ed.), Understanding Music with AI,
AAAI Press, Cambridge, MA, 186-205, 1992.

[Coker, 1964] Jerry Coker. Improvising Jazz.
Prentice-Hall, Englewood Cliffs, NJ, 1964.

[Dannenberg, 1993] Roger B. Dannenberg. The
CMU MIDI Toolkit, Version 3. Carnegie Mellon
University, Pittsburgh, PA, 1993.

[Fry, 1984] C. Fry. Flavors Band: A Language for
Specifying Musical Style. Computer Music
Journal 8 (4) pp. 20-34, 1984.

[Gannon, 1991] Peter Gannon. Band-in-a-Box. PG
Music, Inc., Hamilton, Ontario, 1991.

[Giomi and Lagabue, 1991] Francesco Giomi and
Marco Ligabue. Computational Generation and
Study of Jazz. Interface 20, pp. 47-63, 1992.

[Goldberg, 1989] David Goldberg. Genet ic
Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[Haerle, 1989] Dan Haerle. The Jazz Sound. Hal
Leonard, Milwaukee, WI, 1989.

[Haerle, 1980] Dan Haerle. The Jazz Language.
Studio 224, Miami, 1980.

[Haggerty, 1991] Michael Haggerty. Evolution by
Esthetics, an interview with William Latham and
Stephen Todd. IEEE Computer Graphics and
Applications 11, pp. 5-9, 1991.

[Holland, 1975] John H. Holland. Adaptation in
Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975.

[Horner, et al., 1993a] Andrew Horner, Andrew
Assad and Norman Packard. Artificial Music:
The Evolution of Musical Strata. Leonardo 3 ,
pp. 81, 1993.

[Horner et al., 1993b] Andrew Horner, James
Beauchamp, and Lippold Haken. Machine
Tongues XVI: Genetic Algorithms and Their
Application to FM Matching Synthesis.
Computer Music Journal 17 (4) pp. 17-29, 1993.

[Horner and Goldberg, 1991] Genetic Algorithms
and Computer-Assisted Music Composition. In
Proceedings of the Fourth International
Conference on Genetic Algorithms, Morgan
Kauffman, San Mateo, CA, 1991.

[Iverson and Hartley, 1990] Eric Iverson and Roger
Hartley. Metabolizing Music. In Proceedings of
the 1990 International Computer Music
Conference, ICMA, San Francisco, 1990.

[Koza, 1992] J. R. Koza. Genetic Programming.
MIT Press, Cambridge, MA, 1990.

[Levitt, 1981] David Levitt. A Melody Description
System for Jazz Improvisation. MasterÕs thesis,
MIT, Cambridge, MA, 1981.

[Penneycook et al., 1993] Bruce Penneycook, Dale
R. Stammen, and Debbie Reynolds. Toward a
Computer Model of a Jazz Improviser. In
Proceedings of the 1993 International Computer
Music Conference, ICMA, San Francisco, 1993.

[Russell, 1959] George Russell. The Lydian
Chromatic Concept of Tonal Organization for
Improvisation. Concept Publishing, NY, 1959.

[Sabatella, 1992] Marc Sabatella. A Jazz
Improvisation Primer. USENET, 1992.

[Sims, 1993] Karl Sims. Interactive Evolution of
Equations for Procedural Models. The Visual
Computer 9 (8), pp. 466-476, 1993.

