MIC2005: The Sixth Metaheuristics International Conference 77-1

An Evolutionary Approach to Tetris

Niko Bohm* Gabriella Kokai* Stefan Mandl*

*Departments of Computer Science 8 and 2, University of Erlangen-Nuremberg
Niko.Boehm@stud.uni-erlangen.de, {kokai,mandl}@informatik.uni-erlangen.de

1 Introduction

This paper describes the application of evolutionary algorithms to the popular game of Tetris.
Tetris is a falling block game in which the player’s objective is to arrange a series of different
shaped bricks seamlessly in order to survive and thus get as many points as possible (there
is no way to win tetris). The computer chooses the best move by rating possible subsequent
game boards based on a rating function. This function is primarily a weighted sum of several
subratings. The evolutionary algorithm is used to find optimal weights for these. Our results
compete pretty well compared to other documented tetris playing programs.

2 Basics and State of the Art

Tetris is a computer game invented by Alexey Pajitnov in 1985. The game is played on a game-
board, which is a two-dimensional rectangular grid, usually with a width of 10 and height of
20. From the top enter so-called tetraminos. There are seven distinct tetraminos, each of
which occupies four grid cells of the game-board. The tetraminos move downwards with a
certain speed while the player can rotate them and move them horizontally. One tetramino
stops moving as soon as it hits the ground or previously placed tetraminos. At this point each
fully occupied horizontal line in the game-board is removed and all blocks above slip down by
one line. Then a new tetramino enters the board. The game ends as soon as a new tetramino
cannot enter the board, because it is instantly blocked by occupied cells. In order to collect
points, the player has to clear as many lines as possible.

Tetris has been analysed theoretically by many authors. Most notably is the work of
Demaine et al. [DHLNO3|, who showed that the solution of Tetris is NP-complete even if the
whole sequence of tetraminos is known in advance. Heidi Burgiel [Bur97] showed that there
are tetramino sequences that terminate the game, no matter how “good” they are placed.
Tetris has also been used as test-case for machine learning algorithms, e.g. by Driessens
[Dri01], or Tsitsiklis and Roy [TR96]. As far as Tetris-related results are published they
cannot compete with specialised algorithms. On the world wide web [Fah03], Colin P. Fahey
documents “world records ” of tetris playing programs: He presents a one-piece (i.e. does not
consider the preview tetramino) algorithm by Pierre Dellacherie, which clears 650,000 lines

Vienna, Austria, August 22-26, 2005

?7-2 MIC2005: The Sixth Metaheuristics International Conference

™ I

(b)

Figure 1: Altitude difference and wells Figure 2: Rowtransitions

in average. Fahey himself reports a game clearing 7,216,290 lines using his own two-piece
algorithm. Another one-piece algorithm by Roger Espel Llima clears an average of 42,000
lines over 150 games.

3 Evolutionary optimizing Tetris

To determine the best tetris move, we can chose a simple approach using two-level search for
every possible game-board b that can be reached using the two known tetraminos, then rate all
these boards and take the path to the best-rated one. The problem is thus reduced to finding
a good rating function.

A hypothetically perfect rating function R*(b) depends on more than these two tetraminos,
possibly on the infinite sequence of future tetraminos. As the computation of the perfect move
is NP-complete even in the case where this sequence is finite and known in advance [DHLNO3],
we chose a heuristic approach to compute a rating function R(b) in order to get results within
a reasonable amout of time and under realistic (real games with random tetramino sequences)
conditions. R(b) is composed of n simpler rating functions 7;(b);i € {1,...n} each of which
rates the game-board according to one of the following criteria:

1. Pile Height: The row of the highest occupied cell in the board.
2. Holes: The number of all unoccupied cells that have at least one occupied above them.

3. Connectd Holes: Same as Holes above, however vertically connected unoccupied cells
only count as one hole.

4. Removed Lines: The number of lines that were cleared in the last step to get to the
current board.

5. Altitude Difference: The difference between the highest occupied and lowest free cell
that are directly reachable from the top. See figure 1 (a).

6. Mazimum Well Depth: The depth of the deepest well (with a width of one) on the board.
In figure 1 (b) this is the leftmost well and has a depth of 4.

7. Sum of all Wells (CF): Sum of all wells on the board. This is 7 in figure 1 (b).
8. Landing Height (PD): The height at which the last tetramino has been placed.
9. Blocks (CF): Number of occupied cells on the board.

10. Weighted Blocks (CF): Same as Blocks above, but blocks in row n count n-times as much
as blocks in row 1 (counting from bottom to top).

Vienna, Austria, August 22-26, 2005

MIC2005: The Sixth Metaheuristics International Conference 7?7-3

11. Row Transitions (PD): Sum of all horizontal occupied/unoccupied-transitions on the
board. The outside to the left and right counts as occupied.

12. Column Transitions (PD): As Row Transitions above, but counts vertical transitions.
The outside below the game-board is considered occupied.

Criteria 1-6 were originally discovered by ourselves, but we found some of them being used
by others, too. However, the results only slowly approached the 1,000,000 mark, so we added
some other criteria (7-12) found in Colin Faheys “Standard Tetris Application” originating
from Colin Fahey (CF) and Pierre Dellacherie (PD) [Fah03]. These criteria were combined to
the following overall rating-functions:

1. linear rating-function (dot product): R;(b) = > " | wiri(b)
2. exponential rating-function: Re(b) = Y ;| wiri(b)“
3. exponential rating-function with displacement: Rq(b) = Y"1 | w;|ri(b) — d;|®

The first one is straightforward but may not be really good to approximate tetris, because
from the view of a (human) tetris player, there’s no big difference if the pileheight is 2 or 4,
but there’s a huge difference between height 15 and 17. Both are considered equally with R;.
To cover this, we use the exponential rating-function R., which gives a better approximation.
The third rating-function Ry is based on the idea, that the optimum value for a certain criteria
might not be zero. If the objective would be clearing four lines at a time as often as possible,
the desired value for Mazimum Well Depth would be at least four. The weights, exponents,
and displacements, respectively, are to be discovered by the evolutionary algorithm.

So the genotype consists of up to three chromosomes depending on the very form of
the combined rating function under consideration: The weights-chromosome (w1, ...wy), the
exponents-chromosome (e1, ...e,) and the displacements-chromosome (dy, ...d,,). Each of the w;
is an integer number, whereas each of the e;, and d; is a real number.

3.1 Determining the fitness

The fitness of a genotype is measured on the phenotype. In our case, the chromosomes of the
genotype are used to create an instance of the board rating-function guiding the search for
the next tetramino location. The fitness function has to be designed so that higher fitness
values correspond to better tetris performance. The performance of a single game of tetris
can be determined in a couple of ways. These include counting placed tetraminos, counting
cleared lines or counting ”points” for different kinds of actions, e.g. clearing more than on
line at a time, dropping tetraminos from a certain height, etc. We chose the number of placed
tetraminos as the performance measure, which is (in large scales) proportional to the number
of cleared lines, the measure mostly used. However, this provides no advantage for clearing
more than one line at a time, so that greedy clearing of lines is enforced. The fitness of an
individual is computed as the arithmetic mean of the performance of multiple (in our case five
to twelve) runs of tetris. To smoothen the result, the best and worst game performance is
ignored when at least seven games are played. Due to the low number of games this average is
not perfect. We observed individuals that reached a certain number of cleared lines as mean of
ten games being noticeably better or worse on ten other games. Playing whole games for fitness
determination hast a downside, though. The better the individuals get during evolution, the

Vienna, Austria, August 22-26, 2005

?7-4 MIC2005: The Sixth Metaheuristics International Conference

longer every single game of tetris lasts. A really good game, clearing millions of lines can last
several days. To compesate for this, we reduced the size of the gameboard to 6 x 12, which
makes Tetris much harder and games seriously shorter.

3.2 Reproduction

The individuals of the next generation are derived from the individuals of the previous gen-
eration using recombination, mutation, and scaling. However, some of the fittest individuals
are copied literally to keep a minimum number of good individuals (elite-selection). Selection
of parents is done randomly by using a fitness proportionate selection function. Two distinct
individuals are chosen and their chromosomes are recombined with the standard two-point
crossover operator. FEach gene (i.e. one weight, or exponent, or displacement value) is mu-
tated with a certain probability. Mutation works by multiplying the current value of the gene
with a gaussian distributed random number with g = 1 and adjustable standard derivation.
By allowing a value of 0 and using multiplication for mutation, this mutation operator leaves
the possibility that genes are virtually turned off in the case the gene gets zero. This behavior
delivers hints at which criteria are essential for good tetris performance and which are not.
Another operator is only applied to the weights-chromosome, scaling each gene with a (per
chromosome) constant factor. This does not affect the fitness of an individual, but is used to
create more variety in the gene pool.

4 Results and Analysis

Using the linear function R; with criteria 1-6 on a 10 x 20 game-board resulted in the best
games of 859,520 cleared lines with a top performance of the best individuals of about 170,000
cleared lines on an avergage of five played games. Population size was usually 100 individuals.
Due to the lack of time, most runs were terminated between 20th and 30th generation after
the strong improvements were over, so that we could try other parameter settings. After using
criteria 1-6 to achieve the results above, we introduced criteria 7-12. All further tetris-games
took place on a 6 x 12 game-board unless stated otherwise. We started over again with the
linear rating-function Ry, so that we could draw comparisons to the results on the regular-sized
board. Since the games were also much shorter we were finally able to let them run for a great
number of generations. In nearly all runs the performance gains decreased between generation
20 and 30. The best observed results were 4,007 cleared lines as average of 12 runs of the
best individual, and 24,311 cleared lines in the very best game. An example run is shown in
figure 3(left). The highest line shows the very best game of tetris played in the generation.
The middle line shows the results of the best individual, i.e. the average of the games of this
individual. The last and lowest line shows the mean of all games of all individuals. All results
are displayed as the number of cleared lines.

To improve these results, we considered the exponential rating-function R, on the 10 x 20
board. There was only one run with this rating-function, as it took three months to complete
30 generations. The results as seen in figure 3(right) corroborate our theory that this function
might yield better tetris-performance: a best game with 5,498,703 cleared lines and a best
individual with an average of 1,359,184 lines in five games, which exceeds all results of the

Vienna, Austria, August 22-26, 2005

MIC2005: The Sixth Metaheuristics International Conference ??7-5

20000 6e+06
Best gane played Best game pl ayed

18000 Avg. of 12 games of best individual - Avg. of 5 ganes of best indi vi dual
Average of all ganes Average of al

5e+06 |

i
Il ganes

16000
14000
4e+06
12000

10000

of cleared lines

8000
2e+06

Nunber of cleared |ines

6000

Nunber

4000
1e+06

2000 W' el e

0 20 40 60 80 100 120 140 160 180 0 5 10 15 20 25 30 35
Generation Generation

Figure 3: Two examplary evolutions

evolutionary runs with R; as rating-function. As expected the exponential rating-function R,
achieved significantly higher results on the 6 x 12 game-board, too. The best individual has
achieved an average of 15,146 cleared lines in nine games, and the best game observed had
68,421 cleared lines. Unlike the runs with R; the results sometimes continue to improve later.

4.1 Discussion of the resulting vectors

The criteria which get the highest weights in the evolutions on the 10 x 20 game-board are the
criteria Pile Height (1), of Holes (2), Connected Holes(3) and Mazimum Well Depth (6). These
criteria are dominant for the rating of a game-board. As already observed by human players,
the prevention of holes and keeping the pile low are considered good. Similar observations can
be made with the evolutions applying R, as rating-function. As stated above, the evolutionary
runs on the 6 x 12 game-board were run for a long time even after the first phase of strong
improvements. In all evolutions using R; the weights of several criteria become or approach
zero, and are therefore not affecting the rating. These are not always the same in all evolutions,
though. Obviously, several local maxima in the search area are found, which are on a similar
fitnes level, but in completely different places. An explanation for this would be that different
criteria describe similar facets of the game-board.

The results with R, are less clear. The reason for it may be the double number of dimensions
of the search area. Especially the criteria Connected Holes and Mazimum Well Depth got
exponents larger than one, which means that become more important for the total rating. In
contrary to our originally assumption, the Pileheight-criteria gets mostly exponents around one.
Surprisingly the results developed with R, as rating-function did not exceed those achieved
with R., despite the fact that everything that is representable with R, is also representable
with R, (using displacement-values of zero). The conclusion hereof is, that the search area
contains too much local maxima which the evolutionary algorithm could not escape from.

4.2 The step back from small to large

The results developed on the small game-boards cannot all be verified on the large ones,
because of the exhaustive time needed for such a test process. So only some random samples
were run. Using the linear and exponential rating-function all games clear more than one
million lines. There is a tendency that games using the linear rating-function play better on

Vienna, Austria, August 22-26, 2005

?7-6 MIC2005: The Sixth Metaheuristics International Conference

the large game-board.

For example a game with R, and the vectors

(2382, —135028, —48491, —74343, 59739, — 72528, —61591, 13344, —19737, —47653, —50015, —144688)
e = (0.935,1.839,0.905,1.078,0.858,2.207, 1.565,0.023,0.117,0.894, 1.474,1.346)

w

clear 34,440,225 lines, while other tested games ended already between six and twenty million
removed lines.

A game with R; and the weight vector w = (-62709, -30271, 0, -48621, 35395, -12, -43810,
0, 0, -4041, -44262, -5832) reached more than 480 million removed lines.

The results achieved with R; are not nearly as good, which is no big surprise, considering
that the displacement-values depend heavily on the codomain of the corresponding r;. No
attempt was taken to scale those values. Most tested vectors led to games that only removed
really few (< 100,000) lines.

5 Conclusion and Future Work

We report results on using evolutionary algorithms in order to evolve a heuristic function for
the game of tetris. The performance of our evolved tetris game-board rating-function compares
nicely with other reported results. By extending the simple, linear rating-function, we were
achieving a significant increase in tetris performance. Using more complex rating-functions
and criteria yield better performance but is more likely to be bound to the board-size on which
the evolution takes place.

To improve the speed of the fitness determination on big boards, we plan to verify a
hypothesis of Colin Fahey [Fah03], which claims that the number of cleared lines of a tetris
game can be statistically estimated from the pileheight distribution in the beginning (about
the 100,000 placed tetraminos) of a game. Another direction of future work would be the
extension of the algorithm to multiplayer tetris.

References

[Bur97] HEIDI BURGIEL, How to lose at Tetris. Mathematical Gazette:p. 194 (July 1997).

[DHLNO3] Erik D. DEMAINE, SUSAN HOHENBERGER and DAvVID LIBEN-NOWELL, Tetris is

Hard, Even to Approximate. In Proceedings of the 9th International Computing and
Combinatorics Conference (COCOON 2003) (2003).

[Dri01] KURT DRIESSENS, Relational Reinforcement Learning. Lecture Notes in Computer
Science, 2086:pp. 271+ (2001).

[Fah03] CoLIN P. FAHEY, Tetris AI (2003), URL http://www.colinfahey.com/

[TRI6] JOHN N. TSITsIKLIS and BENJAMIN VAN RoOY, Feature-Based Methods For Large
Scale Dynamic Programming. Machine Learning, 22:pp. 59-94 (1996).

Vienna, Austria, August 22-26, 2005

