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Applying a Traffic Lights Evolutionary Optimization
Technique to a Real Case: “Las Ramblas” Area in
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Abstract—In previous research, we have designed and success-
fully tested a Traffic Light Cycles Evolutionary Optimization Ar-
chitecture. In this paper, we attempt to validate those results with
a real-world test case. For a wide area in Santa Cruz de Tenerife
city—Canary Islands—we have improved traffic behavior, using
our optimized traffic light cycle times in a simulated environment.
Throughout this paper, we present some of the experiences, knowl-
edge, and problems encountered.

Index Terms—Cellular automata (CA), combinatorial opti-
mization, genetic algorithms (GAs), microscopic traffic simulator,
traffic lights optimization.

I. INTRODUCTION

THE PROBLEM OF traffic tie-ups in every major world
city has caused not only inconvenience, but also a signifi-

cant economic issue. If not managed correctly, it could seriously
hinder the development of our cities.

The nonstopping overload process that traffic infrastructures
are suffering calls for new solutions. In most cases, it is not vi-
able to extend traffic infrastructures because of costs, limited
available space, and environmental impact. Thus, we urgently
need to optimize existing infrastructures to obtain the best pos-
sible service.

Many traffic management initiatives provide online traffic in-
formation directed at drivers via the Internet, commercial radio,
Global System for Mobile Communication (GSM), or electronic
panels. Some studies have demonstrated that if drivers had this
sort of information, it would improve traffic flow.

Most research in this field has been aimed at solving small,
specific problems using ad hoc methods. When more general or
wider problems are faced, they are generally handled on a trial-
and-error basis: somebody decides on traffic parameters and,
depending on the results, some feedback corrections are applied.

This strategy has not changed significantly over time. Using
simulators instead of real traffic tests as a feedback source im-
plies great time savings. For example, microsimulators have
proven fast and accurate. However, the method still depends
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on the engineers’ experience and cannot ensure that the whole
search space is covered.

One of the most important problems in traffic optimization
is traffic light cycle1 optimization. This is a challenging combi-
natorial problem which seems to have no known deterministic
method to solve it at present.

Hence, it seems suitable to consider stochastic optimization
methods such as genetic algorithms (GAs). Brockfeld et al. [1]
demonstrate that traffic light cycles have a strong influence on
traffic flow results. This is the reason we decided to take on this
problem.

The rest of this paper is organized as follows. In Section II,
we comment on the efforts of other researchers regarding traffic
optimization. In Section III, we present our methodology. In
Section IV, we show some previous experiences with this
system. Section V describes the problem being addressed.
Section VI enumerates the restrictions applied to solve the
problem. In Section VII, we present our test results. Finally, in
Section VIII, we set out some concluding remarks and project
future research.

II. STATE-OF-THE-ART

There has been considerable research into traffic optimiza-
tion. In this section, we provide some examples. In [2], an ex-
ample of ad hoc architecture is used to optimize a nine-inter-
section traffic network. It uses GAs as an optimization tech-
nique running on a single machine. The CORSIM2 model is
used within the evaluation function of the GA but this work
does not address scalability. Authors recognize that it is a cus-
tomized nonscalable system. Our system is scalable thanks to
the intrinsic scalability of the Beowulf cluster and the parallel
execution of the evaluation function within the GA.

In [3], every intersection is optimized considering local infor-
mation only. Moreover, it can be adapted to short- and long-term
traffic fluctuations. In our case, we perform a global optimiza-
tion instead of multiple local optimizations. We believe our ap-
proach exploits the traffic infrastructure more efficiently.

The “offset-time”3 between two traffic lights is optimized
using Artificial Neural Networks (ANNs) [4]. Although our
system does not explicitly treat the offset time parameter, it
deals with traffic optimization in a far more flexible manner.

1Traffic light cycle: the finite sequence of states—e.g., green, orange, etc.
—that a traffic light runs iteratively.

2CORSIM: Corridor traffic simulation model [5].
3Offset-time: The time from when a traffic light turns green until the next

traffic light—for example, in a boulevard—also turns green.
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In [6], Tveit, a Senior Researcher with SINTEF,4 explains
that a common cycle time5 for a set of intersections is a less
useful approach than a distributed, individualized one. His con-
clusions seem sound and convincing, so we consider them in
our approach. In our system, every intersection has independent
cycles.

In [7], a real-time local optimization of one intersection
technique is proposed. It is based on fuzzy logic. Although an
adaptive optimization may be very interesting—as we reported
[8]—a global optimization seems to offer a more complete
approach to the problem.

In [9], Petri Nets are applied to provide a modular repre-
sentation of urban traffic networks. An interesting feature of
this model is the possibility of representing the offsets among
different traffic light cycles as embedded in the structure of
the model itself. Even though it is a very interesting study, the
authors only optimize the coordination among different traffic
light cycles. Our cycle optimization methodology is completely
flexible because we implicitly optimize not only traffic light off-
sets but also every stage length.

Li et al. [10] published another interesting paper using Petri
Nets, where a Petri Nets-based approach to control a single
intersection by programmable logic controllers (PLCs) is pro-
posed. They compare three methods for modeling the traffic
lights at an intersection and found the one that combines Petri
Nets with PLCs was more suitable. Again, in this work only one
intersection is optimized and not a whole traffic network.

Smith [11] favors the use of responsive signals,6 with net-
work capacity (rather than total travel costs) as a control cri-
terion. Network capacity is maximized if the signals equalize
traffic density on the most occupied parts of the network. This
is another example of multiple local optimizations instead of a
global optimization, as in our case.

Hong et al. [12] proposed the optimal green time algorithm
concept. This reduces average vehicle waiting time, while im-
proving average vehicle speed using fuzzy rules and neural net-
works (NNs). Through computer simulation, this method has
been proven much more efficient than using fixed time cycle
signals. The fuzzy neural network will consistently improve av-
erage waiting time, vehicle speed, and fuel consumption. This
study only considers a very small amount of traffic signals—two
intersections in the same area—for cycle optimization. We do
agree with them about the nonsuitability of fixed cycles.

Spall et al. [13] present a NN approach for optimizing the
traffic light cycle. A NN is used to implement the traffic lights
control function. The training process of the NN is fed exclu-
sively with real data. Thus, it would only be useful in systems
with an online data acquisition module installed. However, so
far, such systems are not common at all.

In [14], a fuzzy control system for extending or shortening the
fixed traffic light cycle is suggested. By means of electrosensi-

4SINTEF means The Foundation for Scientific and Industrial Research at the
Norwegian Institute of Technology.

5Common cycle time: This is a very simple way of programming traffic lights
in an intersection or groups of intersections. All the traffic lights share a cycle
length. The starting point of each one of the states or stages in the particular
cycle of every traffic light may be different, but the cycle period is the same for
all of them.

6Responsive signals: Traffic signals capable of adapting their state to the cur-
rent traffic situation near them.

tive traffic lights, they can extend the traffic cycle when many ve-
hicles are passing on the road or reduce the cycle if there is lim-
ited traffic flow. Through simulation they presented efficiency
improvement results. This work performs a local adaptation for
a single traffic light instead of global optimization.

In a very interesting paper, Wiering et al. [15] describe traffic
as a set of intersections optimized in a standalone manner. They
recommend using reinforcement learning algorithms to opti-
mize what they consider a multiagent decision problem. We do
not agree, although a local optimization can obviously reduce
average vehicle waiting times—this seems to happen with sim-
ulated tests in this work—we think a global optimization, taking
into account every intersection in a designated area, would be
more profitable.

III. METHODOLOGY: DESCRIPTION OF OUR ARCHITECTURE

The architecture of our system comprises three items,
namely, GA as nondeterministic optimization technique,
cellular automata (CA)-based traffic simulator inside the
evaluation routine of the GA, and Beowulf cluster as MIMD
multicomputer. Through this section, we broadly describe the
GA and the CA traffic simulator. Finally, a brief description of
the Beowulf cluster will also be provided.

A. Genetic Algorithm (GA)

In this section, we will describe the GA employed.
1) Optimization Criterion. Fitness Function: After testing

several criteria, we found the best results using the absolute
number of vehicles that left the traffic network during the
simulation.

During the traffic simulation, many new vehicles are created
as if they were arriving at the inputs of the network. More-
over, during the simulation, many vehicles reach their destina-
tion point and, consequently, leave the network. The number of
vehicles that reach their destination point easily illustrates the
simulation and helps us to compare it with others.

So far, we have tested some other optimization criteria.
• Mean time at the network—mean elapsed time (MET).

During the simulation, the arrival and departure time of
every vehicle is stored. With these values we can easily
calculate the number of iterations (seconds) spent by any
vehicle leaving the network. Once the simulation finishes,
the average time at the network is calculated.

• Standard deviation values of vehicle time at the network.
• A linear combination between the MET and the standard

deviation of vehicle times at the network.
• A linear combination between the MET and the total

number of vehicles that have left the network during the
simulation.

• The traffic network mean occupancy density. To calculate
this parameter, we divided the network into small sections
and counted the number of vehicles inside every section.

In our search for our systems optimization criteria, we en-
countered an unexpected problem. If we included the minimiza-
tion of the MET in the multicriteria objective function, we in-
duced a very undesirable effect. The chromosomes that blocked
the network faster were the best marked. This is because only a
few vehicles were able to leave the network (in a limited amount
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Fig. 1. Chromosome encoding.

of iterations) before it blocked. Hence, we obtained very low
values for this criterion. Thus, we abandoned this criterion.

2) Chromosome Encoding: In Fig. 1, we present the chro-
mosome encoding currently used in our system. In this figure,
we are representing a chromosome example for a very simple
traffic network case. It consists of two intersections and two
traffic lights for each intersection.

Below the traffic network, we have put the stages7 of each
traffic light separated in two different color regions, one for each
of the two intersections. The traffic light state at each stage may
be green (G), orange (O), or red (R). This stage sequence is
preestablished and will cycle ad infinitum—or until we stop the
corresponding simulation.

Under the stage sequence a hypothetical chromosome is
shown. Every integer means the time (seconds) of the corre-
sponding cycle stage. The objective of our system is to optimize
the length of each stage in order to get the very best traffic
behavior from the network under study.

As one can see in Fig. 1, after several translation steps we
obtain a binary Gray Code encoding (Black—[16]). We have
shown this methodology to be very efficient for our case in [17].
We will explain this matter in more depth in Section IV-D, and
in Appendix IV, we briefly explain how Gray Code works.

We use Gray Code because it is designed so that when a bit
changes its value—when mutation occurs—the stage length
value only increases or decreases one unit. This is a desirable
feature because it makes the search space conform to the
“Hamming Distance Metric.”

3) Initial Population: On creating every individual in the
initial population, we set a time range for the length of every
preestablished stage and we choose a random value within this
time interval.

For our study, we are including nine individuals in the initial
population that are not created randomly; rather, these individ-

7Stage: Every one of the states associated to an intersection that contains a
set of traffic lights.

uals are “solutions” provided by the City Council, as we will
explain further in Section V-C.

a) Random Number Generation: For the random number
generation, we have employed the MT19937 of Makoto
Matsumoto and Takuji Nishimura, known as the “Mersenne
Twister” generator. It has passed the DIEHARD statistical
tests [18]. The seeds for this algorithm were obtained from the
“/dev/urandom” device provided by the Red Hat 9 operating
system.

4) Selection Strategy: We have chosen a truncation and
elitism combination as selection strategy. This means that at
every generation a small group of individuals—the best two
individuals in our case—is cloned to the next generation. The
remainder of the next generation is created by cross-overing the
individuals belonging to a best fitness subset—usually, 66% of
the whole population.

This combination seems to be the most suitable for our
problem among a set of selection strategies tested. However,
we do not rule out the possibility of changing it if better results
seem attainable.

Other selection strategies are succinctly explained as follows.
• Elitism: The population is ordered by fitness. Then, a few

with the higher fitness values (elite) are cloned to the next
generation.

• Truncation: The population is ordered by fitness. Then, the
population is divided into two sets, one to survive—with
the higher fitness values—and another is simply discarded.

• Tournament: Small groups of individuals are chosen at
random. The best fitness individual for each is selected.

• Random Tournament: This is similar to the Tournament Se-
lection but here the best individual is not always selected.
It will depend on a probability value.

• Roulette Linear Selection: Every individual has a survival
probability proportional to its fitness value.

• Elitism plus Random Tournament.
5) Crossover Operator: We have tested some different

crossover operators (uniform crossover, two point crossover
at fixed points, and two point crossover at random points) and
concluded that, at least for our work, the best was the third, in
terms of behavior.

For a couple of parents, it simply chooses two random points
at each one of the two chromosomes, cuts them into three pieces,
and then interchanges the central chunk of them.

The way this operator is affected by using an integer or Gray
Code encoding will be detailed in Section IV-D.

6) Mutation Operator: The value of a randomly chosen bit
in the chromosome is just flipped.

The mutation probability is not fixed. We have also tested this
and, in our case, results suggest the use of a variable mutation
probability to our problem. It starts with a very high probability
that will be decreasing multiplied by a factor in the range (0,1)
until it reaches probability values near the inverse of the popu-
lation size when approaching the end of the planned number of
generations.

B. Traffic Simulator

Traffic simulation is known to be a very difficult task. There
are mainly two different traffic model flavors. The first one is the
macroscopic model family. They are based on fluid dynamics,
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Fig. 2. Paths in our improved CA model.

since they consider traffic flow as a continuous fluid. On the
other hand, we have the microscopic simulators. For them,
traffic is considered as a collection of discrete particles fol-
lowing some rules. In the past decade there has been a common
belief about the better performance of microscopic approaches
for traffic modeling. One such widely used approach is the CA
model.

There has been a long tradition of macroscopic approaches
for traffic modeling. In the 1950s, some “first-order” continuum
theories of highway traffic appeared. In the 1970s and beyond,
some other “second-order” models were developed to correct
their deficiencies. References [19]–[24] may illustrate some
of these models. However, in [25], “second-order” models are
questioned due to some serious problems, i.e., negative flows
predictions and negative speeds under certain conditions.

Nowadays, microscopic simulators are widely used. One
reason is that macroscopic simulators cannot model the discrete
dynamics that arise from the interaction of individual vehicles
[26]. CA seem to be faster than any other traffic microsimulator
[27] and, as said in [28] “the computational requirements are
rather low with respect to both storage and computation time
making it possible to simulate large traffic networks on personal
computers.”

1) CA as an Inspiring Model: CA simulators are based on
the CA Theory developed by von Neumann [29] at the end of
the 1940s at the Logic of Computers Group of the University of
Michigan. CA are discrete dynamical systems whose behavior is
specified in terms of local relation. Space is sampled into a grid,
with each cell containing a few bits of data. As time advances,
each cell decides its next state depending on the neighbors state
and following a small set of rules.

In the Cellular Automata model not only space is sampled,
but also time and speed. Time becomes iterations. A relation-
ship between time and iterations is established, e.g.,

. Consequently, speed turns into “cells over itera-
tions.”

In [30], we can find a well-described list of microscopic
models and a comparative study of them. Although conclusions
are not definitive, this work seems to demonstrate that models
using less parameters have a better performance.

We have developed a traffic model based on the SK8 model
[31] and the SchCh9 model [32]. The SchCh model is a
combination of a highway traffic model—Nagel–Schreck-
enberg [33]—and a very simple city traffic model—Biham–

8Stephan Krauss, the author.
9Andreas Schadschneider and Debashish Chowdhury, the authors.

Middleton–Levine [34]. The SK model adds the “smooth
braking” for avoiding abrupt speed changes. We decided to
modify our model inspired by the SK model due to its improved
results for all the tests shown [30].

2) Our Improved CA Model: We have developed a nonlinear
model for simulating traffic behavior that is based on the CA
model. The basic structure is the same as the one used in CA.
However, in our case, we add two new levels of complexity by
creating two new abstractions: “Paths” and “Vehicles.”

“Paths” are overlapping subsets included in the CA set. There
is one “Path” for every origin-destination pair. To do this, every
“Path” has a collection of positions and, for each one of them,
there exists an array of allowed next positions. In Fig. 2, we try
to illustrate this idea.

“Vehicles” consists of an array of structures, each one of them
having the following properties.

1) Position: where the cellular automaton is located. Note that
every cell may be occupied by one and only one vehicle.

2) Speed: the current speed of a vehicle. It means the number
of cells it moves over every iteration.

3) Path: In our model, every vehicle is related to a “path.”
These are the rules applied to every vehicle.

1) A vehicle ought to accelerate up to the maximum speed
allowed. If there is no obstacle in its way (another vehicle,
or a red traffic light), it will accelerate at a pace of one cell
per iteration, every iteration.

2) If a vehicle can reach an occupied position, it will reduce
its speed and will occupy the free position just behind the
preceding.

3) If a vehicle reaches a red traffic light, it will stop.
4) Smooth braking: Once the vehicle position is updated, then

the vehicle speed is updated too. To do this, the number of
free positions from the current position ahead is taken into
account. If there is not enough free space for the vehicle
to move forward on the next iteration going at its current
speed (hypothetically, since in the next iteration the traffic
situation may change), it will reduce its speed by one unit.

5) Multilane traffic: When a vehicle is trying to move on, or
update its speed, it is allowed to consider positions on other
parallel lanes. For every origin-destination couple (path),
for every cell there is a list of possible subsequent posi-
tions. The first considered is the one straight forward. If
this is not free, there may be more possible positions in
parallel lanes that will be considered. Of course, this list of
possible next positions is created taking the basic driving
rules into account.

Using these rules we can simulate many different path vehi-
cles running in the same network. This model may be seen as a
set of traditional CA networks working in parallel over
the same physical points.

Note that so far, we are not considering different behavior
for the green and the orange state. However, our architecture is
designed in such a manner that we can modify this whenever we
want to, with little effort.

C. Beowulf Cluster

The hardware of our system is based on a five node Be-
owulf cluster, due to its very interesting price/performance
relationship and the possibility of employing Open Software
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Fig. 3. Size_1 traffic network.

on it. Moreover, this is a very scalable MIMD computer, a very
desirable feature in order to solve many sorts—and scales—of
traffic problems.

Every cluster node consists of a Pentium IV processor at
3.06 GHz with 1 GB DDR RAM and 80 GB HDD. The nodes
are connected through a Gigabit Ethernet Backbone. Every node
has the same hardware, except for the master node having an
extra Gigabit Ethernet network card for “out world” connection.

Every node has installed Red Hat 9 on it—Kernel
2.4.20–28.9, glibc ver. 2.3.2 and gcc ver. 3.3.2. It was also nec-
essary for parallel programming the installation of LAM/MPI
(LAM 6.5.8, MPI 2).

In our application there are two kinds of processes, namely,
master and slave. There is only one master process running
on each test. At every generation it sends the chromosomes
(MPI_Send) to the slave processes, receives the evaluation re-
sults (MPI_Recv) and creates the next population. Slave pro-
cesses routine is an endless loop. They are always waiting to
receive a new chromosome (MPI_Recv). Then, they evaluate it
and send the evaluation result (MPI_Send).

IV. EXPERIENCES CARRIED OUT WITH THIS ARCHITECTURE

A. First Publication

In [8], we presented our architecture for the optimization of
Traffic Light Cycles in a Traffic Network. It was based some-
what on the same three points of this study. The good results of
a parallel speedup study convinced us that it was advisable to
use a Beowulf cluster.

After comparing our results with those from other method-
ologies, we made our initial improvements on the mean time
spent by each vehicle inside the network.

For that study, we used a very simple traffic network (Fig. 3)
that once discretized, appears as in Fig. 4. In this representation,
we are using the following symbols: a square meaning a traffic
light position, a triangle meaning a traffic input or output, and a
circle meaning a valid vehicle position. We will keep this set of
symbols throughout the remaining figures.

Fig. 4. Size_1 discretized traffic network.

TABLE I
THREE NETWORKS SCALES STATISTICS

B. Scalability Study

In OPTDES IV,10 we presented a scalability study with our
architecture. For four different network scales—their statistics
are represented in Table I—we studied the execution time and
the fitness evolution. In this table, “Points” means the number of
cells of the respective network, with a rate of one sample every
7 meters (approximately), which is the average space needed by
a vehicle in a traffic jam. “T.Lights” represents the number of
traffic lights optimized. “Intersections,” “Inputs,” and “Outputs”
mean the number of intersections, inputs and outputs of the re-
spective network. Finally, “Chromosome Size” means the size
(bytes) of every chromosome.

In that research, we found out that our system worked well for
all cases, except perhaps for the Size_4 network. In this case,
it would only be necessary to extend the hardware because of
computational overload.

C. Deterministic Simulator Suitability

In paper [35], we compare our deterministic traffic simulator
with a stochastic one. There are three differences between a
standard stochastic simulator and our deterministic version.

1) The cells updating order. In the stochastic version, the
order of the cells to be updated is chosen at random. In our
deterministic version, we have written a recursive function
to calculate the dependencies graph. With it, we prepare
a nondeadlocking updating order at the beginning of the
simulation.

10Optimization and Design in Industry IV, Tokyo, Japan, September 26–30,
2004.
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Fig. 5. Size_1 network MET comparison.

Fig. 6. Size_1 network linear regression.

2) The new vehicle creation time. In the stochastic version,
every input has a probability of new vehicle arrival. So,
the creation time of new vehicles depends on a random
variable. In the deterministic case, we create new vehicles
at fixed periods, proportional to the real traffic flow at every
input.

3) The acceleration probability. In the deterministic case,
when updating every vehicle speed, if it has free way
and is under the maximum allowed speed it will always
accelerate. However, for the stochastic case, there is an
acceleration probability—usually greater than 0.7. So,
vehicles may accelerate or not.

In the same study, we demonstrated that we obtain similar
results using a standard stochastic simulator and a determin-
istic one. Furthermore, by using the deterministic version, we
got huge computing power savings. This is because if we use a
stochastic simulator, we need to run lots of simulations to get
consistent values for the fitness of every population individual.

Fig. 7. Size_2 network MET comparison.

Fig. 8. Size_2 network linear regression.

In that work, we tested this by using three different traffic
networks—Size_1, Size_2, and Size_3 from Table I. We ran
1000 stochastic simulations and one deterministic simulation
for every individual.

We used a population of 100 individuals and every traffic sim-
ulation ran through 1500 iterations.

We present a set of six graphs—Figs. 5 and 6 for the Size_1
network; Figs. 7 and 8 for the Size_2 network; and Figs. 9 and
10 for the Size_3 network. In Figs. 5, 7, and 9 the following
items are represented.

1) In the first row, we draw the MET—elapsed time from
when a vehicle reaches the network until it leaves—for
both simulators. Note that in the stochastic case the average
value of all the executions is represented.

2) In the second, the distance between the average values of
the stochastic simulator and the deterministic simulator
value is represented.

3) Finally, we plot the standard deviation of the stochastic
simulator values.
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Fig. 9. Size_3 network MET comparison.

Fig. 10. Size_3 network linear regression.

From these graphs one may observe that the two main
plots—mean stochastic and deterministic values—are highly
correlated.

In Figs. 6, 8, and 10, we plot the linear regression function
relating both kinds of simulators. Besides, the individual evalu-
ation values are represented with plus signs.

We also include some other interesting statistics in Table II.
In the first column, we have the network scale of the test. In the
second column, we have the Pearson correlation coefficient [(1)]

(1)

The third column displays the mean euclidean distance
(MED) between the individual evaluations and the regression
function. Finally, we have the mean computational cost ratio
(MCCR), which is the average value in the whole population of
the ratio for each individual between the execution time of the
stochastic simulations (the sum of 1000 simulations) over the
deterministic simulation time. For the MCCR, we have used

TABLE II
STATISTICS TABLE FOR THE DETERMINISTIC VERSUS

STOCHASTIC SIMULATOR STUDY

Fig. 11. Gene level two point crossover.

(2). In this equation means the population size. means
the accumulated execution time for the 1000 stochastic simula-
tion run and means the execution time for the deterministic
simulator, both of them for the th individual

(2)

The conclusions from this work may be summarized in two
points.

1) We confirmed that the stochastic simulator is a convergent
process well suited to be used as a reference metric for the
optimization.

2) We demonstrated that the deterministic simulator outputs
are highly linearly correlated with the stochastic ones.

So with our deterministic simulator, we can arrange the pop-
ulation ranking in order of fitness at least as well as with the sto-
chastic simulator, but with a remarkably lower computing time.

D. Bit Level Crossover

In this work [17], we describe the difference between the
two types of genetic encoding studied, which yield different
crossover and mutation strategies.

In the first case, we are using an integer encoding. In Fig. 11,
we show a case of a two point crossover between two chromo-
somes corresponding to a very simple traffic network: four inter-
sections each one of them having eight stage cycle lengths. We
must remember that every integer means the time (in seconds)
of the corresponding cycle stage. In this case, each integer is a
gene with an atomic meaning.

In general, the crossover and mutation operator could be
applied considering this integer (or gene level) encoding (see
Fig. 11). For example, when a gene level crossover occurs, two
individuals interchange their genes without modifying them.
It means that the only change in genes is a consequence of
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Fig. 12. Bit level two point crossover.

Fig. 13. Bit level versus gen level crossover fitness evolution comparison.

mutation. The gene level mutation will just change an integer
value for another one (within its valid range).

On the other side, we may choose a bit level crossover
and mutation operators. We represent the bit level crossover
in Fig. 12. In this case, every stage duration is coded—and
treated—using the Gray binary code ([16]). Due to the impor-
tance of Gray Code in genetic encoding, we explain it in further
detail in Appendix IV.

When a bit level crossover occurs, it is obvious that the gene
content is modified. It causes the population genes to change
frequently.

In Fig. 13, we have represented the “best fitness” mean evo-
lution for each case. Thus, we stored the best fitness value, gen-
eration by generation, for every execution of the GA. Then, we
calculated the mean curve considering the 30 executions we ran
for every test case. We also calculated the standard deviation of
those values for every test case—in the bottom of Fig. 13.

Fig. 14. Bit level versus gen level crossover relevant fitness values.

Note that for the couple consisting of a bit level crossover and
a variable mutation probability (explained in Section III-A6),
we obtained the best results. Furthermore, it seems that pre-
mature convergence occurs—found a local maximum—for the
other three cases.

In Fig. 14, we depict for every combination the maximum,
the minimum, and the closest to mean fitness values.

The main topic in this work was to demonstrate—by means
of a wide set of tests—that at least in our particular case, a bit
level crossover combined with a variable mutation probability
may provide a great saving of computing time. Besides, we have
seen that this choice lets the algorithm cover the solution space
faster due to a bigger gene variability between generations. This
combination seems to avoid premature convergence.

We should indicate that a Gray Code was specifically chosen
because it is designed in such a way that when a bit changes
its value—when mutation occurs—the stage length value only
increases or decreases one unit.

V. TEST CASE DESCRIPTION

A. “Las Ramblas” Zone in Santa Cruz de Tenerife

Santa Cruz de Tenerife is a port city situated on the northeast
coast of Tenerife Island. Tenerife is the biggest and most popu-
lated island in the Canary Islands, a Spanish archipelago off the
Northwest Africa. Santa Cruz de Tenerife is the islands capital
city. Situated at 28.47 north latitude and 16.25 east longitude,
the city covers is 150.56 and boasts a population of 221,567
inhabitants—ISTAC11 2005 data. The city is the most important
business center in Tenerife.

The city’s economy is mainly service-based, with the excep-
tion of some chemical companies and oil refineries.

In the central district of “Las Ramblas,” there is a high con-
centration of stores and also some shopping centers. Hence, we
chose a heavily loaded traffic zone which is most suitable for

11Instituto Canario de Estadística.
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Fig. 15. The Canary Islands with Santa Cruz de Tenerife highlighted.

testing our system. The high economic activity of the area makes
every traffic improvement very profitable.

B. Traffic Department Collaboration

Once we decided to work with this city, our group contacted
the Traffic Department Chief for the City Council, Mr. Hilario
Rodríguez González. We explained our research to him and he
was eager to collaborate with us and provided all the necessary
data.

We requested three kinds of data. First, we needed topological
data of the desired zone.

We also required an origin-destination probability matrix
which is useful for simulating what would be the destination
of every new vehicle arriving in the area under study. They
could not provide such data directly, but were able to supply us
with many traffic statistics, letting us build the aforementioned
matrix ourselves—assuming some simplifications, as explained
in Section VI.

We also needed those statistics for simulating, as close to ac-
tual traffic as attainable, the traffic arriving at the network.

Finally, we needed the current traffic light programming to
perform a comparison between our optimized results and theirs.

C. Data Preprocessing

Throughout this section we will explain how we prepare the
supplied data for feeding our optimization engine. In Fig. 16, we
show a sample of the topology discretization for the supplied
map. We set a point approximately every 7 meters—the usual
distance needed by a generic vehicle in a traffic jam.

We extend this topology discretization to the zone in Fig. 17,
yielding the discretized network of Figs. 18 and 19. In these
figures, we only show the scale of our problem. It includes 1643
cells, 42 traffic lights, 26 inputs, and 20 outputs.

The Traffic Department of Santa Cruz de Tenerife City
Council kindly provided us with nine sets of solutions used at
that time for the studied network. The first one is labeled LC,
which means that this combination is applied whenever the
communication with the Control Center is lost. The others are
labeled R0 to R7.

D. Objective Formulation

For a city zone, presented in Fig. 17, once discretized into a
set of points as plotted in Figs. 18 and 19, taking into account
the restrictions specified in Section VI and the probability ma-
trix of Appendix III-A, our aim is to calculate the optimal times
for each stage. Those times should lie within a specified range.
These ranges may be set up by default or according to any spe-
cial requirements.

Finally, to solve this problem, we include into the initial
population nine chromosomes containing, respectively, the
nine stage length sets currently used in the zone. We do this to
ensure better results than the ones obtained with the supplied
combinations.

VI. PROBLEM CONSTRAINTS

In this section, we set out the constraints applied in solving
the formulated problem.

A. Low Traffic Streets

Our model depends on a close-to-reality simulation of traffic
behavior in the analyzed network. This means that we need ac-
curate statistics of what is happening on the streets to achieve
the following two objectives.

1) Obtain a sound origin-destination probability matrix,
which would let us estimate the destination for every new
vehicle created at each input.

2) Simulate the real traffic behavior and the one using our
results.

Hence, the more accurate traffic statistics available, the lesser
the assumed simplifications. In Appendix I, the considered and
deprecated streets for this work are specified. In Appendix III,
there is a list of the simplifications assumed for building the
origin-destination matrix.

B. Optimized Traffic Lights

So far, we do not consider pedestrians in our model. The main
objective of our optimization is to maximize the traffic through
the network. Further research will consider external interrup-
tions of traffic provoked not only by foreseeable agents such as
pedestrians, trains, tramways, etc., but also by unexpected is-
sues such as accidents, demonstrations, and so on.
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Fig. 16. Topology discretization.

A key factor for any Advanced Traffic Management System
is the optimization of the pedestrian network minimizing,
for example, walking time. A remarkable goal would be to

Fig. 17. “Las Ramblas” zone of Santa Cruz de Tenerife.

decouple the pedestrian network from motorized network by
pedestrianized streets, bridges, or tunnels. However, as motor-
ized traffic has more significant economic and environmental
consequences, we have opted for optimizing traffic lights as
a first approach to a global and complex problem. Therefore,
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Fig. 18. Discretized traffic network—first half. The distance between two
points is around 7 meters.

Fig. 19. Discretized traffic network—second half. The distance between two
points is around 7 meters.

we have not considered those traffic lights controlling only
pedestrians, i.e., for crossing a street.

Fig. 20. Fitness evolution and standard deviation for the 50 optimizations
performed.

With all this in mind and the discarded streets from
Appendix I, we also have deprecated a set of traffic lights
listed in Appendix II.

VII. TEST CASE RESULTS

Throughout this section we describe the tests we carried out
with the supplied data. These tests may be separated into two
sets. First, we performed a set of optimizations searching for
the best times for traffic light cycles. Then, we compared the
traffic behavior using our results against the simulated behavior
using the traffic departments supplied times.

In all, we ran 150 executions for this problem. For each
of them we employed a 200 individual population within the
GA, running through 250 generations. For each individual
evaluation, we ran 2000 iterations of the microsimulation (2000
seconds). The mean execution time for each optimization is
4379.39 seconds (1 hour, 13 minutes, and 12 seconds). First,
we present in Fig. 20 the fitness evolution for the 150 opti-
mizations performed. In this figure, we plot the evolution of
the fitness value of the best individual within each generation
for the 150 solutions obtained. We represent the average “best
fitness” plot with a thicker line. At the bottom of this figure, we
represent the standard deviation of “best fitness” for the whole
set of executions. In this figure, one may see that the algorithm
converges clearly around 200 generations.

In Fig. 21, we represent the performance results using the
solutions given to us by the City Council—the first nine points.
The rest of the points represent the performance obtained using
the solutions yielded by our method. One may observe that there
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Fig. 21. Supplied versus obtained solutions.

Fig. 22. Scaled (percent) comparison between supplied solutions versus ours.

is an obvious improvement using our times. Likewise, our 150
solutions seem to be more stable than theirs.

As a side note, one may observe that due to the stochastic
nature of our optimization, solutions follow a Gaussian distri-
bution, which may include extremal values (both high and low).
In Fig. 23, we show the stochastic distribution of the best in-
dividual fitness value—the number of vehicles leaving the net-
work—once each optimization is finished. We have also over-
laid a Gaussian distribution with the same mean and standard
deviation as in our results.

Fig. 22 shows the improvement—as a percentage—of the
mean, best, and worst values of our 150 solutions against the
nine supplied. This improvement stays within a range from 0.53
to 26.21. The smallest difference between the optimized results
and the supplied simulated results is 12 vehicles—solution 43
with respect to supplied “R1.” The biggest difference is 521 ve-
hicles—distance from solution 69 to supplied “R6.”

Finally, in Fig. 24, we represent the fitness distribution among
the population as it evolved for one optimization execution. For

Fig. 23. Number of vehicles stochastic distribution versus a Gaussian proba-
bility distribution.

Fig. 24. Population fitness histogram evolution through the 200 generations.

each generation, we obtained a 35 interval histogram and we put
this all together in this figure. Note that the population seems to
converge in a high fitness zone—about 2400 vehicles leaving
the network—as the optimization runs.

VIII. CONCLUSION AND FUTURE WORK

One important conclusion is that we can clearly improve the
supplied times in our simulated environment. So, we can seek
optimal cycle time combinations for the traffic lights program-
ming using our architecture with an appropriate amount of sta-
tistics. We have proven this with a real-world test case (never-
theless, using a simulated environment).

This is useful as reducing travel times in a city clearly means
saving money and reducing environmental impact.

It is important to note that our system is intrinsically adapt-
able to particularized requirements, such as “Path” preferences,
minimum, and maximum stage lengths, etc. In this sense, our
system is flexible and adaptable.
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In future work, we would like to use a more complete set
of statistics which would help calculate a more accurate proba-
bility matrix.

In the next phase of our research, we will validate our traffic
simulation using real-world data from another city. This is an
important task we must accomplish, because, so far, we have
relied on the results from previous studies involving traffic sim-
ulation using CA, but it is now time to do our own validation.

The next task will be a real challenge. We are looking for a
city council that will allow us to test our results in a real traffic
network, at least in a constrained manner. We realize that this is a
very complicated objective. Once we have achieved the first ex-
perience, we think that city council officials in charge of traffic
control will be less reluctant to collaborate.

Finally, we are considering the possibility of extending our
model to take into account the “Pedestrians’ Interaction” and in-
cluding environmental aspects in the optimization criteria using
a multiobjective approach.

APPENDIX I
STREETS IN/OUT OF OUR MODEL

A. Streets Taken Into Account

In this section, we enumerate the streets under consideration
in this work.

• General Franco Boulevard
• General Mola Avenue
• Pulido Boulevard
• Asunción Avenue
• Ramón y Cajal Street
• San Sebastián Street
• Reyes Católicos Avenue
• Pablo Picasso Street
• Benito Pérez Armas Avenue
• Fragata Danmark Street
• Tomé Cano Street
• Juan Sebastián Elcano Street

B. Streets Withdrawn From Our Model

In this section, the streets withdrawn for simplifying purposes
are listed.

• Heliodoro Rodríguez González Street
• Ángel Arocha Street
• Madrid Avenue
• Cineasta Miguel Brito Street
• Bernardino Seman Street
• Velázquez Street
• Unamuno Street
• Gilberto Cayol López Street
• Pintor Martín González Street
• Azorín Street
• Ramiro de Maeztu Street
• Eric Lionel Fox Street
• El Camello Street
• Legazpi Street
• del Carmen Avenue
• C. Sánchez Pinto Street
• General Goded Street

• G. Sanjurjo Street
• Calvo Sotelo Street
• Primo de Rivera Street
• 18 de Julio Street
• Castro Street
• Anselmo Street
• Álvarez de Lugo Street
• General Porlier Street
• General Serrano Street
• La Asunción Street
• Santiago Cuadrado Street
• Salamanca Street

APPENDIX II
TRAFFIC LIGHTS IN/OUT OF OUR MODEL

A. Traffic Lights Withdrawn From Our Model

In this section, we enumerate the traffic lights we have with-
drawn from the model to simplify it (with reason).

• INTERSECTION #13
— Traffic light #2 (not needed).
— Traffic light #3 (not needed).
— Traffic light #5 (not needed).
— Traffic light #9 (not needed).

• INTERSECTION #16
— Traffic light #5 (we do not have its time chart).

• INTERSECTION #11
— Every traffic light [not enough average daily traffic

(A.D.T.) data].
• INTERSECTION #15

— Every traffic light (not enough A.D.T. data).
• INTERSECTION #18

— Traffic light #3 (not enough A.D.T. data).
— Traffic light #9 (not enough A.D.T. data).

• INTERSECTION #21
— Every traffic light (not enough A.D.T. data).

• INTERSECTION #22
— Traffic light #5 (not enough A.D.T. data).

• INTERSECTION #23
— Every traffic light (not enough A.D.T. data).

• INTERSECTION #24
— Traffic light #9 (not needed).

• INTERSECTION #25
• Traffic light #8 (not needed).
• Traffic light #4 (not needed).
• Traffic light #10 (not needed).
• Traffic light #5 (not needed).
• Traffic light #17 (not needed).
• Traffic light #16 (not needed).
• Traffic light #11 (not needed).

• INTERSECTION #27
— Every traffic light (not enough A.D.T. data).

• INTERSECTION #114
— Every traffic light (not enough A.D.T. data).

• INTERSECTION #117
— Every traffic light (not enough A.D.T. data).

• INTERSECTION #119
— Every traffic light (not enough A.D.T. data).
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APPENDIX III
APPROXIMATIONS FOR THE ORIGIN-DESTINATION MATRIX

In this appendix, we present the approximations assumed
for the origin-destination probability matrix calculation. It
was necessary to take these approximations, since we did not
have enough real data to produce a proper probability matrix.
If we were given a whole set of street traffic statistics, no
approximation would be needed.

• No traffic variation caused by streets excluded from the
model is taken into account.

• INTERSECTION #25 (Plaza de la Paz):
— The traffic from General Franco Boulevard is divided

into three equal parts. Two of them go to Asunción Av-
enue and the other goes to General Mola Avenue.

— The traffic coming from Pulido Boulevard is divided
into three equal parts: General Franco, General Mola,
and Asunción Avenue.

• INTERSECTION #22 (Plaza de Republica Dominicana):
— We deprecate the traffic part that coming from Asunción

Avenue, goes around Republica Dominicana Square and
returns back to Asunción Avenue.

— The traffic coming from Reyes Católicos Avenue is di-
vided into two parts. The first part (10%) goes to San
Sebastián Street and the rest (90%) heads to Asunción
Avenue.

— The traffic from Belgic Avenue is divided into three
equal parts: Asunción Avenue, San Sebastián Street, and
Reyes Católicos Avenue.

• INTERSECTION #20:
— All the traffic moving through Reyes Católicos Avenue

targeting at Republica Dominicana Square is composed
of half coming from Pablo Picasso Street and the other
half from Reyes Católicos Avenue.

— The traffic coming from Pablo Picasso Street targeting
at Reyes Católicos Avenue is divided into two parts. The
first part (75%) goes to Republica Dominicana Square
and the other part (25%) goes in the opposite direction.

• INTERSECTION #17:
— All the traffic leaving this intersection towards the Reyes

Católicos Avenue targeting at Republica Dominicana
Square is composed of two equal parts. The first one
coming from the TF-1 highway viaduct and the second
one coming from Benito Pérez Armas Avenue.

— The traffic entering Reyes Católicos Avenue from
Benito Pérez Armas Avenue is divided into two parts.
The first part (90%) goes towards the TF-1 highway
exit and the other part (10%) goes on through Benito
Pérez Armas Avenue.

• INTERSECTION #16:
— The traffic entering Benito Pérez Armas Avenue from

the TF-1 highway exit is divided into two parts. The first
part (90%) goes on through Benito Pérez Armas Avenue
and the other part (10%) goes towards Fragata Danmark
Street.

— The traffic entering Benito Pérez Armas Avenue from
Fragata Danmark Street is divided into two parts. The
first part (92.4%) goes towards Reyes Católicos Avenue
and the other part (7.6%) goes in the opposite direction.

TABLE III
ORIGIN-DESTINATION PROBABILITY MATRIX EMPLOYED

• INTERSECTION #13:
— The traffic coming from Juan Sebastián Elcano Street is

divided into three equal parts. The first part goes towards
Tomé Cano Street—targeting at Heliodoro Rodríguez
López Street. The second part goes to Fragata Danmark,
and the third part takes Tomé Cano Street in the direction
towards 3 de Mayo Avenue.

— The traffic going through Tomé Cano Street from He-
liodoro Rodríguez López Street is divided in two halves,
one towards Fragata Danmark and the other to Tomé
Cano continuance street.

— The traffic going through Tomé Cano Street directed to
Heliodoro Rodríguez López Street is divided into two
halves. One goes through Tomé Cano Street and the
other entering Fragata Danmark Street.

• INTERSECTION #19:
— The traffic coming by Picasso Street to the intersec-

tion by Benito Pérez Armas Avenue targeting at Reyes
Católicos Avenue is divided into three equal parts. Two
of them go in both directions of traffic in Benito Pérez
Armas and the third one goes on through Picasso Street.

— The traffic entering Picasso Street directed to Reyes
Católicos Avenue is composed of three equal parts,
coming from the two traffic directions of Benito Pérez
Armas Avenue and Picasso Street.

A. Origin-Destination Probability Matrix for This Work

In this appendix, we are showing the Origin-Destination
Probability Matrix employed (Table III). To generate it, we
have used the average daily traffic (ADT)12 data supplied with
the help of the approximations listed in Appendix III.

APPENDIX IV
GRAY CODE CODIFICATION

The purpose of this appendix is to assist in the understanding
of the Gray Code Codification we used.

In short, it works like this: First, we shift the binary number
one bit to the right and prune the least significant bit (the last on
the right). Then, we perform a binary XOR operation between
the original number and the pruned one.

For example, the binary code of 5 is 101. If we do the binary
XOR of 101 and 010 (the pruned number), we will get 111, since
the three pairs of bits are different.

12ADT: The total volume during a given time period in whole days greater
than one day and less than one year divided by the number of days in that time
period.
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TABLE IV
GRAY CODE CONVERSION EXAMPLES

In Table IV, we show more examples including the pruned
number.

To do the gray to binary conversion an iterative routine is
used. The most significant bit (MSB) is copied from the Gray
Coded number to the binary number. The other bits are calcu-
lated like this: If the Gray Coded number bit is “1,” we put the
complementary of the last written bit. If the gray bit is “0,” we
repeat the last written bit value.

For example, 4 is 110 in Gray Code. The MSB of the corre-
sponding binary number will be the MSB of the gray number
(“1”). The second bit of the Gray Coded number is “1,” so we
have to write the 2’s complement of the last written bit (“0”).
Finally, the third bit of the gray number is “0.” So we will re-
peat “0.” The resulting binary number is 100.

ACKNOWLEDGMENT

The authors would like to acknowledge the Santa Cruz de
Tenerife City Council Traffic Department for their kind help.
They specially would like to thank Mr. H. Rodríguez González
for his willingness to collaborate with them, making this work
feasible. They also would like to acknowledge Dr. D. Shea from
the University of Las Palmas de Gran Canaria for his kind as-
sistance copy editing the original manuscript.

REFERENCES

[1] E. Brockfeld, R. Barlovic, A. Schadschneider, and M. Schreckenberg,
“Optimizing traffic lights in a cellular automaton model for city traffic,”
2001. [Online]. Available: http://www.arxiv.org/ps/cond-mat/0107056

[2] N. Rouphail, B. Park, and J. Sacks, “Direct signal timing optimization:
Strategy development and results,” in Proc. XI Pan Amer. Conf. Traffic
and Transportation Eng., Gramado, Brazil, 2000. [Online]. Available:
http://citeseer.ist.psu.edu/383145.html

[3] A. Vogel, C. Goerick, and W. von Seelen, “Evolutionary algorithms
for optimizing traffic signal operation,” in Proce. ESIT 2000, Aachen,
Germany, 2000, pp. 83–91.

[4] S. López, P. Hernandez, A. Hernandez, and M. Garcia, “Artificial
neural networks as useful tools for the optimization of the relative
offset between two consecutive sets of traffic lights,” in Foundations
and Tools for Neural Modeling. Berlin, Germany: Springer-Verlag,
1999, LNCS, pp. 795–804.

[5] A. Halati, H. Lieu, and S. Walker, “CORSIM—corridor traffic simu-
lation model,” in Proc. 76th Ann. Meeting Transp. Res. Board, Wash-
ington, D.C., 1997, pp. 570–576.

[6] O. Tveit, “Common cycle time—A strength or barrier in traffic light
signaling,” Traffic Eng. Control Mag., vol. 44, no. 1, pp. 19–21, 2003.

[7] G. Y. Lim, J. J. Kang, and Y. S. Hong, “The optimization of traffic
signal light using artificial intelligence,” in Proc. 10th IEEE Int. Conf.
Fuzzy Syst., Dec. 2–5, 2001, vol. 3, pp. 1279–1282.

[8] J. Sánchez, M. Galán, and E. Rubio, “Genetic algorithms and cellular
automata: A new architecture for traffic light cycles optimization,” in
Proc. Congr. Evol. Comput., 2004, vol. II, pp. 1668–1674.

[9] A. Di Febbraro, D. Giglio, and N. Sacco, “On applying Petri nets
to determine optimal offsets for coordinated traffic light timings,”
in Proc. IEEE 5th Int. Conf. Intell. Transportation Syst., 2002,
pp. 773–778.

[10] L. Li, N. Tang, X. Mu, and F. Shi, “Implementation of traffic lights
control based on petri nets,” IEEE Intell. Transp. Syst., vol. 3, pp.
1749–1752, 2003.

[11] M. J. Smith, “Optimum network control using traffic signals,” in Proc.
IEE Colloquium on UK Developments in Road Traffic Signalling,, May
5, 1988, pp. 8/1–8/3.

[12] Y.-S. Hong, J. S. Kim, J. Kwangson, and C. K. Park, “Estimation of
optimal green time simulation using fuzzy neural network,” in Proc.
Int. Conf. Fuzzy Syst., 1999, vol. 2, pp. 761–766.

[13] J. C. Spall and D. C. Chin, “A model-free approach to optimal signal
light timing for system-wide traffic control,” in Proc. IEEE 33rd Conf.
Decision Control, 1994, vol. 2, pp. 1868–1875.

[14] Y.-S. Hong, J. Hyunsoo, and P. Chong-Kug, “New electrosensitive
traffic light using fuzzy neural network,” IEEE Trans. Fuzzy Syst., vol.
7, no. 6, pp. 759–767, 1999.

[15] M. Wiering, J. Vreeken, J. van Veenen, and A. Koopman, “Simula-
tion and optimization of traffic in a city,” in Proc. IEEE Intell. Vehicles
Symp., 2004, pp. 453–458.

[16] P. E. Black, “Gray Code,” From Dictionary of Algorithms and Data
Structures, P. E. Black, Ed. Gaithersburg, MD: NIST. [Online].
Available: http://www.nist.gov/dads/HTML/graycode.html

[17] J. Sánchez, M. Galán, and E. Rubio, “Bit level versus gene level
crossover in a traffic modeling environment,” in Proc. Int. Conf.
Comput. Intell. Modelling Control Automa. and Int. Conf. Intell.
Agents, Web Technol. Internet Commerce, 2005, vol. 1, pp. 1190–1195,
ISBM: 0–7695–2504–0–01.

[18] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimen-
sionally equidistributed uniform pseudorandom number generator,”
ACM Trans. Modeling Computer Simulation, vol. 8, no. 1, pp. 3–30,
1998.

[19] D. Helbing, “An improved fluid dynamical model for vehicular traffic,”
Physical Rev. E, vol. 51, p. 3164, 1995.

[20] B. S. Kerner and P. Konhäuser, “Structure and Parameters of Clusters
in Traffic Flow,” Physical Review E, vol. 50, no. 1, pp. 54–83, Jul. 1994,
American Physical Society.

[21] R. D. Kühne and M. B. Rödiger , “Macroscopic simulation model for
freeway traffic with jams and stop-start waves,” in Proc. 23rd Conf.
Winter Simulation, 1991, pp. 762–770, ISBN: 0–7803–0181–1, IEEE
Computer Society.

[22] R. D. Kühne, “Verkehrsablauf auf Fernstrassen,” Phys. Bl., vol. 47/3,
no. 201, pp. 201–204, 1991.

[23] H. J. Payne, “Freflo: A macroscopic simulation model of freeway
traffic,” Transp. Res. Record, vol. 722, no. 68, pp. 68–77, 1979.

[24] G. B. Whitham, Linear and Nonlinear Waves. New York: Wiley,
1974.

[25] C. F. Daganzo, “Requiem for second order fluid approximations of
traffic flow,” Transp. Res. B, pp. 277–286, 1995.

[26] S. Benjaafar, K. Dooley, and W. Setyawan, Cellular automata for traffic
flow modeling Intelligent Transportation Systems Institute, Rep. No.
CTS 97-09, 1997.

[27] K. Nagel and A. Schleicher, “Microscopic traffic modeling on parallel
high performance computers,” Parallel Comput. vol. 20, pp. 125–146,
1994. [Online]. Available: http://www.citeseer.ist.psu.edu/nagel93mi-
croscopic.html

[28] M. Cremer and J. Ludwig, “A fast simulation model for traffic flow on
the basis of Boolean operations,” Math. Comput. Simulation, vol. 28,
pp. 297–303, 1986.

[29] J. von Neumann, “The general and logical theory of automata,” in
John von Neumann—Collected Works, A. H. Taub, Ed. New York:
Macmillan, 1963, vol. V, pp. 288–328.

[30] E. Brockfeld, R. D. Khne, and P. Wagner, “Towards benchmarking
microscopic traffic flow models networks for mobility,” in Proc. Int.
Symp., 2002, vol. I, pp. 321–331.

[31] S. Krauss, P. Wagner, and C. Gawron, “Metastable states in a micro-
scopic model of traffic flow,” Phys. Rev. E, vol. 55, pp. 5597–5605,
1997.

[32] A. Schadschneider, D. Chowdhury, E. Brockfeld, K. Klauck, L.
Santen, and J. Zittartz, “A new cellular automata model for city
traffic,” in Traffic and Granular Flow ’99: Social, Traffic, and Gran-
ular Dynamics. Berlin, Germany: Springer-Verlag, 1999.

[33] K. Nagel and M. Schreckenberg, “A cellular automaton model for
freeway traffic,” J. de Physique I France, vol. 33, no. 2, pp. 2221–2229,
1992.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

[34] O. Biham, A. A. Middleton, and D. Levine, Phys. Rev. A, vol. 46, p.
6124, 1992.

[35] J. Sánchez, M. Galán, and E. Rubio, “Stochastic vs deterministic traffic
simulator. Comparative study for its use within a traffic light cycles
optimization architecture,” in Proc. Int. Work Conf. Interplay Between
Natural Artif. Comput., 2005, vol. II, pp. 622–631.

Javier Sánchez received the B.S. degree in 1998 and
the M.S. degree in telecommunications engineering
from the University of Las Palmas de Gran Canaria,
Las Palmas, Spain, in 2001. Since 2002, he has been
working towards the Ph.D. degree at the Innovation
Center for Information Society (C.I.C.E.I.), Univer-
sity of Las Palmas de Gran Canaria.

During this time, he has collaborated in several
research projects. In 2003, he was given a research
grant by the Canary Islands Government.

Manuel Galán received the Math degree in algebra
and geometry from the University of Valladolid,
Valladolid, Spain, in 1985, and the Ph.D. degree in
mathematics from the University of Las Palmas de
Gran Canaria, Las Palmas, Spain, in 1994.

He has been a Professor of Mathematics since
1994. Currently, he is a Professor at the School of
Architecture, University of Las Palmas de Gran
Canaria. He has gained considerable experience in
systems resolution and genetic algorithms. He is
coeditor and coauthor of the book Genetic Algo-

rithms in Engineering and Computer Science (Wiley, 1996).

Enrique Rubio received the undergraduate degree in
physics from the University Complutense of Madrid,
Madrid, Spain, in 1971, and the Ph.D. degree from
the University of La Laguna, La Laguna, Spain, in
1980.

He has been a Professor since 1990. He is also
the Director of the Innovation Center for Informa-
tion Society (Research Center), University of Las
Palmas de Gran Canaria, Las Palmas, Spain. He has
considerable experience in information society and
technology.


