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Abstract. In this paper, we present and analyze an approach to intru-
sion detection using naive Bayes network. We have used a set of bench-
mark data from KDD’99 which are appropriate to evaluate an intrusion
detection system. We consider three levels of attack granularities depend-
ing on whether dealing with whole attacks, or grouping them in four main
categories or just focusing on normal and abnormal behaviours. More-
over, we consider different ways for handling continuous variables. The
different experimental results show that naive Bayesian networks, even
having a simple structure, can provide efficient and accurate classifiers
to detect intrusions.
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1 Introduction

Intrusion detection in the context of information systems is regarded as
a set of attempts to compromise a computer network resource security.
There are two general approaches to intrusion detection [1]:

— Anomaly detection: based on the detection of an anomaly in a user
behavior. The idea is that each user has a certain profile within the
system that will not be changed a lot in time. Then, this profile is
expected to be ‘normal’ and consequently any significant deviation
will be considered as an anomaly. Several Intrusion Detection Systems
based on this approach are developed like IDES [12], NIDES [11].

— Misuse detection: also named signature detection since in this case
any intrusion can be described by its signature characterized by the
values of its features. Systems based on this approach use different
models like rule based expert system e.g. NIDES [11], or state tran-
sition analysis e.g. STAT [6], or a more formal pattern classification
e.g. IDIOT [9].



Recently, Valdes [15] has performed a new approach to intrusion de-
tection based on Bayesian networks. Bayesian networks [7, 13] are tools to
reason with uncertain information in the probability theory framework.
They use direct acyclic graphs to represent causal relations, and condi-
tional probabilities (of each node given its parents) to express uncertainty
of causal relations. Valdes [15] uses a simple form of Bayesian networks,
called naive Bayesian networks, composed of two levels: one root node
which represents a session class (normal and different kinds of attacks),
and several leaf nodes, each of them contain a feature of a connection.
This method goes by the name of naive Bayes, because it naively as-
sumes a strong independence relation: features are independent in the
context of a session class. Such assumption is not always true, and may
have a negative influence on the inferred results. Naive Bayesian networks
have several advantages due to their simple structure. In particular, the
construction of naive Bayesian networks is very simple, and the inference
(classification) is achieved in a linear time (while the inference in Bayesian
networks with a general structure is known to be NP-complete [3]. More-
over, the construction of naive Bayesian networks is incremental, in the
sense that it can be easily updated (namely, it is always easy to consider
and take into account new cases in hand).

The aim of this paper is to provide experimental results showing that
naive Bayesian networks, with their simple structure and their strong in-
dependence assumptions, can be very competitive. Experimental results
obtained in this paper use KDD’99 [8] intrusion data sets. There exist
several recent works using these data [14, 15]. However, our experimental
results give a new perspective. In particular different levels of classifi-
cations results are considered. Indeed, as we will see there are different
ways to use naive Bayesian networks. These different ways are explained
by the fact that on one hand there are several attack granularities, and
on the other hand there are several possibilities for handling continuous
variables.

In this paper, experimentations are performed according to three lev-
els of attack granularities depending on whether dealing with whole at-
tacks, or grouping them in four main categories or just focusing on normal
and abnormal behaviours. Moreover for continuous variables we will an-
alyze two cases: Gaussian distributions and kernel density estimation.
Lastly, some results based on discretizing continuous domains of some
features have been achieved. The immediate way of using Bayesian net-
works is to consider all attacks (namely, without any grouping of elemen-
tary attacks), and Gaussian distributions (this what usually is used for



continuous variables). As we will see, experimental results show that this
immediate way of using naive Bayesian networks is not satisfactory. For
instance, replacing Gaussian distributions by kernel density estimation
leads to a significant increasing of PCC (Percent of Correct Classifica-
tion).

The rest of the paper is organized as follows: Section 2 gives a brief
refresher on naive Bayesian networks. Section 3 first presents KDD’99
dataset, then gives the general schema of the experimental studies. Sec-
tions 4, 5 and 6 present experimental results focusing respectively on
the whole attacks, four categories of attacks and normal/abnormal be-
haviours. Section 7 presents the positive effect of discritizing some vari-
ables. Lastly, related works and concluding discussions are reported in
Section 8.

2 Naive Bayesian networks

Bayesian networks are one of the most widely used graphical models to
represent and handle uncertain information [7, 13]. Bayesian networks are
specified by two components:

- A graphical component composed of a directed acyclic graph (DAG)
where vertices represent events and edges are relations between events.

- A numerical component consisting in a quantification of different links
in the DAG by a conditional probability distribution of each node in the
context of its parents.

Naive Bayesian networks [10] are very simple Bayesian networks which
are composed of DAGs with only one parent, representing the unobserved
node, and several children, corresponding to observed nodes, with the
strong assumption of independence among child nodes in the context of
their parent.

Naive Bayesian networks are appropriate to deal with classification
problems [5]. In fact, classification is ensured by considering the par-
ent node to be a hidden variable stating to which class each object in
the database should belong and child nodes represent different attributes
specifying this object.

Hence, in presence of a training set we should only compute the con-
ditional probabilities since the structure is unique. This computation can
be summarized as follows:

- conditional probabilities for discrete attributes probabilities are com-
puted from frequencies by counting how many times each attribute-value
pair occurs with each value of the parent node.

- continuous attributes are usually handled by assuming that they have a



Gaussian (i.e. normal) probability distribution which supposes a contin-
ued values of attributes. Thus, for each class value ¢; and each continuous
attribute Ag, we should compute the mean p and the standard deviation
0. Using these two values we can compute a probability density function
for any value aj of Ag.

The Gaussian-distribution assumption for numeric attributes can be
considered as a restriction of naive Bayesian networks since some at-
tributes are not normally distributed.

Thus we can use a generalization of this method by using the kernel
density estimation [4] which is a non-parametric density estimates for
classification. This estimates does not assume any particular distribution
for the attribute values and it is based on localizing for each target point
ay, the observations close to it via a weighting function or kernel K, (ax, a;)
which assigns a weight to each a; based on its distance from aj. The more
popular choice for K, is the Gaussian kernel K, = ¢(] a; —ay, | /o) where
o is the standard deviation. Another alternative for continuous variables
is to simply discretize them.

Once the network is quantified, it is able to classify any new object
giving its attributes’ values using the Baye’s rule expressed by:

P(4)
where ¢; is a possible value in the session class and A is the total evidence
on attributes nodes. The evidence A can be dispatched into pieces of
evidence, say a1, as, ..., a, relative to the attributes A1, Ao, ..., Ay, respec-
tively. Since naive Bayesian networks work under the assumption that
these attributes are independent (giving the parent node C'), their com-
bined probability is obtained as follows:
P(ay | ¢i)- Plag | ¢) ... Plan | ¢) - P(c) @)
P(A)

Note that there is no need to explicitly compute the denominator
P(A) since it is determined by the normalization condition. Therefore, it
is sufficient to compute for each class ¢; its likelihood, i.e. P(a; | ¢;)-P(az2 |
¢i) .. Play | ¢;) - P(¢;) to classify any new object characterized by its
attributes’ values aq, as, ..., an.

Plei | A) =

P(e; | A) =

3 Experimental data
3.1 Description of KDD’99 data set

The data used in this paper are those proposed in the KDD’99 for in-
trusion detection [8] which are generally used for benchmarking intrusion



detection problems. They set up an environment to collect TCP /IP dump
raws from a host located on a simulated military network. Each TCP /IP
connection is described by 41 discrete and continuous features and labeled
as either normal, or as an attack, with exactly one specific attack type.
Attacks fall into four main categories:

— Denial of Service Attacks (DOS)
— User to Root Attacks (U2R)

— Remote to User Attacks (R2L)
— Probing

3.2 Different experimental study cases

We handle 10% of the whole KDD’99 dataset, corresponding to 494019
training connections, and 311029 testing connections.

Note that in the training set the number of U2R instances is very
small (0.01%). In order to guarantee their minimal learning, we have
duplicated them until having 0.22% training instances. This has a very
small influence on U2R instances, and no influence on other instances.

The strategy behind different experimentations presented in this pa-
per is based on the following points:

- THREE LEVELS OF ATTACK GRANULARITIES: we can focalize on three
cases relative to different attacks in order to handle :

— Whole-attacks: all attack classes presented by KDD dataset in addi-
tion to the normal situation.

— Five-classes: the four attack categories (i.e. DOS, R2L, U2R, Prob-
ing). Note that there are 19.65% (resp. 79.07%, 0.23%, 0.22%, 0.83%)
of normal (resp. DOS, R2L, U2R,Probing) training connections and
19.48% (resp. 73.90%, 5.21%, 0.07%, 1.34%) of normal (resp. DOS,
R2L, U2R, Probing) testing connections.

— Two-classes: i.e. Normal and Abnormal by grouping all attacks in the
same class (i.e. Abnormal).

- GATHERING ATTACKS: in the five-class and two-class cases, there are
two strategies to gather results either before or after classification:

— Gathering before classification: the idea is to slightly modify the dataset
by grouping attacks belonging to the same attack category (i.e. DOS,
R2L, U2R or Probing) or by grouping them in a unique class i.e.
abnormal.



— Gathering after classification:

- For the five classes, the training set remains unchanged. However,
each connection classified into one of the 38 attacks is assigned to the
one of the four categories it belongs to.

- For the two classes, there are two strategies: either we do not mod-
ify the training set and each connection classified into one of the 38
attacks is simply labeled as abnormal, or we first modify the training
set by gathering attacks into four categories, then each connection
classified in one of these categories will be labeled as abnormal.

- DISCRETIZATION: some attributes, characterizing connections, are obvi-
ously discrete such as the protocol type, others are obviously continuous
such as the duration [8]. This is not the case for all continuous attributes
since, in some cases, the type is ambiguous. Typically, some attributes
are labeled as continuous but, indeed, take a finite number of values, e.g,
percent of connections to the same service having “SYN” errors. Thus,
the idea is to discretize such attributes in order to test its incidence on
the classification results.

In each of the studied cases, the evaluation of classification efficiency
is based on the Percent of Correct Classification (PCC) of the instances
belonging to the testing. Besides, we will use a particular form of the
PCC relative to each class, named the recall criterion which indicates the
percentage of correctly recognized connections for each class.

4 Focusing on all attacks

Table 1 presents the PCC values of the training and the testing sets
according to the whole-class case. It shows that naive Bayesian networks
using the kernel Gaussian estimator are completely in accordance with
the training set which means that this latter is coherent, i.e., almost all
training instances characterized by the same attributes’ values belong to
the same class. This behaviour is also kept with the classification phase.
This is not the case when we use the Gaussian distribution assumption
since we have a gap of 7% in the learning phase. This gap becomes larger
in the classification phase (about 17%).

5 Focusing on the four categories of attacks

In order to better select the strategy allowing to handle the four major
attack categories, we have grouped attacks belonging to the same attack
class together. This is done before and after classification. For the latter,



Table 1. PCC’s in the whole-attack case

TRAINING SET I TESTING SET

Gaussian distribution

92.92% |  74.38%
Kernel Gaussian estimator
99.64% |  91.13%

we use results of the whole-attack case by summing the number of occur-
rences relative to each attack category (i.e. DOS, R2L, U2R, Probing).
Table 2 gives PCC’s relative to these two experimentations.

Table 2. PCC’s relative to five classes (values between parentheses are relative to
gathering whole-attacks results into five classes after classification)

TRAINING SET | TESTING SET

Gaussian distribution
92.17% (93.09%) | 78.17% (79.29%)

Kernel Gaussian estimator
98.85% (99.67%) | 90.83% (91.40%)

Similarly to the whole-attack case, in both learning and classification
phases, naive Bayesian networks based on the kernel estimator present
better results than those using the Gaussian distribution. Note that it is
slightly better to gather results after classification rather than before it
both when using the kernel estimator and the Gaussian distribution.

Table 3. Recall relative to five classes (values between parentheses are relative to
gathering whole-attacks results into five classes after classification)

Class Gaussian distribution | Kernel Gaussian estimator
Normal (60593) 94.12% (64.15%) 96.97% (98.54%)
DOS (229853 ) 79.21% (88.43%) 96.25% ( 96.40%)

R2L (16189) 0.56% (4.40%) 0.02% (0.16%)
U2R (228) 23.68% (11.84%) 1.75% (3.07%)
Probing (4166) 89.73% (90.09%) 60.37% (70.84%)

Table 3 provides the recall criterion (the percentage of correctly clas-
sified instances). As it can be seen, in the kernel Gaussian estimations
case, for each category, it is better to gather after classification than be-
fore classification. This is not the case with Gaussian distributions, since



for example normal connections are largely well-classified before classifi-
cation than after classification.

Indeed, if the gathering is made before classification, the value of
78.17% is due to the misclassification of the instances belonging to the
dominant class DOS (only 79.21% of DOS connections are well-classified).
Whereas if gathering is made after classification, the value of 79.29% is
explained by the misclassification of normal connections which are also
important (only 64.15% of them are well-classified). Moreover, Table 3
shows that R2L and U2R connections are always misclassified whenever
the assumption used to treat continuous variables. This is due to the fact
that the proportions, in the training set, of U2R and R2L attacks are
very low (0.22% for U2R and 0.23% for R2L). One idea to make better
these results is to more duplicate these instances in the training set.

In fact, within naive Bayesian networks, when a class is presented
by a low number of training instances, then it leads to a weak learning
regarding this class and consequently to a misclassification of testing con-
nections really belonging to it. Hence, we can have new testing instances
really belonging to U2R and R2L attacks, but characterized by attributes’
values which deviate from those characterizing these two classes in the
training set. These instances are not already learned in the construction
phase and their resulting class when applying the inference mechanism
are generally wrong.

To illustrate this, a thorough analysis of training connections belong-
ing to U2R shows that the flag attribute appears with the value SF while
in the majority of testing connections it takes the value REJ which never
appears in the learning set with U2R attacks. Thus in the learning phase
the conditional probability of REJ in the context of U2R will be equal
to zero (i.e. P(REJ | U2R) = 0). Thus, testing connections pertaining,
effectively, to U2R but presenting the value REJ in the flag attribute
will be missclassified.

Lastly, Table 3 also shows that for classes which are lowly represented
in the training set (U2R, R2L, Probe) it is better to use Gaussian distri-
butions instead than kernel Gaussian estimator.

6 Focusing on normal and abnormal connections

In this section, we emphasize on normal behaviour. For this purpose, we
have studied PCC’s and recall values by focusing on normal connections
over the abnormal ones. We first consider the case where we gather all
attacks before classification, then the case where gathering is made after
classification using results on the whole-class case and those relative to



the five-class case. Induced results are summarized in Table 4, and the
recall criterion is provided in Table 5.

Table 4. PCC’s relative to the normal and abnormal connections (values between
parentheses are relative to gathering whole-attacks and five classes results into two
classes after classification)

TRAINING SET | TESTING SET

Gaussian distribution
98.18% 91.52%
(93.20%, 96.63%) | (84.02%, 92.04%)

Kernel density
98.75% 91.45%
(99.69%, 98.91%) | (91.75%, 91.55%)

Table 5. Recall relative to the normal and abnormal classes (values between paren-
theses are relative to gathering whole-attacks and five classes results into two classes
after classification)

Class Gaussian distribution Kernel density
Normal 97.54% 98.48%
(60593) (64.15%, 94.12%) | (98.54%, 96.97%)

Abnormal 90.06% 89.75%
(250436) (88.83%, 91.54%) (90.11%, 90.24%)

Contrary to previous experimentations, Table 4 shows that the gap
between naive Bayesian networks based on the kernel Gaussian and those
using the Gaussian distribution before gathering is significantly reduced
since the PCC is almost the same within the two approaches and presents
a very good rate.

Furthermore, all the PCC’s for both approaches (the kernel Gaussian
and the Gaussian distribution) presented in Table 4 are high, except when
using the Gaussian distribution gathering attacks after classification of
the five class case. In such a case, the PCC is a little bit worse than the
others. This is explained by the low recall of normal connections given in
Table 5. Indeed in this case, we use the original dataset (containing the
whole attacks) and only 64.15% of normal connections are well-classified
which explains the low value of global PCC for naive Bayes networks using
the Gaussian distribution in the whole-attack case (i.e. 74.38%). This



value reflects a bad learning of normal connections since only 65.69% of
them are well-classified in the training set which means that the induced
naive Bayes network does not give a faithful representation of the normal
training connections.

7 Discretization

The idea behind this experimentation is to refine the analysis of continu-
ous attributes in order to handle them in an appropriate manner specific
to their values. In particular, we have noticed that there are 15 attributes
defined as percentages. These attributes where labeled continuous, but by
analyzing the KDD datasets we have noticed that they take at maximum
101 values (from 0.00 to 1.00), thus they can be considered as discrete
and their discretization can be directly done by enumerating their domain
values.

Since previous experimentations show that results obtained using ker-
nel estimator are largely better than those given when using the Gaussian
distribution, this section only gives results of the best strategy, namely
when using kernel density estimator. Results induced by this experimen-
tation are summarized in Table 6.

Table 6. PCC’s after discretization (values between parentheses are relative to gath-
ering whole-attacks and five classes results into two classes after classification)

WHOLE ATTACKS |FIVE CLASSES|NORMAL AND ABNORMAL
91.20% 91.48% 91.45%
(92.10%) (92.69%, 92.40% )

This table shows an increasing (even small) of the PCC in almost all
the experimentation cases. Besides, a deep analysis of the recall criterion
relative to the five-class case (see Table 7) shows that the recall relative
to each of the five categories (i.e. normal, DOS, R2L, U2R, Probing) has
increased.

8 Related work and concluding discussions

Table 8 summarizes PCC’s relative to the major experimentations per-
formed in this paper.

The major deduced remarks are the followings:

- Table 8 shows that for KDD’99 dataset the standard handling of con-
tinuous variables, by means of Gaussian distributions, is not appropriate
since it gives worst results.



Table 7. Recall relative to five classes after discretization (values between parentheses
are relative to gathering whole-attacks results into five classes after classification)

Normal (60593)
DOS (229853)
R2L (16189)
U2R (228)
Probing (4166)

96.64% (97.68%)
96.38% (8.66%)
7.11% (4.40%)
11.84% (10.96%)
78.18% (88.33%)

Table 8. Summary Table: PCC’s on the testing set (values between parentheses are
relative to gathering whole-attacks and five classes results into two classes after classi-
fication)

WHOLE ATTACKS | FIVE CLASSES | NORMAL AND ABNORMAL
Gaussian distribution

74.38% 78.17% 91.52%

(79.29%) (84.02%, 92.04%)
Kernel Gaussian estimator

91.13% 90.83% 91.45%

(91.40%) (91.40%, 91.73%)
Kernel density with discretization

91.20% 91.48% 91.45%

(92.10%) (91.75%, 91.55% )

- Table 8 shows that in general, when we focus on five classes and
normal/abnormal behaviours, it is better to gather elementary attacks,
in their respective classes, after classification step rather than before it.

- According to Table 8, we can see that the best strategies in all
experimentations are those using the kernel density estimator and dis-
cretization. Moreover, under these strategies, the classification quality is
not considerably affected when we deal with all attacks, five classes or
only two classes.

- A deep analysis shows that there are some cases where results with
naive Bayesian networks are equal or slightly better than those of the
winning strategy [8] which is based on a mixture of bagging and boost-
ing decision tree technique. For instance the recalls relative to U2R and
Probing connections are better. These interesting results are obtained by
applying different strategies such as using the kernel density estimator
for handling continuous variables and also discretizing some of them.

Different experimental results, presented in this paper, confirm con-
clusions obtained by Valdes [15] showing that naive Bayesian networks



can well perform in the intrusion detection field and can be competi-
tive with sophisticated classification methods such as decision trees [2,
8]. Of course, globally naive Bayesian networks perform a little bit worse
than these techniques. However, from a computation point of view, their
construction is largely faster. Another line of future research will be to
study the effect of limiting the features to those that are relevant on the
treatment of continuous variables.

References

1.

2.

10.

11.

12.

13.

14.

15.

S. Axelsson. Intrusion detection systems: a survey and taxonomy. In Technical
report 99-15. March 2000.

N. Ben Amor, S. Benferhat, Z. Elouedi, and K. Mellouli. Decision trees and qual-
itative possibilistic inference: Application to the intrusion detection problem. In
Proceedings of Furopean Conference of Symbolic and Quantitative Approaches to
Reasoning and Uncertainty (ECSQARU’2003), pages 419-431, Danemark, 2003.
G. F. Cooper. Computational complexity of probabilistic inference using bayesian
belief networks. Artificial Intelligence, 42:393-405, 1990.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Hardcover, 2000.
N. Friedman and M. Goldszmidt. Building classifiers using bayesian networks.
In Proceedings of American Association for Artificial Intelligence Conference
(AAATI’96), Portland, Oregon, 1996.

K. Ilgun, R. A. Kemmerer., and P. A. Porras. Probability propagation. [EEE
Transactions on Software Engineering, 21(3):181-199, 1995.

F. V. Jensen. Introduction to Bayesien networks. UCL Press, University college,
London, 1996.

KDD. http://kdd.ccs.uci.edu/databases/kddcup99. 1999.

S. Kumar and E. H. Spafford. A software architecture to support misuse intrusion
detection. In Proceedings of the 18th National Information Security Conference,
pages 194-204, 1995.

P. Langley, W. Iba., and K. Thompson. Decision making using probabilistic infer-
ence methods. In Proceedings of the Eighth Conference on Uncertainty in Artificial
Intelligence (UAI’92), pages 399-406, San Mateo, CA, 1992.

T. Lunt. Detecting intruders in computer systems. In Proceedings of the Sixth
Annual Symposium and Technical Displays on Physical and Electronic Security,
1993.

T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. Neumann, H. Javitz,
A. Valdes, and T. Gravey. A real-time intrusion detection expert system (ides). In
Technical report. Computer Science Laboratory, SRI International, CA, 1992.

J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmman, San Francisco (California), 1988.

P. Portier and J. Froment-Curtil. Data mining techniques for intrusion detection.
In Technical report, University of Texas at Austin. 2000.

A. Valdes and K. Skinner. Adaptive model-based monitoring for cyber attack
detection. In Proceedings of Recent Advances in Intrusion Detection (RAID 2000),
pages 80-92, Toulouse, France, 2000.



