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Abstract

ADEATER is a fully implemented browsing assistant
that automatically removes advertisement images from
Internet pages. Unlike related systems that rely on
hand-crafted rules, ADEATER takes an inductive learn-
ing approach, automatically generating rules from train-
ing examples. Our experiments demonstrate that our
approach is practical: the off-line training phase takes
less than six minutes; on-line classification takes about
70 msec; and classification accuracy exceeds 97% given
a modest set of training data.

1 Introduction

Many Internet sites draw income from third-party ad-
vertisements, usually in the form of images sprinkled
throughout the site’s pages. If judged to be interesting
or relevant, users can click on these so-called “banner
advertisements” , jumping to the advertiser’s own site.
Some users prefer not to view such advertisements.
Images tend to dominate a page’s total download time,
so users connecting through slow links find that adver-
tisements substantially impede their browsing. Other
users dislike paying for services indirectly through ad-

vertisers, preferring direct payment for services rendered.

Finally, some users disagree with the very notion of ad-
vertising on the public Internet.

ADEATER is a fully-implemented browsing assistant
that automatically removes banner advertisements from
Internet pages. Advertisements are removed before the
corresponding images are downloaded, so pages down-
load faster. Unlike related systems (see discussion in

3rd Int. Conf. on Autonomous Agents, 1999.

Sec. 4) that require hand-crafted rules, ADEATER clas-
sifies advertisements with rules that are automatically
generated by an inductive learning algorithm.

Fig. 1 shows ADEATER in action. The system has
been in continuous use by a small user community since
July 1997; see ‘www.cs.ucd.ie/staff /nick/research/ae’ for
instructions on running ADEATER.

We proceed as follows. We first describe ADEATER’s
architecture and implementation (Sec. 2). Our main
contribution—the formalization of the task of learning
advertisement-removal rules—is presented in Sec. 2.1.
We go on to describe two experiments designed to evalu-
ate our system (Sec. 3). First, we demonstrate that our
approach is feasible: both the off-line learning and on-
line classification modules are reasonably fast, and even
modest amounts of training data yield high accuracy
(Sec. 3.1). Second, we systematically explore the space
of possible encodings for this learning task (Sec. 3.2).
Finally, we discuss related work, future plans, and sum-
marize our contributions (Sec. 4).

2 The ADEATER system

Fig. 2 shows the architecture of the ADEATER system.
ADEATER comprises three modules. First, during an
preliminary off-line phase, a collection of training ex-
amples are gathered. Second, during an off-line training
phase, an inductive learning algorithm processes these
examples to generate a set of rules for discriminating ad-
vertisements from non-advertisements. The third mod-
ule scans pages fetched by the user, removing images
classified as advertisements by the learned rules.

In the remainder of this section, we first describe
the central research issue: how to encode candidate ad-
vertisements in a way that is suitable as input to the
inductive learning algorithm. We then describe each
module in turn.
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Figure 1: Two Internet sites, before and after processing by ADEATER. Advertisements are replaced by innocuous
transparent images that simply say “ad”. As desired, non-advertising images such as the Metacrawler logo and the
photograph of Gerry Adams are left intact. Note that ADEATER makes a small mistake on the Irish Times page:
two navigational images at the top of the page near the date are incorrectly classified as advertisements.

2.1 Encoding instances

We treat the generation of advertisement-detection rules
as an inductive learning task; see [10] for an introduc-
tion. An HTML page—both pages from which training
examples are generated, and pages from which ads are
to be removed during browsing—is processed to extract
zero or more instances. Each instance corresponds to a
candidate advertisement in the HTML page. Given a
set of training instances that are preclassified as being
an advertisement (AD) or not (AD), the goal is to learn
a classifier that maps instances to either AD or AD.
The central research issue, therefore, is to choose an
appropriate instance encoding. To enable rapid on-line
removal, the encoding must be derivable directly from

the raw HTML—if we were to encode image features
such as color, then ADEATER would have to download
images before they could be removed, thereby defeating
one of ADEATER’s purposes, speeding download time.

ADEATER encodes instances using a fixed-width fea-
ture vector. Fig. 3 shows (a) an example HTML file,
and (b) the 52-feature encoding of its three candidate
advertisements. Specifically, the set of feature vectors
are extracted from an Internet page with URL Upase
according to the following procedure.

1. Each image enclosed in an <A> tag is a candidate
advertisement; non-anchor images are rarely ad-
vertisements, and are therefore ignored. Let Ugest
be the URL to which the anchor points, and let



proxy HTTP messag
to/from browsere;\ ﬁo/from sites

advertisement
remover
X =)
/
— training
> examples

Figure 2: Architecture of the ADEATER systen

on-line

; rul
off-line Iea%r?er

example

off-line gatherer

Uimg be the image’s URL.

Three numeric features capture geometric i
mation about the image: height, width, anc
pect ratio (ratio of width to height). These
tures are drawn directly from the HTML file,
the image. Therefore, these features migh
missing (indicated by “?”) if the correspon
<IMG> tag does indicate the height or width.
example, no geometric features can be extra
for instance C.

3. A single binary feature local? indicates whe
Ugest’s and Ujpg’s servers are in the same I
net domain. For example, if Ugest = a.host.cc
page.html, then local? is 1 for Uimz = b.h
com/image.jpg, but 0 for Uiy, = elsewhere.c
picture.gif.

4. An instance’s caption is the words occurrir
the enclosing <A> tag, ignoring punctuation
case. A set of binary features encode each cag
word, each two-word phrase, and so on, thrc .-
K-word phrases. Caption features are then dis-
carded if the phrase occurs fewer than at M times
in the training set. For example, the caption fea-
ture “funded+by” is 1 for instances whose caption
contains this two-word phrase (instance C only, in
the example). Note that the specific caption fea-
tures generated depend on the particular training
instances; feature vectors have a fixed width re-
spect to a given set of training instances.

An instance’s alt text is the set of “alternate”
words in the <IMG> tag. As with captions, the
encoding contains one boolean feature for phrase
of length each 1, 2, ..., K that occurs at least M
times.
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Figure 3: An example Internet page, and the encoding
of its three instances.

6. Additional sets of features are provided by the
base URL Upyge, the destination URL Ugest,
and the image URL Uimg. For each of these
URLSs, one binary feature corresponds to the server
name. Then, punctuation and case are discarded
in the rest of the URL, and (like caption and alt
text), a set of binary features encode phrase of
length 1, 2, ..., K that occurrs at least M times
in the training set. One-word phrases are ignored
if they are members of a stop list containing low-
information terms such as “http”, “www”, “jpg”,
“html”, etc.

Note that the above procedure generates a family of
encodings, one for each value of K (maximum phrase
length) and M (minimum phrase count). In the current
implementation, K = 2 and M = 10. For the training
data gathered as described in Sec. 2.2, the encoding
consisted of 1558 features: height, width, aspect ra-



tio, local?, 19 caption features, 111 alt features, 495
base URL features, 472 destination URL features,
and 457 image URL features. In Sec. 3.2, we discuss
varying K and M.

2.2 Gathering examples

The previous section described ADEATER’s encoding
of instances. We now describe the “example gatherer”
module in Fig. 2, which generates a collection of such
instances. Since both negative and positive examples of
advertisements are important for effective learning, we
needed to generate instances that would be classified as
both AD and AD.

AD’s were generated using the ADGRABBER brows-
ing assistant. ADGRABBER identifies candidate adver-
tisements. It leaves the HTML visually intact, but the
user can point out advertisements to ADGRABBER us-
ing a simple mouse gesture. The vector encoding of
these advertisements are then stored for later use by
the learning module. This process was used to generate
364 AD’s. While these instances are certainly not cho-
sen independently (an assumption often made in the
computational learning literature), the deviations are
apparently small, since the system works well in prac-
tice.

AD’s were generated using a custom-built Internet
spider that extracted images from randomly-generated
URLs. We chose random URLs so that the instance
space would be sampled as fairly as feasible. These
random images were then manually classified as AD/AD,
yielding 2820 AD’s and 95 additional AD’s.

As mentioned earlier, deficiencies in the raw HTML
mean that the features can not always be generated. Of
the 3279 examples, 28% contained one or more missing
features. Moreover, it is possible that some examples
were misclassified. We have not attempted to verify the
classifications, but anecdotal evidence suggests that the
classifications are certainly imperfect.

2.3 Learning rules

Once the training examples have been generated, an
inductive learning algorithm must process the rules, re-
sulting in a classifier that maps new instances to AD/AD.
The learning algorithm should have several properties.

e The learned classifier must execute quickly, since
it is invoked on-line by ADEATER to remove ad-
vertisements. (In contrast, since learning occurs
off-line, relatively long learning times are accept-
able.)

e The learning algorithm must not be overly sensi-
tive to missing features or classification noise, be-
cause our task exhibits these properties.

e We encode instances with thousands of features,
and it seems likely that many will be irrelevant.
Therefore, the learning algorithm must scale well
with the number of features, and be insensitive to
irrelevant features.

e The specific URLs, caption phrases, etc. used in
advertisements may well evolve over time. For
example, an advertiser might change the URLs
where images are stored. Therefore, the learned
classifier will eventually be obsolete, and old train-
ing examples must be retired. One strategy is to
simply relearn the classifier from scratch. But ide-
ally, the learning algorithm would be incremen-
tal [9, 14], so that the classifier can be rapidly
relearned given a set of updates to the training
set.

Given these desiderata, we selected the C4.5rules
learning algorithm [11]; Ripper [3] would probably be
suitable as well. Both algorithms exhibit the desired
properties except the last. Nearest-neighbor and other
lazy algorithms are indeed incremental, but classifica-
tion is very slow, and accuracy is sensitive to irrelevant
features. Since C4.5rules learns fast enough in practice,
the benefit does not outweigh the cost.

C4.5rules learns a set of rules, each a conjunction of
tests together with a predicted classification if the tests
are satisfied. For numeric features, tests are of the form
“fi <717 or “f; > 77, where 7 is a constant real number.
For binary features, tests are of the form “f;” or “f;”.
For our application, C4.5rules learned a set of 25 rules.
Two representative examples are as follows:

o If aspect ratio > 4.5833, alt doesn’t contain “to”
but does contain “click+here”, and Ugest doesn’t
contain “http+www”, then instance is an AD.

o If Upase does not contain “messier”; and Ugest con-
tains the “redirect+cgi”, then instance is an AD.

Note that these are actual rules learned by C4.5rules:
the rules have only been reformatted to make them eas-
ier to read, and the learning algorithm, not a person,
identifies relevant phrases such as “click+here”.

2.4 Removing advertisements

The module of ADEATER’s to which users are exposed
is the browsing assistant that removes advertisements
from Internet pages as they are fetched. Candidate ad-
vertisements are identified in fetched pages, as with the
example generator. The learned rules are then con-
sulted to classify each example as AD/AD. Advertise-
ments are then removed from the Internet page by re-
placing Uimg (the image’s URL) with the URL of an
inconspicuous low-bandwidth image.



The advertisement-removal module is implemented
as a proxy server. Browser requests are passed to the
ADEATERSystem, which forwards the requested URL to
the destination, and replaces the Uinmg’s in the returned
HTML files as appropriate.

3 Evaluation

ADEATER has been fully implemented. Anecdotal user
feedback suggests that while the system occasionally
makes mistakes, it is reasonably effective at removing
advertisements. ADEATER’s off-line training phase us-
ing C4.5rules takes 5.8 CPU minutes. ADEATER then
requires about 70 msec to remove each image during the
on-line classification phase (excluding network time for
downloading the original HTML text). Note that this
figure is much less that the time to download a typical
image.

We have also conducted a series of more objective ex-
periments, using the standard machine learning “cross
validation” methodology. We first randomly partitioned
the gathered instances into a training set containing
90% of the instances and a test set containing the re-
mainder. We then invoked C4.5rules on the training
set, and measured the performance of the rules on the
test set. We cross validated our results in this way ten
times.

Averaging across the ten trials, we found that the
learned rules have an accuracy of 97.1%. To further un-
derstand the limitations of our approach, we have also
measured the system’s learning curve. A second exper-
iment was designed to validate the particular features
in our encoding.

3.1 Learning curves

To calculate a learning curve for our system, we gave
the learning algorithm 10%, 20%, ..., 90% of the train-
ing data, and then calculated 10-fold cross-validated ac-
curacy on the remainder. Fig. 4(a) shows the results,
along with 95% confidence intervals after ten repetitions
of this process. The observed accuracy asymptotically
approaches the 97.1% figure reported earlier, and ex-
ceeds 93% with just 10% of the training data.

In one important respect, this method for calculating
the learning curve does not reflect the true nature of the
task. Recall that the specific set of features depends
on the training set. For example, the caption phrase
“click+here” is assigned a feature only if this phrase
occurs at least M times in the training data. In order
to replicate the learning task more faithfully, we re-ran
the learning-curve experiment so that the feature set
was re-calculated for each train/test split; see Fig. 4(b).

We conclude that our approach is feasible, because
relatively few training examples are needed to achieve
high accuracy.

3.2 Alternative encodings

In Sec. 2.1, we described the features used to encode
candidate advertisements. A natural question is whether
better encodings exist. As an initial investigation of this
question, we have systematically explored nine encod-
ings in this (infinite) space.

Recall that our encoding technique has two param-
eters: K, the maximum phrase length; and M, the
minimum number of times a phrase must occur to be
assigned a feature. In the standard encoding, K = 2
and M = 10. Other encodings are obtained by varying
K and M. Holding M constant, the just-words encod-
ing uses K = 1 (just one-word phrases are considered),
while long-phrases uses K = 4. Holding K constant,
the most-phrases encoding uses M = 2 (any phrases oc-
curring more than once is considered), and freg-phrases
uses M = 100. Setting M = oo results in no-phrases:
phrase features are eliminated entirely. The last three
encodings involve not using a stop list (no-stoplist), and
ignoring the local? and aspect ratio features (no-local
and no-aratio, respectively).

Fig. 5 lists the nine encodings. Recall that our en-
coding process generates different features depending
on the training instances. The figure also shows the
number of features generated for our 3279 training ex-
amples, as well as the 10-fold cross-validated accuracy.

To compare the encodings, we quantified their “rel-
ative efficiency”. The learning algorithm consumes re-
sources (space and time) that depend directly on the
number of features in the encoding. One encoding is
preferable to another if an increase in consumed re-
sources is compensated by improved accuracy. Thus
a natural way to measure an encoding’s inherent ef-
ficiency of an encoding e is to calculate the ratio of
accuracy to number of features:

accuracy when using encoding e

e =

number of features for encoding e

The efficiency gain of one encoding e over a second e’
is the ratio E./E,; e is preferable to €' if E./E. > 1.
The last two columns in Fig. 5 show, for each en-
coding e, the efficiency E., and e’s efficiency gain over
over standard (E,/FEstandard). Gains below one indicate
encodings that are less efficient than standard.

We conclude that if users demand high accuracy
(> 97%), then standard is the best encoding. How-
ever, if user’s were to tolerate ADEATER making more
mistakes, then the some of the other encodings are sub-
stantially more efficient. Remarkably, the “minimalist”
no-phrases encoding achieves an accuracy of 93.5%. We
leave further exploration of possible encodings to future
work.
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Figure 5: A comparison of eight variations on the standard encoding.

4 Discussion

Related work. Several systems remove advertisements
from Internet pages or, more generally, modify the raw
HTML according to some specification; examples in-
clude Muffin [muffin.doit.org], WebFilter [math-www.-
uni-paderborn.de/~axel /NoShit], ByProxy [www.bes-
iex.org/ByProxy| and Junkbusters [www.junkbusters.-
com]. Unlike ADEATER, these systems rely on hand-
crafted filtering rules. Some of the systems support cen-
tralized repositories of manually-generated rules, though
as the Internet grows, a learning approach is perhaps
the only way to ensure scalability.

Smokey [13] detects “flames”, annoying or harass-
ing mail messages. Like ADEATER (but unlike the mail
filtering tools accompanying most mail environments),
Smokey learns flame-detection rules. However, Smokey’s
ultimate task is very different from ADEATER’s: the

system simply classifies entire mail messages as flames,
rather than (for example) snipping out insulting pas-
sages. Machine learning has been applied to numerous
Internet applications (see [2, 4, 5, 8] for just a few recent
examples), but none of this work directly relates to our
task

Learning to identify advertisements in Internet pages
is a form of information extraction. Learning approaches
have been taken for several such tasks; see [1] and earlier
Message Understanding Conference proceedings, and
the AAAT-99 Workshop on Machine Learning for Infor-
mation Extraction. These approaches rely on linguistic
regularities that are rarely present in the kinds of Inter-
net pages with which we are concerned, though [6, 12]
address these limitations.

Summary and future work. We have described the
ADEATERSsystem, a browsing assistant that automati-



cally learns advertisement-detection rules, and then ap-
plies those rules to remove advertisements from Inter-
net pages during browsing. In controlled experiments,
ADEATER achieves very high levels of accuracy while
consuming modest resources (both processing rime and
preclassified training examples). User’s have provided
anecdotal confirmation that these results carry over to
the “real world” as well.

While building a working system has been our pri-
ority, we have made two interesting technical contri-
butions. First, we have formalized our task as one of
inductive learning. Second, we have systematically ex-
plored the space of possible features for encoding the
examples.

While ADEATER is fully implemented, several addi-
tional features could be adde:

e Note that ADEATER made two mistakes on the
bottom example in Fig. 1. (However, the result is
reasonable: the mistakes involve two small naviga-
tional images, the “important” images are intact,
and the advertisements are removed.) These prob-
lems could be repaired by gathering more train-
ing examples. An important next step, therefore,
would be to extend the user interface so users could
add misclassified images to the training set and re-
invoke the learner.

e Second, some user’s might prefer one-sided errors
(e.g., when in doubt leave images intact). We
know of no easy way to bias C4.5rules in this man-
ner, but extending the learning algorithm to do so
would be intersting.

e We already mentioned that our task is ideal for
exploring “incremental” learning, in which a clas-
sifier is modified based on an updates to the train-
ing instances, rather than being relearned from
scratch. As described above, nearest-neighbor and
other lazy learning algorithms are incremental but
are undesirable for other reasons. Incorporating
an incremental decision tree or rule learning al-
gorithm (e.g., [9, 14]) would improve overall effi-
ciency.

e Our encoding results in many features, and we
use a crude feature selection mechanism, implicitly
embodied in the values of K, M and the stop-list.
It would be useful to exploit more sophisticated
feature selection strategies (e.g. [7]).
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