L ear ning Augmented Bayesian Classifiers:
A Comparison of Distribution-based and Classification-based Approaches

Eamonn J. Keogh

Dept. of Information and Computer Science
University of California, Irvine

Irvine, California 92697 USA
eamonn@ics.uci.edu

Abstract

The naive Bayes classifier is built on the assumption
of conditional independence between the attributes
given the class. The algorithm has been shown to be
surprisingly robust to obvious violations of this
condition, but it is natural to ask if it is possible to
further improve the accuracy by relaxing this
assumption. We examine an approach where naive
Bayes is augmented by the addition of correlation arcs
between attributes. We explore two methods for
finding the set of augmenting arcs, a greedy hill-
climbing search, and a novel, more computationally
efficient algorithm that we call SuperParent. We
compare these methods to TAN; a state-of the-art
distribution-based approach to finding the augmenting
arcs.

1INTRODUCTION

The Bayesian classifier (Duda & Hart, 1973) is a simple
classification method, which classifies an instance j by
determining the probability of it belonging to class C.
These probabilities are calculated as:

PCIAZY, &-&AV). @

where an example is represented as attribute-value pairs of
the form A=V, If there are N independent attributes, then
the probability is proportional to:

P(C;) |_| P(A :ij |Ci) (2

When this independence assumption is made, the classifier
is called naive (Simple, Idiots) Bayes (Ripley 1996). Naive
Bayes has been shown to be competitive with more
complex, state-of-the-art classifiers (Dougherty 1995,
Kohavi & Sahami 1995). This is surprising given the
explicit assumption that all attributes are independent given
the class. This assumption rarely holds in real world
problems. There have been recent attempts to explain its
surprisingly good performance (Domingos & Pazzani 1997)
and to improve performance by relaxing the independence

Michael J. Pazzani

Dept. of Information and Computer Science
University of California, Irvine

Irvine, California 92697 USA

pazzani @ics.uci.edu

@ & & A& ®

Figure 1: An example of a Naive Bayes Network

assumptions (Pazzani 1996, Friedman & Goldszmidt 1996,
Sahami 1996, Kononenko 1991).

The work of Friedman and Goldszmidt is particularly
interesting. They compared naive Bayes to Bayesian
networks (Pearl 1988), a much more powerful and flexible
representation of probabilistic dependence. Surprisingly,
using unrestricted Bayesian networks did not generally lead
to improvements in accuracy and even reduced accuracy in
some domains. This prompted them to propose a
compromise representation, combining some of Bayesian
networks ability to represent dependence, with the
simplicity of naive Bayes. This representation is called
augmented naive Bayes, and is defined by the following
conditions:

« Each attribute has the class attribute as a parent.

» Attributes may have one other attribute as a parent.
The latter condition means that if there is an arc from A, to
A, the two attributes are not independent given the class.
Instead the influence of A on the class probabilities
depends on the value of A,. Figure 2 shows an example of
an augmented Bayes network.

By G—A) B

Figure 2: An example of an Augmented Bayes Network

Finding the best augmented Bayes network (in the sense of
best approximation of an unrestricted Bayes network) is an
NP-hard problem. Friedman and Goldszmidt deal with this
difficulty by restricting the network to be a tree topology
(in addition to the arcs from the parent to each node), and
utilizing aresult by Chow and Liu (1968) to efficiently find
the best tree-augmented naive Bayes (TAN).

In this paper we take a different approach to constructing
tree-augmented Bayesian networks. Rather than directly
attempting to approximate the underlying probability
distribution, we concentrate solely on using the same
representation to improve classification accuracy. We show
two methods for constructing augmented Bayesian
networks, a hill climbing greedy search, and a novel, more
efficient search algorithm, which we call SuperParent. We
compare these to Friedman and Goldszmidt’s approach and
show that approximating the underlying probability
distribution is not the best way to improve classification
accuracy.

2 SEARCHING FOR AUGMENTED BAYES
NETWORKS

Following Friedman and Goldszmidt we restrict the
allowed topology of an augmented Bayes network in the
following manner. Each node may have at most one (non-
class) parentl. There are two reasons for this restriction.
First, it reduces the search space. Second, the probability
estimates for a node become more unreliable as additional
parents are added, because the size of the conditional
probability tables increases exponentially with the number
of parents. Restricting the number of parents to two
mitigates problems in estimating probabilities from data
while allowing some amount of dependence among
variables to be represented.

This restriction limits the maximum number of correlation
arcs added to N — 1, where N is the number of attributes.
The minimum number of correlation arcs added is zero,
which corresponds to a naive Bayes classifier, a special
case of an augmented Bayes network.

We present the following definition to facilitate discussion
of augmented Bayes networks.

Definition 1 (Orphan)
In augmented Bayes network, a node without a parent,
other than the class node, is called an orphan.

Table 1 shows an outline of the algorithm for building an
augmented Bayes network using hill climbing search
(HCS). The network is initialized to naive Bayes, and the
set of orphans, O, is initialized to the full set of nodes A,
A, ..., A, Each possible arc from A to A (A A, AT O)is
evaluated, using leaving-one-out cross validation to
estimate the accuracy of the network with that arc added. If

1 Friedman and Goldszmidt's TAN networks also have this
restriction, as a consegquence of the underlying tree topology.

no arc produces an improvement in classification accuracy,
the current classifier is returned. Otherwise, the arc that
gave the most improvement is retained, and the node
pointed to by the arc is removed from O. This process is
repeated until O contains just one node, or there are no arcs
which can be added to improve classification accuracy.

0. Initialize network to naive Bayes.

1. Evaluate the current classifier.

2. Consider adding every legal arc to the
current classifier.

3. If there is an arc addition, which
i mproves accuracy, then add the arc
whi ch inproves accuracy the nost to the
current network, and go to 2.

El se: Return current classifier.

Table 1: An outline of hill climbing search (HCS)

O(N’) classifiers are constructed and evaluated for each arc
added to the network, and O(N) arcs may be added. So the
complexity for HCS is O(N°). In Section 2.1 we discuss two
optimizations which greatly speed up the search process
without effecting the returned network.

2.1 EFFICIENT EVALUATION OF CHANGES TO
CLASSIFIERS

To speed up the process of evaluating many classifiers we
have implemented the following two optimizations, the first
of which was introduced in Pazzani (1996).

We order the training instances, so that examples
misclassified by the previous classifier are tested first. This
allows the algorithm to abandon testing of a classifier as
soon as the number of misclassified examples is greater
than the current best-so-far classifier. This technique allows
the algorithm to perform a fraction of the tests required by
full search, but return the same result. The fraction of
examples actually tested on a given dataset is
approximately equal to the error rate of naive Bayes on that
dataset.

To prevent the need for completely recomputing equation 1
for each classifier built, we do the following. In the first
step of the algorithm, we store the results of equation 2 in a
J by | matrix, (J is the number of instances in the training
set, | is the number of distinct classes) where the each
element is the probability that example j belongs to class C.
When testing a new classifier which has an addition arc
from node A, to node A, we adjust the matrix by
multiplying the element (i, j) by

P(A, =V, [C & A =V,)

P(A, =V, [C)
This equation simultaneously factors out the effect of the
“orphan” node A, and factors in the effect of the arc from

node A, to node A,. This effectively means the time taken
to evaluate one instance of a classifier is independent of the

®)

number of attributes. So the speed up achieved by this
optimization is approximately N, the number of attributes.
To test the utility of these two optimizations we performed
the following experiment. We ran the optimized and
unoptimized versions of the HCS algorithm, 10 times, on
several datasets from the UCI repository (Details about the
datasets can be found in tables 3 and 6). Table 2 shows the
average speedup achieved. As explained above, the speedup
achieved depends on both the number of attributes and the
accuracy achievable by naive Bayes. Nevertheless the
optimizations are clearly useful in general.

DataSet Speedup achieved
Iris 41.0
Soybean-Large 312.3
Segment 199.2

Vote 135.7

Table 2: The average speedup achieved on various
datasets by the two optimizations described in section 2.1

22EXPERIMENTAL RESULTS

Our experimental methodology is closely modeled on that
of Friedman and Goldszmidt (1996). We tested 13 data
sets from the UCI repository (Merz et al, 1997) and one
artificial data set. The accuracy of each learning method on
each domain was determined by running 5*2-fold cross
validation (Dietterich 1996). All classification algorithms
were trained and tested on exactly the same cross validation
folds. Following Friedman and Goldszmidt, instances with
missing values were deleted from the database and
continuous values were discretized, using only the training
data, by Fayyad & Irani's (1993) entropy based method. In
our comparison, we use the unsmoothed version of TAN
(We also implemented and tested the “smoothed” version
of TAN, and obtained results similar to Friedman &
Goldszmidt. We omit these results for brevity and clarity).
In the unsmoothed TAN and in our work, we replace zero
probabilities with a small epsilon (.0001). The three
algorithms used in this experiment are: Naive - naive
Bayes; TAN - Friedman and Goldszmidt's unsmoothed Tan
network; HCS - Augmented Bayes networks built using hill
climbing greedy search.
50

40 1

30 .

L X4

20 -

‘e

10 1

{e

0

0 10 20 30 40 50
Figure 3: Scatter plot comparing the error of HCSto TAN on 13

datasets from the UCI repository. Points above the diagonal line
correspond to datasets where HCS performs better. Points on the
diagonal line indicate no differencein performance.

As an extreme example of attribute dependence we create
an artificial noisy two-class dataset called exclusive-or.
This dataset has 500 instances, and 10 attributes. After the
introduction of class noise, the exclusive-or of two of the
attributes predicts the class with 70% accuracy. The other 8
attributes are completely irrelevant. Table 3 summarizes
the datasets.

Dataset # Attributes | #Classes | #Instances
Vehicle 18 4 846
Post-op 9 3 90
Lung 56 3 32
Australia 14 2 690
Hepatitis 19 2 270
Vote 16 2 435
Heart 13 2 270
Soybean-Large 35 19 562
Pima 8 2 768
Breast 10 2 683
Iris 4 3 150
Segment 19 7 1540
E.coli 7 8 336
exclusive-or 10 2 500

Table 3. Descriptions of domains used.

Table 6 in the Appendix summarizes the accuracy of each
algorithm on each dataset2. The best accuracy achieved on
each dataset is shown in bold. Runners up, which did not
differ at the 5% confidence level using a paired two tailed t-
test are also shown in bold. We confirmed Friedman and
Goldszmidt's ranking of the Naive and TAN classifiers.
Figure 3 provides a visual comparison of HCS and TAN. It
shows that the HCS approach is usually more accurate than
the TAN approach.

The data set exclusive-or is an excellent example of how
augmenting arcs allow a Bayesian classifier to learn a non-
linearly separable function. Naive Bayes performs at
chance levels on this data set. TAN does better, each is
sometimes able to find the correct arc to connect the two
dependent attributes. However, even if one considers just
the folds where TAN finds the correct arc, they still do
slightly worse than HCS. This is because both add 8

2 In general our initiadl experimental results on TAN and
smoothed TAN replicate the results of Friedman and Goldszmidt
on the same data sets. There are no substantial differences
between their implementation of smoothed TAN and our
implementation. On a few domains our implementation of
unsmoothed TAN is significantly more accurate. For example on
Soybean-Large they report 58.17 but we report 86.07. We
surmise that this is due to our method of handling of zero counts
in probability estimation. We replace zero probabilities with a
very small epsilon. Thisis particularly important on the Soybean-
Large dataset because quite often an instance to be classified will
have at least one zero probability in the calculation for every
class.

additional unnecessary arcs. These arcs are fitted to noise,
and do not generalize to the test data. In contrast HCS
always finds the correct arc to add in the first iteration, and
then it usually halts (occasionally it adds a second arc due
to a chance pattern occurring in a cross-validated fold).
This alows HCS to achieve the maximum accuracy
possible on the data set. This increased representation
flexibility of HCS has an additional bonus. If we see an arc
in a network returned by HCS it indicates that modeling the
relationship between these attributes is important to
increase predictive accuracy of the model. Viewing an arc
in a network returned by TAN, we have no such assurance,
because TAN aways returns N -1 augmenting arcs, even
when the attributes are completely independent. This makes
our approach more useful when comprehensibility and
insight is important. In Section 4, we further explore a
comparison of augmenting the naive Bayesian classifier
modeling the probability distribution and our approach.

3 SUPERPARENT

We have demonstrated that the addition of arcs using full
greedy search can mitigate the strong independence
assumptions of naive Bayes and improve its classification
accuracy. Here, we introduce SuperParent (SP) a more
efficient heuristic search that attempts to have the same
improvement in accuracy with a less expensive search
technique. The general idea is that in hill climbing search as
described so far, we attempt to find the best arc to add.
Here, we break this up into two steps, first finding a good
parent and then finding the best child of that parent.

Definition 2 (Super Par ent)

Given an augmented Bayes network, if we extend arcs from
node A to every orphan, node A is said to be a
SuperParent.

Definition 3 (FavoriteChild)

Given an augmented Bayes network, if we extend an arc
from node A to each orphan in turn, and test the effect on
predictive accuracy, the node pointed to by the best arc is
said to be the FavoriteChild of A,

Table 4 shows an outline of the SuperParent algorithm. The
network is initialized to naive Bayes, and the list of
orphans, O, is initialized to the full set of nodes A, A,,...,
A, The effect on classification accuracy, of making each
node a SuperParent is assessed. The best such node we
designated A,. Next, the algorithm finds FavoriteChild of
A, by assessing the effect of adding a single arc from A,
to each orphan. If the addition of the arc from A, to the
FavoriteChild improves the classification accuracy and |O|
> 1, then the FavoriteChild is removed from O, the arc is
added to the current classifier, and the SuperParent cycle
begins again. If there was no improvement, or |O| = 1, the
current classifier is returned.

0. Initialize network to naive Bayes.

Eval uate the current classifier.

2. Consider nmking each node a SuperParent.
Let A, be the SuperParent whi ch
i ncreases accuracy the nost.

3. Consider an arc from A, to each orphan.
If the best such arc inproves accuracy,
keep it and go to 2.

El se: Return the current classifier.

Table 4: An outline of the SuperParent algorithm (SP)

[EnY

We defer a detailed discussion of our experimental results
until section 3.2. However, Figure 4 demonstrates that
SuperParent has essentially the same accuracy as HCS,
even though it utilizes a more efficient search.
O(N) classifiers are constructed and evaluated for each arc
added to the network, and O(N) arcs may be added. So the
complexity for SP is O(N’). We also utilize the two
optimizations mentioned for HCS.

50

40 1

30 |

HCS Error

20

10 1

0 10 20 30 40 50
SuperParent Error

Figure 4: Scatter plot comparing SuperParent to HCS on
13 datasets from the UCI repository. Points on the
diagonal line indicate no difference in performance.

3.1 HOW SUPERPARENT WORKS

If an attribute is truly independent of all other attributes,
then the following equality is true.

P(C) [P(A 2V, C) = P(C) [TP(A 2, |G & Ap))

Therefore making that attribute the SuperParent should not
effect the classification accuracy. Because we are
estimating the probabilities with a finite amount of data, we
can expect small fluctuations in classification accuracy. If
however, the right-hand side of equation 4 differs from the
left-hand side by a substantial amount, we can infer that Ag,
is related to at least one other attribute. By making each
attribute a SuperParent in turn, we can detect which
attributes make good parents of other (as yet, unknown)
attributes. This is what we do in line 2 of Table 4.

Choosing the attribute, which, as SuperParent, most
increases the classification accuracy, ensures that we have
an attribute that is strongly correlated some other attribute,
or attributes. We still need to find the attribute to which it is
most strongly correlated. This we do in line 3 of Table 3.

Simply stated, the SuperParent algorithm is a heuristic,
which repeatedly finds a good parent node, then that node’s
best child, until there is no more improvement to be had.
The heurigtic is not admissible. That is to say it is not
guaranteed to produce the same set of augmenting arcs as
HCS.

3.2 EXPERIMENTAL
SUPERPARENT

Table 5 in the Appendix also lists the results of running
SuperParent under the same conditions as Table 1 (in fact
SuperParent was tested on exactly the same folds). Only on
the dataset Segment is HCS significantly more accurate
than SuperParent. These results are also summarized in
Figure 4. It shows that there is little difference between the
two algorithms. This indicates that searching for a good
parent in the manner that SuperParent does is a useful
heuristic for finding arcsto add.

RESULTS WITH

4WHY ISA CLASSIFICATION
APPROACH BETTER?

There are two differences between Friedman and
Goldszmidt's approach and the search approaches we
proposed in the previous sections. First, they use a
different criteria for deciding which arcs to add to the naive
Bayesian classifier. Second, Friedman and Goldszmidt's
approach always adds N-1 arcs while our approach stops
adding arcs when no improvement will occur. In order to
gain an understanding of why our algorithm yields more
accurate classifiers than the earlier approach, we consider
modifications to each method.

1. We modify our search algorithm so that it always
adds N-1 arcs (SP,,). This is done by always adding
the arc that results in the most accurate classifier,
but not requiring that an arc improve the accuracy
when compared to not adding an arc. Comparing
this modified algorithm to SP and TAN will allow
us to determine if SP’s superior performance is due
to its ability to add fewer arcs.

2. We create a variant of Friedman and Goldszmidt's
approach that does not necessarily add every arc in
the tree to the Bayesian classifier (STAN). In
particular, once the tree is formed, we use a hill
climbing search procedure to add arcs to the
Bayesian classifier. We select from only those
edges that appear in the tree and we consider both
possible arc directions for all edges. Like our
original hill-climbing search procedure, this stops
when no arc addition results in a more accurate
classifier. Because this variant of TAN is free from
limitations with regard to the number of arcs that
can be added, and can choose the direction of the
arcs, we can use it to ascertain how whether the arcs
selected by TAN improve accuracy when compared
to SP.

We ran an experiment on ten datasets using the three above
algorithms together with unsmoothed TAN and the normal

SuperParent algorithm. We used the same methodology as
mentioned in section 2.2, in particular, all classification
algorithms were trained and tested on exactly the same
cross validation folds. Table 5 summarizes the results.

Dataset Tan sTAN SPrui SP
Vote 93.9 94.2 95.3 95.7
Australia 80.4 82.2 82.9 85.2
Pima 75.5 76.6 77.6 78.2
Breast 96.0 96.2 96.3 96.1
Heart 735 74.7 75.2 76.1
Hepatitis 83.5 83.0 85.5 84.3
Vehicle 63.5 65.4 69.2 70.3
Soybean 82.0 84.7 87.5 88.4
E.coli 80.9 81.7 84.5 84.3
Post-op 70.0 70.3 73.3 72.1
Mean 79.92 80.90 82.73 83.07

Table5: Experimental results of comparing various algorithms.

The last row contains the mean accuracy for each column,
although we echo the often-stated caution of its debatable
significance. The best accuracy for a given dataset is
reported in bold text. Where a runner-up does not differ at
the 5% confidence level (using a paired two-tailed t-test), it
too is recorded in bold.

SP is clearly the superior classifier. SP,,, does not do quite
as well, but it is still significantly better than TAN on 8 of
the datasets. The difference between its mean accuracy and
SP's is only 11% of the difference between TAN and SP.
We take this, as strong evidence that the (possible) disparity
in the number of arcs added to the augmented Bayes
classifier by the different approaches is not the main reason
for SP's superior performance.

Given these results, we surmise that the overall difference
in performance between TAN and SP is due to the fact that
SP generally chooses a different set of augmenting arcs to
add.

S RELATED WORK

There has been much recent work on extensions to the
naive Bayes classifier. Kohavi (1994) has shown that
although irrelevant features should theoretically not hurt the
accuracy of naive Bayes, in practice irrelevant features do
degrade performance. He deals with this problem using
wrappers for subset selection. Langley and Sage (1994) use
a similar approach. Although neither approach directly
deals with the problem of related attributes they can have
the effect of mitigating the problem. If two attributes are
related, then naive Bayes will overweight the evidence
from the two attributes. Deleting one of the two attributes
may help.

Kononenko (1991) and Pazzani (1996) deal with attribute
dependence by merging two (or more) related attributes
into a new compound attribute, which replaces the original
attributes in the classifier. While Kononenko uses a

dtatistical test to decide which attributes to merge, Pazzani
achieves much better results by using predictive accuracy
asamerging criteria.

6 CONCLUSIONS

In this paper, we have shown that it is possible to build
classifiers that are superior to naive Bayes, by finding
related attributes and considering their dependence when
classifying new instances. We further demonstrate two
useful optimizations that greatly speed up the process of
finding correlated attributes.

Acknowledgments

This research was supported by NSF grant IRI-9310413,
AFOSR grant F49620-96-1-0224, and Sun Microsystems.

References

Chow, C. & Lui, C. (1968). Approximating discrete
probability distributions with dependence trees. IEEE
Trans. On Info Theory 14:462-467.

Domingos, P, & Pazzani, M. (1997). On the optimality of
the simple Bayesian classifier under zero-one loss. Machine
Learning, 29, 103-130.

Dougherty, J., Kohavi, R., & Sahami, M. (1995).
Supervised and unsupervised discretization of continuous
features. Proc of the 12" Int. Conference on Machine
Learning. (pp. 194-202). Tahoe , Ca: Morgan Kaufmann.

Dietterich, T. (1996) Statistical Tests for Comparing
Supervised Classification Learning Algorithms. Technical
Report. ftp://ftp.cs.orst.edu/pub/tgd/papers/stats.ps.gz

Duda, R, & Hart, P. (1973). Pattern classification and
scene analysis. New York: John Wiley & Sons.

Fayyad, U. & Irani, K. (1993). Multi-interval discretization
of continuous-valued attributes for classification learning.
In Proc. Thirteenth International Joint Conference on
Artificial Intelligence, (pp. 1022-1027). San Francisco, CA.

Friedman, N. & Goldszmidt, M. (1996). Building
classifiers using Bayesian networks. In Proc, National
Conference on Artificial Intelligence, (pp. 1277-1284).
Menlo Park, CA: AAAI Press.

Kohavi, R. (1994). Feature subset selection as search with
probabilistic estimates. In AAAl Fall Symposium on
Relevance.

Kononenko, 1. (1991). Semi-naive Bayesian classifier. In
Proceedings of the Sxth European Working Session on
Learning, 206-219. Berlin: Springer- Verlag.

Langley, P. & Sage, S. (1994). Induction of selective
Bayesian classifiers. In Proceedings of the Tenth
Conference on Uncertainly in Artificial Intelligence. p 399-
406. San Francisco, CA: Morgan Kaufmann.

Merz, C., Murphy, P. & Aha, D. (1997). UCI repository of
machine learning databases. Dept of Information and
Computer Science, University of California, Irvine.
http://www.ics.uci.edu/mlearn/MLRepository.html.

Pazzani, M. (1996). Constructive induction of Cartesian
product attributes. Information, Satistics and Induction in
Science. Melbourne, Australia.

Pazzani, M. (1996). Searching for dependencies in
Bayesian classifiers. In D. Fisher & H. J. Lenz (Eds.),
Learning from data: Artificial intelligence and statistics V
(pp. 239-248). New York, NY: Springer-Verlag.

Pearl, J. 1988 Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann.

Ripley, B. (1996). Pattern recognition and neural networks.
Cambridge University Press.

Sahami, M. (1996). Learning limited dependence Bayesian
classifiers. Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (pp.
335-338). Portland OR: AAAI Press.

Appendix
Dataset Naive TAN HCS SP TAN Time | SP Time
Vehicle 61.97 +1.58 63.47 +247 70.17 +1.87 70.25 +2.01 333 1390
Post-op 70.01 £0.83 70.06 +1.53 72.82 +1.52 7213 +2.11 4 41
Lung 4787 +7.34 | 54.82 £8.99 58.34 £8.18 59.12 +6.58 156 767
Australia 80.72 £0.68 80.42 +0.66 84.74 £0.75 | 85.20 £0.55 168 1299
Hepatitis 8325 £1.37 83.50 £243 84.75 £1.87 84.25 +2.13 9 126
Vote 90.34+0.78 93.91 +1.48 95.58 +0.56 95.71 £0.43 17 84
Heart 7251 £330 7352 +284 78.73 +2.16 76.10 +1.96 6 93
Soybean-Large | 86.07 +1.19 82.04 £1.72 88.83 £1.22 8841 £1.71 1046 13807
Pima 69.56 *1.35 7547 +1.75 78.00 +1.31 7822 +1.28 4 63
Breast 96.02 £+0.45 | 96.45 £0.72 97.41 £0.89 96.12 +0.81 21 172
Iris 93.00 £1.00 | 93.60 £095 | 94.00 £1.35 | 93.60 £1.25 3 10
Segment 90.92 +1.86 86.25 £+1.65 | 95.67 £1.07 94.45 +1.36 5491 62410
E.coli 80.21 £+0.44 | 80.89 £0.69 8543 £0.75 | 84.35 £0.34 16 91
exclusive-or 5192 £2.30 5452 +216 68.22 +1.46 70.71 +£1.43 12 96

Table 6: Experimental results of comparing various algorithms. The best result and those not significantly worse than the best at the 5%
confidence level are shown in bold. Thelast two columns contain the average time (in seconds) taken to build a classifier using TAN and SP

