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Abstract. We evaluate the power of decision tables as a hypothesis
space for supervised learning algorithms. Decision tables are one of the
simplest hypothesis spaces possible, and usually they are easy to un-
derstand. Experimental results show that on artificial and real-world
domains containing only discrete features, IDTM, an algorithm induc-
ing decision tables, can sometimes outperform state-of-the-art algorithms
such as C4.5. Surprisingly, performance is quite good on some datasets
with continuous features, indicating that many datasets used in machine
learning either do not require these features, or that these features have
few values. We also describe an incremental method for performing cross-
validation that is applicable to incremental learning algorithms including
IDTM. Using incremental cross-validation, it is possible to cross-validate
a given dataset and IDTM in time that is linear in the number of in-
stances, the number of features, and the number of label values. The time
for incremental cross-validation is independent of the number of folds
chosen, hence leave-one-out cross-validation and ten-fold cross-validation
take the same time.

1 Introduction

Write the vision, and make it plain upon tables,
that he may run that readeth it.
— Habakkuk 2:2

Given a dataset of labelled instances, supervised machine learning algorithms
seek a hypothesis that will correctly predict the class of future unlabelled in-
stances. In the machine learning literature, many representations for hypotheses
have been suggested, including decision trees, decision graphs, neural networks,
k-DNF formulae, automata, Lisp programs, and probability measures.

We investigate the power of one of the simplest representations possible—a
decision table with a default rule mapping to the majority class. This represen-
tation, called DTM (Decision Table Majority), has two components: a schema
which is a set of features that are included in the table, and a body consisting



of labelled instances from the space defined by the features in the schema. Given
an unlabelled instance, a decision table classifier searches for exact matches in
the decision table using only the features in the schema (note that there may
be many matching instances in the table). If no instances are found, the major-
ity class of the DTM is returned; otherwise, the majority class of all matching
instances is returned.

To build a DTM, the induction algorithm must decide which features to
include in the schema and which instances to store in the body. In this paper,
we restrict ourselves to the former problem, called feature subset selection.

Given a target function f and a hypothesis class H, we define the optimal
features to be the features used in a hypothesis A in H that has the highest
future prediction accuracy with respect to f. Because the hypothesis space is
limited in 1ts expressive power, the optimal features may not include all relevant
features.

To search for the optimal features, the wrapper model (John, Kohavi &
Pfleger 1994) is used. In the wrapper model, the induction algorithm is used
as a black box, and a search through the space of feature subsets is made by
a “wrapper” algorithm. In this paper, we search using best-first search and es-
timate the future prediction accuracy (the heuristic required for the best first
search) with k-fold cross-validation.

The goal of this paper is to evaluate the representation power of DTMs. In
experiments with feature subset selection for decision tree algorithms, we have
observed that in many cases the decision-trees were nearly complete, i.e., the
leaves represented almost all combinations of the chosen subset of the features.
We then conjectured that a simple decision table on a subset of the features might
be a good hypothesis space. While we use a specific technique for selecting the
features—the wrapper model—our aim is not to show that the specific method
for selecting features is good, but rather to show that at least one method for
selecting the schema works well. It is conceivable that other methods, perhaps
better and faster, exist.

The chances of getting a perfect match on the values of continuous features
are slim: even a single truly continuous feature in the schema will make the table
useless. Our initial experiments were therefore restricted to datasets containing
only discrete features. To determine how weak the performance of IDTM is on
datasets with continuous features, we also report on such experiments. Surpris-
ingly, performance is not significantly worse than that of C4.5 (Quinlan 1993) in
some cases. On those that performance is not significantly worse than C4.5, the
algorithm ignores the continuous features or uses those features that have few
values.

The paper is organized as follows. Section 2 formally defines DTMs and
the problem of finding an optimal feature subset. Section 3 describes how we
search for the optimal feature subsets using best-first search to guide the search
and cross-validation to estimate the accuracy. Section 4 details the experimental
methodology and the results. Section 5 describes related work on decision tables
and feature subset selection. Section 6 concludes with a summary and directions



for future work.

2 Decision Tables and Optimal Features Subsets

Given a training sample containing labelled instances, an induction algorithm
builds a hypothesis in some representation. The representation we investigate
here is a decision table with a default rule mapping to the majority class, which
we abbreviate as DTM. A DTM has two components:

1. A schema, which is a set of features.
2. A body, which is a multiset of labelled instances. Each instance consists of
a value for each of the features in the schema and a value for the label.

Given an unlabelled instance I, the label assigned to the instance by a DTM
classifier is computed as follows. Let Z be the set of labelled instances in the DTM
exactly matching the given instance 7, where only the features in the schema are
required to match and all other features are ignored. If Z = J, return the majority
class in the DTM; otherwise, return the majority class in Z. Unknown values are
treated as distinct values in the matching process.

Let err(h, f) denote the error of a hypothesis A for a given target function f.
Since f is never known for real-world problems, we estimate the error using an
independent test set 7 as

e 1
err(h,T) = — Z L(h(z;),yi) ,
|T| (zi,y:)ET

where L 1s a loss function. In the rest of the paper we assume a zero-one loss
function, i.e., zero if A(z) = y and one otherwise. The approximate accuracy
is defined as 1 — err(h, 7).

An optimal feature subset, A*, for a given hypothesis space H and a
target function f is a subset of the features A* such that there exists a hypothesis
h in H using only features in .4* and having the lowest possible error with
respect to the target function f. (Note that the subset need not be unique.) As
the following example shows, relevant features are not necessarily included in
the optimal subset.

FErample 1.
Let the universe of possible instances be {0, 1}3, that is, three Boolean features,
say X1, X9, X3. Let the distribution over the universe be uniform, and assume
the target concept is f(X1, X2, X3) = (X1 A X2) V X3. Under any reasonable
definition of relevance, all variables are relevant to this target function.

If the hypothesis space is the space of monomials, ¢.e., conjunctions of literals,
the only optimal feature subset is {X3} The accuracy of the the monomial X3
is 87.5%, the highest accuracy achievable within this hypothesis space. [I



An induction algorithm using DTMs as the underlying hypothesis space must
decide which instances to store in the table and which features to include in the
schema. In this paper we assume the induction algorithm includes the projections
of all instances defined by the schema in the DTM, but we do not restrict the
subset of features to use in the schema in any way. Let A = {X;,..., X, } be a
set of features and let S be a sample of m instances over the features in A. Given
a subset of features A’ C A, DTM(A’, S) is the DTM with schema A’ and a
body consisting of all instances in S projected on A’. The goal of the induction
algorithm is to chose a schema A* such that

A* = argmin err(DTM (A", S), f) . (1)
AICA
The schema A* consists of an optimal feature subset for a DTM under the
assumption that all instances from the training set are stored in the body of the
decision table.

3 Finding an Optimal Feature Subset

In this section, we describe IDTM (Inducer of DTMs), an induction algorithm
that induces DTMs. The goal of IDTM is clear: find the feature subset A* that
is described in Equation 1. Since the target function f is unknown, no learning
algorithm can compute the exact error: it can only be approximated. Further-
more, the number of feature subsets for n features is 27, a space too large to
search exhaustively even for moderately sized n.

An interesting way to view the induction process is to think of the feature
subset selection algorithm as wrapping around a trivial induction algorithm that
simply creates a DTM from the full dataset it receives (see John et al. (1994)
for details on the wrapper approach). The wrapper is the only part that makes
the inductive leap of which features to use.!

We now give an overview of the feature subset selection mechanism, which
transforms the problem into one of state space search with probabilistic esti-
mates; further details can be found in Kohavi (1994¢).

3.1 Searching the Space of Feature Subsets

In order to search the space of feature subsets effectively, we transform the
problem into a state space search and use best-first search to heuristically search
the space (Ginsberg 1993, Nilsson 1980).

The states in the space are feature subsets; operators can add or delete a
feature; the initial node can be either the set of all features or the empty set;
and the evaluation function is cross-validation (described below). Since we are
aiming for the optimal feature subset, there is no goal node. The optimization

! Holte (personal communication) remarked that this type of learning is basically
a preprocessing step (feature selection), and an optional post-processing step to
simplify the rules, with nothing in between.



problem requires a termination condition, and the algorithm we used stops after
a fixed number of node expansions do not yield a node with a better estimated
accuracy than the current best estimate.

To estimate future prediction accuracy, cross-validation, a standard accuracy
estimation technique (Weiss & Kulikowski 1991, Breiman, Friedman, Olshen &
Stone 1984, Stone 1974), is used. Given an induction algorithm and a dataset, k-
fold cross-validation splits the data into k approximately equally sized partitions,
or folds. The induction algorithm is executed £ times; each time it is trained on
k—1 folds and the generated hypothesis is tested on the unseen fold, which serves
as a test set. The estimated accuracy is computed as the average accuracy over
the k test sets.

The estimated accuracy for each cross-validation fold is a random variable
that depends on the random partitioning of the data. We observed high vari-
ance in the accuracy estimates and ameliorate this disturbing phenomenon by
repeating the cross-validation ¢ times. Following John’s suggestion (1994), we
used a 10% trimmed mean of the kt folds.

3.2 Incremental Cross-Validation

Each feature subset, represented as a node in the state space, is evaluated by
cross-validation. One of the main problems with regular k-fold cross-validation
is that the algorithm is run & times, introducing a multiplicative factor of &k in
the running time. We now explain how to speed up cross-validation time for
algorithms that support incremental addition and deletion of instances. We feel
that this digression is important because the simple idea of incremental cross-
validation is what makes the IDTM algorithm practical.

The idea in incremental cross-validation is that instead of training & times on
k — 1 folds each time, we train on the full dataset, then delete the instances in one
fold, test on that fold, and insert the instances back. The delete-test-insert phase
is repeated for each of the k folds. If the algorithm is guaranteed to produce the
same results in incremental mode as in batch mode, this incremental version of
cross-validation is guaranteed to produce the exact same result as batch cross-
validation.

Proposition1 Incremental Cross-Validation.
The running time of incremental cross-validation s

O(T +m(ta +tc +1:)) ,

where T 1s the running time of the induction algorithm on the full dataset, m is
the number of instances, and t4, t., and t; represent the time it takes to delete
an wnstance, classify an instance, and insert an instance, respectively.

Proof: Incremental cross-validation starts out by running the original induction
algorithm on the full dataset. Since each instance appears in exactly one fold, it
is deleted once, classified once, and inserted once during the overall incremental
cross-validation phase. |



Erample 2.

Conducting k-fold cross-validating of a decision tree induction algorithm and a
dataset is deemed an expensive operation because one typically builds & deci-
sion trees from scratch, one for each fold. However, Utgoff (1994) shows how to
incrementally add and delete instances in a way that is guaranteed to generate
the same tree as a batch algorithm. Thus, one can incrementally cross-validate
decision trees much faster.

Nearest neighbor algorithms support incremental addition and deletion of
instances by simply adding and removing prototype points. Since these opera-
tions are fast, it can be shown that incremental cross-validation of a dataset with
m instances and n features with a simple nearest neighbor induction algorithm
takes O(m(m - n)) time; incremental cross-validation of a weighted regression
nearest neighbor takes O(m(m-n? +m?)) time as shown in Moore & Lee (1994),
Maron & Moore (1994), and Moore, Hill & Johnson (1992).

We now describe the data structures that allow fast incremental operations
on DTMs. The underlying data structure that we use is a universal hash table
(Cormen, Leiserson & Rivest 1990). The time to compute the hash function
is O(n’) where n' is the number of feature values in the DTM’s schema, and
the expected lookup time (given the hashed value of the instance) is O(1) if all
objects (unlabelled instances) stored are unique. To ensure that all stored objects
are unique, we store with each unlabelled instance £ counter values, where £ is the
number of label values. Each counter value ¢; represents the number of instances
in the training set having the same underlying unlabelled instance and label ;.

To classify an instance, the unlabelled instance is found in the hash table and
the label matching the highest counter value is returned.? The overall expected
time to classify an instance is thus O(n’ + £).

To delete an instance, the underlying unlabelled instance is found and the
appropriate label counter is decreased by one; if all counters are zero, the under-
lying unlabelled instance is deleted from the table. Inserting instances is done
similarly. Class counts must be kept for the whole body of the DTM in order to
change the majority class.

Corollary 2 Incremental Cross-Validation of IDTMs.
The overall time to cross-validate an IDTM with n' features in the schema and
a dataset with m instances and £ label values is O(m(n' + £)).

Proof: All DTM operations have time complexity ¢4 = t. = t; = O(n' 4+ £). The
overall time to build a DTM from scratch is the same as m insertions; thus by
Proposition 2, the overall time for the cross-validation O(m(n' + £)). I

2 The running time could further decreased to O(n’) by computing the majority of
every unlabelled instance in advance, but the counters are needed for the incremental
operations.



3.3 Choosing the Number of Folds

The time to incrementally cross-validate an IDTM and a dataset for any num-
ber of folds is the same. Leave-one-out is almost unbiased (Efron 1983) and was
commonly considered the preferred method for cross-validation. Recently Zhang
(1992) and Shao (1993) proved that, for linear models, using leave-one-out cross-
validation for model selection is asymptotically inconsistent in the sense that the
probability of selecting the model with the best predictive power does not con-
verge to 1 as the total number of observations approaches infinity. The theorems
show that in order to select the correct model, as the number of instances in
the dataset grows, the number of instances left out for testing should grow as
well. Zhang showed that the models chosen by any k-fold cross-validation for
any k will overfit in the sense that too many features will be selected. However,
for moderately sized data sets, he claimed that 10 to 15 folds are reasonable
choices.

Empirically, we have observed similar results, namely that using ten-fold
cross-validation is slightly better than leave-one-out. Similar observations were
made by Weiss (1991). While the differences are usually small, especially for fea-
ture subset selection where only the relative ranking of different subsets matters,
there is one extreme case that deserves special mention: the Monk1 dataset.

Ezrample 8 Leave-one-out on Monkl.

The Monk1 problem (Thrun etal. 1991) has a standard training and test set.
There are no duplicate instances, nor is there noise in the training set. A DTM
with a schema that has all the features and that is tested on a test set disjoint
from the training set always predicts the majority class; hence it is equivalent
to an induction algorithm that predicts a constant function— True or False—
depending on the prevalent class in the training set.

The estimated accuracy using leave-one-out cross-validation on a DTM with
all the features (or equivalently, a majority inducer) and the standard training
set for the Monkl problem is 0.0%! The example shows an inherent problem
with cross-validation that applies to more than just a majority inducer. In a no-
information dataset where the label values are completely random, the best an
induction algorithm can do is predict majority. Leave-one-out on such a dataset
with 50% of the labels for each class and a majority inducer would still predict 0%
accuracy. [

The reason for this phenomenon is that the standard training set for the
Monk1 problem has 62 positive instances and 62 negative instances. Each time
an instance is removed in leave-one-out, the other class is the more prevalent in
the training set and the majority inducer predicts the wrong label for the test
instance.

We have observed a similar phenomenon even with ten-fold CV. The iris
dataset has 150 instances, 50 of each class. Predicting any class would yield
33.3% accuracy, but ten-fold CV using a majority induction algorithm yields



21.5% accuracy (averaged over 100 runs of ten-fold CV). The reason is that if
there is a majority of one class in the training set, there is a minority of that
class in the test set. (See Schaffer (1994) for a discussion along these lines.)

4 Experiments with IDTM

We now describe experiments conducted with IDTM, the induction algorithm
for DTMs. The experiments were done on all the datasets at the UC Irvine
repository (Murphy & Aha 1994) and StatLog repository (Taylor, Michie &
Spiegalhalter 1994) that contain only discrete features. To test the performance
on datasets with continuous features, we chose the rest of the StatLog datasets
except shuttle, which was too big, and all the datasets used by Holte (1993).

4.1 Methodology

We now define the exact settings used in the algorithms. The estimated accu-
racy for each node was computed using ten-fold cross validation. Because of the
high variability of the estimates, the cross-validation was repeated (shuffling the
instances between runs) until the standard deviation of the mean went below
one percent or until ten cross-validations runs have been executed.

The termination condition for the search was a consecutive sequence of five
node expansions that did not generate a feature subset with an estimated accu-
racy of at least 0.1% better than the previous best subset.

For datasets with a specified training and test set, we executed the algorithm
once. For the rest of the datasets, we performed ten-fold cross-validation around
IDTM.?3 In the comparisons with C4.5, the same cross-validation folds were used
for both algorithms.

As in Holte’s work, we believe that the weakest part of the IDTM algorithm
is the accuracy estimation. In order to derive an upper bound on the possible
accuracy of DTMs, the test set was used to guide the search, and the termina-
tion condition for the best-first search was changed so that a maximum of 30
consecutive nodes need not show improvement before we stop (up from five).

Because the search is still a heuristic search, the best feature subset might
not be found, and so this is not a true upper bound (it is a lower bound on the
upper bound). As shown in the next section, the heuristic sometimes fails to find
the best node. The upper bound usually leads to optimistic accuracy estimates,
especially if the test set size is small and there are many features that allow
perfectly fitting the test set (e.g., the lung-cancer dataset). The upper bound
does not show that the given accuracy is achievable, something we cannot expect,
but rather that performance above this level is impossible without changing the
hypothesis space or improving the search for the best feature subset.

3 Although IDTM performs cross-validations internally, the outer cross-validation is
completely independent.



Dataset Feat- Train Test Majority C4.5 IDTM IDTM*
ures sizes Accuracy Accuracy Accuracy Accuracy
audiology 69 226 CV 25.242.8 79.3+3.5 71.34+ 3.8 88.0+1.9
breast-cancer 9 28 CV 70.442.3 73.9+2.8 753+ 2.4 83.7£1.9
chess 36 3196 CV 52.241.1 99.5+0.1 97.84 0.2 98.4+0.2
corral 6 32 128 56.3+4.4 81.243.5 100.0+0.0 100.0+0.0
dna 180 2000 1186 50.8+1.5 92.34+0.8 94.64+0.7 94.940.6
lenses 4 24 CV 65.0+8.4 83.3+7.0 83.3+ 7.0 91.745.7
lung-cancer 56 32 CV 41.7+£9.0 49.247.5 53.3% 9.9 100.0+0.0
Monk1 6 124 432 50.0+2.4 75.742.1 100.04+0.0 100.0+0.0
Monk2 6 169 432 67.1+£2.3 65.0+2.3 64.4+ 2.3 81.9£1.9
Monk2-local 17 169 432 67.142.3 70.442.2 100.0+0.0 67.142.3
Monk3 6 122 432 47.242.4 97.240.8 97.24+ 0.8 97.240.8
mushroom 22 8124 CV 51.840.5 100.0+£0.0 99.9+ 0.4 100.040.0
parity5+5 10 100 1024 50.04+1.6 50.04+1.6 100.0+0.0 50.0+1.6
tic-tac-toe 9 958 CV 65.4+1.7 85.6+1.1 78.2+ 1.4 84.840.9
vote 16 435 CV 61.4%+2.1 95.6+0.5 94.3+ 0.4 99.14+0.4
votel 15 435 CV 61.4+2.1 88.0+1.8 87.6+1.3 97.04+0.7

Table 1. Comparison of majority, C4.5, IDTM, and IDTM* on discrete domains. Bold
indicates significantly better accuracies (either C4.5 or IDTM.)

4.2 Experimental Results

Table 1 shows the accuracy results for the following induction algorithms:

1.

w

A majority induction algorithm, which simply predicts the majority class.
The accuracy shown is sometimes referred to as baseline accuracy.

. The C4.5 decision-tree induction algorithm with the default parameter set-

tings.

. The IDTM induction algorithm described in this paper.
. The IDTM* induction “algorithm,” which gives an approximate upper bound

on the performance of any induction algorithm using DTMs. We stress that
this i1s not really a learning algorithm because it is given access to the test
set.

The numbers after the “+” sign indicate the standard deviation of the re-

ported accuracy. On cross-validated runs, the standard deviation of the fold
accuracies is given; on runs that had a pre-specified test-set, the standard ac-
curacy 1s the computed according to the Binomial model which assumes each
test set instance is an independent Bernoulli experiment, and thus the standard

deviation of the mean accuracy is y/acc(1 —acc)/m (see Breiman et al. (1984),
Devijver & Kittler (1982)).

The results demonstrate that IDTM can achieve high accuracy in discrete

domains using the simple hypothesis space of DTMs. In corral, dna, the Monk



Dataset Feat- Train Test Majority C4.5 IDTM IDTM*
ures sizes Accuracy Accuracy Accuracy Accuracy
australian 14 690 CV 55.542.3 85.4+1.1 84.9+ 1.7 89.4%+1.3
breast 10 699 CV 65.54+1.7 95.4+0.7 90.6+ 0.9 96.1+0.6
cleve 13 303 CV 54.443.6 72.3+2.2 75.54+ 3.2 90.8%+2.2
crx 15 690 CV 55.54+2.0 85.9+1.4 86.7+ 1.1 89.1+1.2
diabetes 8 768 CV 65.1£1.6 71.8+1.0 66.0+ 1.1 71.0%1.2
german 24 1000 CV 70.0+1.3 69.84+1.1 69.44+ 1.1 81.4+1.3
glass 9 214 CV 35.5%3.3 65.5+3.2 41.6+ 3.0 55.6x+1.8
glass2 9 163 CV 53.34+4.0 70.6+2.0 48.9+ 4.0 69.2+2.8
hayes-roth 4 160 CV 31.842.6 64.8+4.6 57.5+ 3.2 76.9+2.1
heart 13 270 CV 55.643.1 76.7+1.8 80.4+ 1.6 91.5%+1.5
hepatitis 19 155 CV 79.243.9 80.0+3.7 77.9+ 2.8 96.0+2.0
horse-colic 22 368 CV 63.1+2.3 85.1+1.2 84.3+ 0.7 92.1+0.9
hypothyroid 25 3163 CV 95.2+0.4 99.14+0.2 97.04+ 0.4 97.9+0.3
iris 4 150 CV 23.342.5 95.3+1.4 94.7+ 1.3 94.7+1.3
labor-neg 16 57 CV 65.3+7.7 85.7+3.5 75.3+ 7.6 98.3%1.7
letter 16 15000 5000 3.7+0.3 86.84+0.5 69.24 0.7 69.240.7
lymphography 18 148 CV 54.646.4 78.4+1.7 76.24 3.6 93.9+1.61
satimage 36 4435 2000 23.14+0.9 85.24+0.8 78.940.9 78.940.9
segment 19 2310 CV 11.1+0.4 96.4+0.3 56.3+1.3 57.5+1.2
sick-euthyroid 25 3163 CV 90.7+0.6 97.74+0.3 94.94 0.3 96.0+0.3
soybean-small 35 47 CV 36.0+6.7 100.0+£0.0 97.54 2.5 100.0+0
vehicle 18 846 CV 22.6+1.0 69.8+1.8 59.3+ 1.5 63.4x1.4

Table 2. Comparison of majority, C4.5, IDTM, and IDTM* on non-discrete domains.
Bold indicates significantly better accuracies (either C4.5 or IDTM.)

problems, and parity, IDTM significantly outperforms C4.5 (a difference of more
than two standard deviations). In audiology, chess, tic-tac-toe, and vote, per-
formance is significantly below that of C4.5. Performance is approximately the
same for the rest.

The 94.6% % 0.7% accuracy of IDTM on the DNA dataset, containing 180 bi-
nary features, 2,000 training instances, and 1,186, test instances, is higher than
many other state-of-the-art induction algorithms reported for this dataset in
(Taylor et al. 1994). For example, CART (Breiman et al. 1984) achieves 91.5%
accuracy, Backprop (Rumelhart, Hinton & Williams 1986) achieves 91.2% ac-
curacy, CN2 (Clark & Niblett 1989) achieves 90.5% accuracy, and k-nearest
neighbor achieves 84.5% accuracy.

Table 2 shows some results for datasets containing continuous features. In
these domains, we expected IDTM to fail miserably, given that the chances of
matching continuous features in the table are slim without preprocessing the
data. Although C4.5 clearly outperforms IDTM on most datasets, IDTM out-
performs C4.5 on the heart dataset and achieves similar performance on nine



out of the 22 datasets (australian, cleve, crx, german, hepatitis, horse-colic, iris,
lymphography, and soybean).
Running times on a Sparc 10 varied from about one minute for the Monk

datasets to 15 hours for the dna dataset. The long running time for the dna
dataset was due to the branching factor of 180 in the feature-subset space.

4.3 Discussion

We believe that best-first search is doing a reasonable job at searching the space
for good feature-subset candidates. The dna dataset is a clear example; out of
2180 — 1.5.105* possible subsets, only 21 nodes were expanded, resulting in
a graph with 3,723 nodes, each representing a feature subset. Two interesting
examples where best-first search fails to find a good subset are the Monk2-local
and the parity5+5 problems. In these datasets, the IDTM* algorithm fails to find
a feature subset at least as good as the subset chosen by IDTM. Monk2-local is
a local encoding of the original Monk2 problem where out of eighteen features,
only six are relevant. The baseline (majority) is 67.13% accuracy. All 268 nodes
that were expanded did not result in any improvement, so the algorithm halted.
IDTM, on the other hand, climbed a path of seemingly improving nodes, and
found the correct subset. Parityb+5 is parity of five features with five random
features; a similar event happened in this case.

The fact that IDTM’s performance equals that of C4.5 in domains with
continuous features indicates that many such features are not very useful, or
that they contain few values, or that C4.5 is not using the information contained
in them. The soybean dataset contains only one feature with more than four
values, even though all are declared continuous. The german dataset contains
21 continuous features that have less than five values each (out of a total of
24 features); IDTM indeed chooses only the features with a few values. Tris
contains over 20 to 43 values for each continuous feature, yet a table using a
single feature—petal width—has 94.7% accuracy. The crx dataset contains six
continuous features, five having more than 130 values each; in our experiments,
IDTM usually used three non-continuous features that contained a total of 18
possible values (making the 18 line table extremeley easy to comprehend).

We conjecture that IDTM algorithm outperforms C4.5 in discrete domains
when the features interact and not too many features are relevant. Decision trees
are well suited for local relevances (i.e., different features are relevant in different
regions of the instance space), but the greedy top-down recursive partitioning
algorithms tend to fail when features interact. DTMs are suited to concepts
where some features are globally relevant; the feature subset selection algorithm
used here is conducting a best-first search and is thus able to capture interactions.
The tic-tac-toe dataset is an example where features are locally relevant; the
Monk1, Monk2, and parityb+5 datasets have feature interactions.



5 Related Work

Because they permit one to display succinctly the conditions that
must be satisfied before prescribed actions are to be performed,
decision tables are becoming popular in computer programming and
system design as devices for organizing logic.

—Reinwald & Soland (1966)

In the early sixties, algorithms were created to convert decision tables into
optimal computer programs (decision trees) under different measure of optimal-
ity using branch and bound procedures (Reinwald & Soland 1966, Reinwald &
Soland 1967). In the early seventies, these procedures were improved using dy-
namic programming techniques (Garey 1972, Schumacher & Sevcik 1976). Hyafil
& Rivest (1976) showed that building an optimal decision tree from instances
(or from a table) is NP-complete. Hartmann, Varshney, Mehrotra & Gerberich
(1982) show how to convert a decision table into a decision tree using mutual
information. The algorithm is very similar to ID3 (Quinlan 1986). All these ap-
proaches, however, dealt with conversions that are information preserving, i.e.,
all entries in the table are correctly classified and the structures are not used for
making predictions.

The rough sets community has been using the hypothesis space of decision
tables for a few years (Pawlak 1987, Pawlak 1991, Slowinski 1992). Researchers
in the field of rough sets suggest using the degrees-of-dependency of a feature
on the label (called v) to determine which features should be included in a
decision table (Ziarko 1991, Modrzejewski 1993). Another suggestion was to
use normalized entropy (Pawlak, Wong & Ziarko 1988), which is similar to the
information gain measure of ID3. These approaches ignore the utility of the
specific features to the specific induction algorithm and to the hypothesis space
used.

Much work in the rough sets community has focused on finding the core
set of features, which are the indispensable features, and reducts which are
sets of features that allow a Bayesian classifier to achieve the highest possible
accuracy. The core is the set of strongly relevant features as described in
John et al. (1994). While finding reducts is appealing in theory, they are not
necessarily optimal subsets for a given induction algorithm. Much of the work
presented here stemmed from a paper claiming that reducts are not necessarily
useful (Kohavi & Frasca 1994).

Almuallim & Dietterich (1991) described the FOCUS algorithm which is
equivalent to finding the DTM with the smallest number of features in the
schema and with no conflicting instance projections. The main problem with
FOCUS algorithm is that it has no way of dealing with noise and thus the table
overfits the data. The algorithm is also unable to handle continuous features.

Almuallim & Dietterich (1992) discussed the “Multi-balls” algorithm that
has high coverage—for a given sample size, the number of concepts it can PAC
learn is close to the upper bound of any learning algorithm. DTMs can be viewed
as a multi-balls hypothesis space because the centers are equidistant. However,
the induction method is completely different and the maximal number of balls



a DTMs creates is less than the upper bound given by the Gilbert-Varshamov
bound.

A nearest-neighbor algorithm can be viewed as a generalization of a DTM
with zero weights on the features not included in the schema. However, while
nearest-neighbor algorithms use the nearest neighbor to classify instances, a
DTM classifier defaults to the majority whenever the distance is greater than
7ero.

Feature subset selection has been long studied in the statistics community
(Miller 1990, Boyce, Farhi & Weischedel 1974), in the pattern recognition com-
munity (Devijver & Kittler 1982), and lately in the machine learning community
(John et al. 1994, Moore & Lee 1994, Caruana & Freitag 1994, Kohavi & Frasca
1994, Langley & Sage 1994, Aha & Bankert 1994).

Decision tables have a bias similar to that of oblivious read-once decision
graphs (OODGs) (Kohavi 1994a, Kohavi 1994b6): all of the features chosen for
the schema are tested during classification. This implies that it is easy to convert
a decision table into an OODG, perhaps making it more comprehensible.

6 Summary and Future Work

In this paper, we showed that a decision table with a default rule mapping to the
majority class can be used to classify instances in discrete spaces with accuracy
that is sometimes higher than state-of-the-art induction algorithms. Decision ta-
bles are easy for humans to understand, especially if not too big (e.g., the decision
table for the crx dataset has 18 entries). For future classification, the resulting
decision table provides a constant classification time on the average (using a
hash table storing the majority) and is therefore well suited for applications in
real-time environments.

We observed that on some datasets with continuous values, the prediction
accuracy of IDTM is comparable to that of C4.5. This observation indicates that
some real-world datasets from the StatLog and the UC Irvine repositories do not
have much “information” in the real values or that C4.5 is unable to utilize this
information.

Our goal in this paper has not been to claim that decision tables provide a
very good hypothesis space for induction algorithms; rather, we have shown that
such a simple hypothesis space can lead to high performance, a point previously
made by Holte (1993), although he used a different algorithm. The IDTM al-
gorithm described here performs better than Holte’s algorithm and sometimes
outperforms C4.5.

Generalization without a bias is impossible (Schaffer 1994, Wolpert 1994).
IDTM is biased to select a feature subset maximizing cross-validation accuracy
estimates. When the estimates are good, IDTM should choose a feature subset
that leads to high prediction accuracy. Our empirical evidence indicates that the
estimates are usually good, but have high variability.

We also formalized the idea of an incremental cross-validation algorithm,
which is applicable whenever an induction algorithm supports incremental add



and delete operations. We used this approach to show how cross-validation of an
IDTM and a dataset can be performed in time that is linear in the number of
instances, the number of features, and the number of label values. We suggested
that incremental cross-validation can lead to fast accuracy estimates for decision-
tree induction algorithm.

IDTM may be used to select a subset of features that yield good performance
and which can provide a starting point for a feature subset selection search that
uses a more complex algorithm. It is also possible to test constructive induc-
tion methods that construct new features (e.g., interval discretization) with this
method.
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