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Abstract

In this paper, we examine previous work on the naive
Bayesian classifier and review its limitations, which in-
clude a sensitivity to correlated features. We respond
to this problem by embedding the naive Bayesian in-
duction scheme within an algorithm that carries out a
greedy search through the space of features. We hy-
pothesize that this approach will improve asymptotic
accuracy in domains that involve correlated features
without reducing the rate of learning in ones that do
not. We report experimental results on six natural
domains, including comparisons with decision-tree in-
duction, that support these hypotheses. In closing, we
discuss other approaches to extending naive Bayesian
classifiers and outline some directions for future re-
search.

Introduction

In recent years, there has been growing interest in
probabilistic methods for induction. Such techniques
have a number of clear attractions: they accommo-
date the flexible nature of many natural concepts; they
have inherent resilience to noise; and they have a solid
grounding in the theory of probability. Moreover, ex-
perimental studies of probabilistic methods have re-
vealed behaviors that are often competitive with the
best inductive learning schemes.

Although much of the recent work on probabilistic
induction (e.g., Anderson & Matessa, 1992; Cheese-
man et al., 1988; Fisher, 1987; Hadzikadic & Yun,
1989; McKusick & Langley, 1991) has focused on un-
supervised learning, the same basic approach applies
equally well to supervised learning tasks. Supervised
Bayesian methods have long been used within the field
of pattern recognition (Duda & Hart, 1973), but only
in the past few years have they received attention
within the machine learning community (e.g., Clark
& Niblett, 1989; Kononenko, 1990, 1991; Langley, Iba,
& Thompson, 1992).

In this paper we describe a technique designed to im-
prove upon the already impressive behavior of the sim-
plest approach to probabilistic induction — the naive

Bayesian classifier. Below we review the representa-
tional, performance, and learning assumptions that
underlie this method, along with some situations in
which they can lead to problems. One central assump-
tion made by the naive approach 1s that attributes are
independent within each class, which can harm the
classification process when violated.

In response to this drawback, we describe a revised
algorithm — the selective Bayesian classifier — that
deals with highly correlated features by incorporating
only some attributes into the final decision process.
We present experimental evidence that this scheme
improves asymptotic accuracy in domains where the
naive classifier fares poorly, without hurting behavior
in domains where 1t compares to other induction algo-
rithms. We close the paper with some comments on
related work and directions for future research.

The Naive Bayesian Classifier

The most straightforward and widely tested method
for probabilistic induction is known as the naive
Bayesian classifier.! This scheme represents each class
with a single probabilistic summary. In particular,
each description has an associated class probability or
base rate, p(C}), which specifies the prior probability
that one will observe a member of class C}. Each de-
scription also has an associated set of conditional prob-
abilities, specifying a probability distribution for each
attribute. In nominal domains, one typically stores a
discrete distribution for each attribute in a description.
Each p(v;|Cy) term specifies the probability of value
vj, given an instance of class Cj. In numeric domains,
one must represent a continuous probability distribu-
tion for each attribute. This requires that one assume
some general form or model, with a common choice be-
ing the normal distribution, which can be conveniently
represented entirely in terms of 1ts mean and variance.

1. We have borrowed this term from Kononenko (1990);
other common names for the method include the sim-
ple Bayesian classifier (Langley, 1993) and idiot Bayes
(Buntine, 1990).
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To classify a new instance I, a naive Bayesian clas-
sifier applies Bayes’ theorem to determine the proba-
bility of each description given the instance,

p(Ci)p(I|Cs)
p(I)
However, since I is a conjunction of j values, one can
expand this expression to
Cip(A v;1Ci)
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where the denominator sums over all classes and where
(A vj|C;) is the probability of the instance I given the
class C;. After calculating these quantities for each
description, the algorithm assigns the instance to the
class with the highest probability.

p(Cill) =

In order to make the above expression operational,
one must still specify how to compute the term
P(A vj|Cy). The naive Bayesian classifier assumes in-
dependence of attributes within each class, which lets

it use the equality
Hp U] |Ck bl

/\U]|Ck

where the values p(v;|C})) represent the conditional
probabilities stored with each class. This approach
greatly simplifies the computation of class probabili-
ties for a given observation.

The Bayesian framework also lets one specify prior
probabilities for both the class and the conditional
terms. In the absence of domain-specific knowledge,
a common scheme makes use of ‘uninformed priors’,
which assign equal probabilities to each class and to
the values of each attribute. However, one must also
specify how much weight to give these priors relative to
the training data. For example, Anderson and Matessa
(1992) use a Dirichlet distribution to initialize proba-
bilities and give these priors the same influence as a
single training instance. Clark and Niblett (1989) de-
scribe another approach that does not use explicit pri-
ors, but instead estimates P(C}) and p(v; |Cy) directly
from their proportions in the training data. When
no instances of a value have been observed, they re-
place the zero probability with p(C;)/N, where N is
the number of training cases.

Learning in the naive Bayesian classifier is an almost
trivial matter. The simplest implementation incre-
ments a count each time it encounters a new instance,
along with a separate count for a class each time it
observes an instance of that class. These counts let
the classifier estimate p(Cy) for each class C;. For
each nominal value, the algorithm updates a count for

2. This technique has no solid basis in probability theory,
but it avoids arbitrary parameters and it approximates
other approaches after only a few instances; thus, we
have used it in our implementations.

that class-value pair. Together with the second count,
this lets the classifier estimate p(v;|C%). For each nu-
meric attribute, the method retains and revises two
quantities, the sum and the sum of squares, which let
it compute the mean and variance for a normal curve
that it uses to find p(v;|C%). In domains that can have
missing attributes, 1t must include a fourth count for
each class-attribute pair.

In contrast to many induction methods, the naive
Bayesian classifier does not carry out an extensive
search through a space of possible descriptions. The
basic algorithm makes no choices about how to par-
tition the data, which direction to move in a weight
space, or the like, and the resulting probabilistic sum-
mary is completely determined by the training data
and the prior probabilities. Nor does the order of the
training instances have any effect on the output; the
basic process produces the same description whether
it operates incrementally or nonincrementally. These
features make the the learning algorithm both simple
to understand and quite efficient.

Bayesian classifiers would appear to have advantages
over many induction algorithms. For example, their
collection of class and conditional probabilities should
make them inherently robust with respect to noise.
Their statistical basis should also let them scale well to
domains that involve many irrelevant attributes. Lan-
gley, Tba, and Thompson (1992) present an average-
case analysis of these factors’ effect on the algorithm’s
behavior for a specific class of target concepts.

The experimental literature is consistent with these
expectations, with researchers reporting that the naive
Bayesian classifier gives remarkably high accuracies
in many natural domains. For example, Cestnik,
Kononenko, and Bratko (1987) included this method
as a straw man in their experiments on decision-tree
induction, but found that it fared as well as the more
sophisticated techniques. Clark and Niblett (1989) re-
ported similar results, finding that the naive Bayesian
classifier learned as well as both rule-induction and
decision-tree methods on medical domains. And Lan-
gley et al. (1992) obtained even stronger results, in
which the simple probabilistic method outperformed
a decision-tree algorithm on four out of five natural
domains.

However, the naive Bayesian classifier relies on two
important assumptions. First, this simple scheme
posits that the instances in each class can be sum-
marized by a single probabilistic description, and that
these are sufficient to distinguish the classes from one
other. If we represent each attribute value as a fea-
ture that may be present or absent, this is closely re-
lated to the assumption of linear separability in early
work on neural networks. Other encodings lead to a
more complex story, but the effect is nearly the same.
Nevertheless, like perceptrons, Bayesian classifiers are
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typically limited to learning classes that can be sep-
arated by a single decision boundary.® Although we
have addressed this limitation in other work (Langley,
1993), we will not focus on it here.

Another important assumption that the naive
Bayesian classifier makes is that, within each class,
the probability distributions for attributes are inde-
pendent of each other. One can model attribute depen-
dence within the Bayesian framework (Pearl, 1988),
but determining such dependencies and estimating
them from limited training data is much more diffi-
cult. Thus, the independence assumption has clear
attractions. Unfortunately, it is unrealistic to expect
this assumption to hold in the natural world. Corre-
lations among attributes in a given domain are com-
mon. For example, in the domain of medical diagnosis,
certain symptoms are more common among older pa-
tients than younger ones, regardless of whether they
are ill. Such correlations introduce dependencies into
the probabilistic summaries that can degrade a naive
Bayesian classifier’s accuracy.

To illustrate this difficulty, consider the extreme case
of redundant attributes. For a domain with three fea-
tures, the numerator we saw earlier becomes

p(Ci)p(v1|C;)p(v2|Ci)p(vs|C;)

If we include a fourth feature that is perfectly corre-
lated (redundant) with the first of these features, we
obtain

p(Co)p(v1|Ci)?p(v2|Ci)p(vs|Cy)

in which v; has twice as much influence as the other
values. The emphasis given to the redundant informa-
tion reduces the influence of other features, which can
produce a biased prediction. For example, consider a
linearly separable target concept that predicts class A
is any two of three features are present and that pre-
dicts class B otherwise. A naive classifier can easily
master this concept, but given a single redundant fea-
ture, it will consistently misclassify one of the eight
possible instances no matter how many training cases
it encounters.

Surprisingly, many of the domains in which the naive
Bayesian classifier performs well appear to contain sig-
nificant dependencies. This evidence comes in part
from Holte’s (1993) studies, which show that one-level
decision trees do nearly as well as full decision trees
on many of these domains. In addition, Langley and
Sage (1994) found that the behavior of a simple nearest
neighbor algorithm does not suffer in these domains,

3. The main exception involves numeric domains; Duda
and Hart (1973) present a simple situation in which
two decision boundaries emerge from the use of normal
distributions.

as one would expect if there were many irrelevant at-
tributes. Since one attribute is sufficient for high accu-
racy and the remaining ones do not degrade a nearest
neighbor method, then many of the attributes would
appear to be highly correlated.

The strong performance of the naive Bayesian
method despite violation of the independence assump-
tion is intriguing. It suggests that a revised method
which circumvents dependencies should outperform
the naive algorithm in domains where dependencies oc-
cur, while performing equally well in cases where they
do not. In the following section, we discuss a variant
Bayesian algorithm that selects and uses a subset of
the known features in an attempt to exclude highly
correlated attributes. This should let one continue
to make the convenient assumption of independence
while minimizing its detrimental effects on classifica-
tion accuracy.

The Selective Bayesian Classifier

Our goal was to modify the naive Bayesian classifier
to achieve improved accuracy in domains with redun-
dant attributes. The selective Bayesian classifier is
a variant of the naive method that uses only a sub-
set of the given attributes in making predictions. In
other words, the performance component of the algo-
rithm computes p(A v;|C%) as the product of condi-
tional probabilities, p(v;|Cy), for selected attributes v;
from the original feature set. The learning component
of the selective classifier augments the original algo-
rithm with the ability to exclude attributes that intro-
duce dependencies. This process consists of a search
through the space of attribute subsets.

We made a number of choices in designing the search
process. First, the direction of search could proceed
in a forward or backward manner. A forward se-
lection method would start with the empty set and
successively add attributes, while a backward elimina-
tion process would begin with the full set and remove
unwanted ones. A potential problem with backward
search is that, when several attributes are correlated,
removing any one of them may not improve perfor-
mance since redundant information will still exist. We
chose to use forward selection since it should immedi-
ately detect dependencies when a harmful redundant
attribute is added.

A second decision dealt with the organization of the
search. Clearly, an exhaustive search of the space is
impractical, since there are 2% possible subsets of a at-
tributes. A more realistic approach, commonly used in
machine learning algorithms, is to use a greedy method
to traverse the space. That is, at each point in the
search, the algorithm considers all local changes to the
current set of attributes, makes its best selection, and
never reconsiders this choice. This gives a worst-case
time complexity of O(a?).
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Figure 1. Learning curves for the selective Bayesian classifier, the naive Bayesian classifier, and C4.5 with pruning on (a)
Congressional voting records and (b) the mushroom domain. The error bars represent 95% confidence intervals based on

a two-sided t test.

Third, we needed some metric to evaluate alterna-
tive subsets of attributes. We considered the leave-
one-out technique for estimating accuracy from the
training set, since this is the most accurate method of
cross validation. Moreover, it can be applied efficiently
to a Bayesian classifier since one can simply ‘subtract’
a given instance from the stored attribute frequencies,
measure the accuracy of the resulting classifier, and
add the instance back. In spite of this, we opted to
simply measure accuracy on the entire training set,
since we achieved better results with that method in
preliminary studies.

Finally, we considered two criteria for halting the
search process. One could stop adding attributes when
none of the alternatives improves classification accu-
racy, or one could adopt a more conservative strategy
of continuing to select attributes as long as they do
not degrade accuracy. One argument for the latter
approach is that higher dimensional spaces are more
likely to allow separation of classes with a single de-
cision boundary, which favors the inclusion of more
attributes. Because initial experiments favored this
scheme, we incorporated it into the system.

To summarize, the algorithm initializes the subset
of attributes to the empty set, and the accuracy of the
resulting classifier, which simply predicts the most fre-
quent class, is saved for subsequent comparison. On
each iteration, the method considers adding each un-
used attribute to the subset on a trial basis and mea-
sures the performance of the resulting classifier on the
training data. The attribute that most improves (or at
least maintains) the accuracy is permanently added to
the subset, with ties broken randomly. The algorithm
terminates when addition of any attribute results in
reduced accuracy, at which point 1t returns probabilis-
tic summaries based on the current attribute set.

Experiments with Bayesian Classifiers

Previous comparative studies have shown that the
naive Bayesian classifier outperforms more sophisti-
cated methods such as decision-tree induction in some
domains, but that it performs significantly worse in
others (Langley et al., 1992). We hypothesized that
the first result reflects decision trees’ reliance on axis-
parallel splits, which poorly mimic the actual decision
boundaries in some domains. In contrast, we posited
that the naive Bayesian classifier did poorly in domains
containing redundant attributes. Since the selective
classifier should not suffer from the latter problem, we
predicted that it would improve upon the performance
of the naive classifier in the latter domains, perhaps
equaling the accuracy of decision-tree methods, while
remaining superior in the former domains.

To test this idea, we compared the behavior of
the selective Bayesian classifier to that of the naive
Bayesian classifier and Quinlan’s (1993) C4.5 decision-
tree algorithm in six domains from the UCI reposi-
tory of machine learning databases. We knew that
the naive classifier outperforms C4.5 in the soybean
disease, breast cancer, and DNA promoter domains,
whereas the reverse is true for the mushroom, Congres-
sional voting, and chess endgame domains. Therefore,
these domains seemed to provide a good testbed for
evaluating the new algorithm.

Each data set contains a set of classified instances
described in terms of numeric or nominal attributes.
For example, the soybean disease data consists of 47
instances described in terms of climate conditions,
crop history, and plant symptoms, each labeled with
one of four disease classes. The Congressional vot-
ing domain describes the 435 members of the 98th
Congress by their votes on 16 key issues and labeled
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Figure 2. Learning curves for the selective Bayesian classifier, the naive Bayesian classifier, and C4.5 with pruning on (a)

chess endgames and (b) breast cancer.

as Democrat or Republican. The breast cancer data
includes 699 instances of malignant and benign tissue
samples described by nine numeric attributes such as
clump thickness, marginal adhesion, and mitoses. De-
tailed information about these six domains, and many
others, is available from the UCI repository via anony-
mous ftp to ICS.UCI.EDU.

For each domain, we randomly generated 20 sets
of separate training and test cases. The dependent
variable in our experiment was classification accuracy
on the test cases after processing a sample of training
cases, averaged over the 20 runs. The classification
accuracy of an algorithm is the percentage of test cases
for which it correctly predicts the class. Since we were
interested in the rate of improvement as well as the
asymptotic accuracy of the algorithms, we measured
accuracy for different numbers of training samples.

Figure 1 (a) and (b) present the resulting learn-
ing curves for the Congressional voting and mushroom
domains, respectively, with 95% confidence intervals
shown for each point. In both cases, asymptotic ac-
curacy for the selective Bayesian classifier is notice-
ably higher than for the naive method, approaching
the level of C4.5 in the voting domain, but remaining
slightly lower for the mushroom data. Figure 2 (a)
shows an even greater increase in accuracy for the do-
main of chess endgames, but again the selective clas-
sifier does not quite reach the C4.5 level.

Experimental results for the other three domains
present a very different picture. Figure 2 (b) shows
that the selective algorithm reproduces the supe-
rior performance of the naive Bayesian classifier over
decision-tree induction in the breast cancer domain.
Analogous results appear in Figure 3 (a) and (b) for
both the soybean and DNA promoter data. The odd
C4.5 behavior on the soybean data occurs with both
pruning and non-pruning versions of the program.

These results confirm our predictions about the
comparative behavior of the three algorithms. In do-
mains where the naive classifier exhibits low asymp-
totic accuracy, apparently due to the presence of re-
dundant attributes, the selective Bayesian classifier
shows a marked improvement. At the same time, it
does as well as the simple classifier in domains where
the latter already outperforms decision-tree induction.
Thus, the selective Bayesian classifier appears to over-
come the weaknesses of the other two algorithms.

Related Work on Bayesian Induction

Recent years have seen growing interest in proba-
bilistic approaches to induction, and research in this
genre has typically followed one of two paths. Briefly,
one approach focuses on the introduction of new fea-
tures and the creation of explicit dependency links,
whereas the other emphasizes the clustering of in-
stances into taxonomic hierarchies. Each framework
attempts to improve upon the naive Bayesian classifier
by extending the basic induction algorithm in signifi-
cant ways.

Kononenko (1991) describes an example of the first
approach that tests for dependencies among attributes
and creates new features based on the conjunctions of
correlated values. This ‘semi-naive Bayesian classifier’
uses the training data to compute conditional proba-
bilities for these joint features, using them to classify
test cases rather than the original ones. However, ex-
perimental comparisons between his algorithm and the
naive Bayesian classifier revealed no differences on two
medical domains and only slight improvement on two
others data sets. Schlimmer’s (1987) STAGGER con-
structed features for analogous reasons and in a similar
manner, though i1t operated within a rather different
probabilistic framework.
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Figure 3. Learning curves for the selective Bayesian classifier, the naive Bayesian classifier, and C4.5 with pruning on
(a) the small soybean domain and (b) DNA promoters. Selective Bayes incorporates all attributes for the soybean data,

giving an identical curve to that for the naive method.

Research on the induction of Bayesian networks
(Pearl, 1988) generalizes this basic approach to han-
dling attribute dependence. Cooper and Herskovits’
(1992) K2 algorithm carries out a greedy search
through the space of Bayesian networks, but it requires
the user to specify an ordering on the attributes, and it
does not introduce new features. More recently, Con-
nolly (1993) has sidestepped this restriction by using
a probabilistic clustering method to generate hidden
attributes that render the observable ones condition-
ally independent. However, only Kononenko has ex-
plicitly compared the accuracy of his technique to the
naive approach on natural domains, so the usefulness
of these methods’ increased sophistication remains an
open question.

Langley (1993) describes a straightforward exam-
ple of the hierarchy-building approach. His ‘recur-
sive Bayesian classifier’ uses the naive algorithm to
generate a probabilistic summary for each class. If
these summaries correctly classify the training set, the
method halts. Otherwise, it calls the naive method re-
cursively for each class to which instances from other
classes were assigned, using all cases assigned to that
class as training data. The method continues to re-
curse until it correctly classifies all of the training data
or gains no further improvement, then organizes the
resulting classifiers as a hierarchy of probabilistic de-
scriptions, which it uses to sort novel test cases. Ex-
periments on artificial domains showed that this al-
gorithm can induce concepts that the naive Bayesian
classifier cannot handle, but studies on natural do-
mains showed no significant differences between the
methods.

Most work on the induction of probabilistic concept
hierarchies builds directly on Fisher’s (1987) CoB-
WEB, which deals with unsupervised training data. His

incremental algorithm uses an information-theoretic
evaluation function to determine when to incorporate
a training case into an existing category and when
to create an entirely new category. Gennari, Lang-
ley, and Fisher (1989), Hadzikadic and Yun (1989),
McKusick and Langley (1991), and others have ex-
plored very similar approaches. Anderson and Matessa
(1992) have adapted the same basic idea within a strict
Bayesian framework, though their method creates a
flat set of categories rather than a hierarchy. Unfor-
tunately, experiments that compare these clustering
schemes to the naive Bayesian classifier are rare, so
again one cannot tell whether their sophistication is
necessary.

Clearly, the approach we have taken here differs
from both of these frameworks for probabilistic in-
duction. Rather than assuming a more sophisticated
knowledge structure (and thus requiring more complex
methods for using and acquiring that knowledge), the
selective Bayesian classifier retains the simplicity of
the naive approach but ignores attributes that reduce
classification accuracy. We used the assumption of in-
dependence to motivate this idea, but it should also
prove useful in domains with irrelevant features.

Of course, the basic idea of restricting the attributes
used for prediction is not new, nor are greedy ap-
proaches for searching the attribute space. Kittler
(1986) refers to the scheme we have used as sequential
forward selection and refers to search in the opposite
direction as sequential backward elimination. Brod-
ley and Utgoff (1992) have used both methods in their
work on multivariate decision trees, whereas John, Ko-
havi, and Pfleger (in press), Caruana and Freitag (in
press), Skalak (in press), and Langley and Sage (in
press) have used similar schemes to determine relevant
features for decision-tree and nearest neighbor meth-
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ods. Our contribution lies in extending this idea to
Bayesian classifiers, which typically take all attributes
into account during prediction.*

Superficially, our approach is similar to Michie and
Al Attar’s (1991) ‘sequential Bayesian classifier’, which
inspects one attribute at a time during classification,
selecting the most informative one at each step and
halting when the probability of a class exceeds a
threshold. However, their method’s behavior is bet-
ter viewed as constructing a decision tree using a
probabilistic evaluation function. Our technique has
much more in common with the approach reported by
Kubat, Flotzinger, and Pfurtscheller (1993), who use
decision-tree induction to select predictive attributes
for use in a naive Bayesian classifier. They report
promising results with this method on an EEG clas-
sification task that parallel our findings with the UCI
data sets.

Concluding Remarks

Although our own experimental results have been
encouraging, they remain preliminary, and the vari-
ety of related approaches suggests many possibilities
for additional comparative studies. For example, we
should determine the extent to which techniques for
inducing Bayesian networks and probabilistic concept
hierarchies provide benefits beyond the simple selec-
tion scheme we have used here. We should also carry
out more systematic studies to explore the effect of
the design decisions we made when implementing the
selective Bayesian classifier.

In addition, we should consider the usefulness of
other selection techniques, such as Kubat et al.’s
method, and compare our technique to frameworks
with similar representational power that do not rely
on the independence assumption, such as the LMS al-
gorithm and related techniques (Widrow & Winter,
1988). The simplicity of the selective Bayesian clas-
sifier should also lend itself to average-case analyses
(Langley et al., 1992), which would let us compare
our experimental results to theoretical ones, at least
in synthetic domains.

In summary, we found that a simple modification
to the naive Bayesian classifier — forward selection of
attributes using estimated accuracy — increases asymp-
totic accuracy on separate test sets in some domains
and does not harm accuracy in others. The selection
algorithm appears to be beneficial in domains that
involve significant correlations among the predictive
attributes, which can bias the decisions of the naive
Bayesian classifier if they are not removed. The result

4. Warner, Toronto, Veasy, and Stephenson (1961) pre-
sented one of the earliest arguments in favor of remov-
ing correlated features from the naive Bayesian classi-
fier, but they carried out this process manually.

is a technique that improves on an already robust al-
gorithm, and that extends the repertoire of methods
for probabilistic induction.
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