Improving Simple Bayes

Ron Kohavi  Barry Becker  Dan Sommerfield

Data Mining and Visualization Group
Silicon Graphics, Inc.
2011 N. Shoreline Blvd.
Mountain View, CA 94043
{becker,ronnyk, sommda}@engr.sgi.com

Abstract. The simple Bayesian classifier (SBC), sometimes called
Naive-Bayes, is built based on a conditional independence model of each
attribute given the class. The model was previously shown to be sur-
prisingly robust to obvious violations of this independence assumption,
yielding accurate classification models even when there are clear con-
ditional dependencies. We examine different approaches for handling
unknowns and zero counts when estimating probabilities. Large scale
experiments on 37 datasets were conducted to determine the effects of
these approaches and several interesting insights are given, including a
new variant of the Laplace estimator that outperforms other methods for
dealing with zero counts. Using the bias-variance decomposition [15, 10],
we show that while the SBC has performed well on common benchmark
datasets, its accuracy will not scale up as the dataset sizes grow. Even
with these limitations in mind, the SBC can serve as an excellent tool
for initial exploratory data analysis, especially when coupled with a vi-
sualizer that makes its structure comprehensible.

1 Introduction to the Simple-Bayesian Classifier

In supervised classification learning, a labelled training set is presented to the
learning algorithm. The learner uses the training set to build a model that maps
unlabelled instances to class labels. The model serves two purposes: it can be
used to predict the labels of unlabelled instances, and 1t can provide valuable
insight for people trying to understand the domain. Simple models are especially
useful if the model is to be understood by non-experts in machine learning.
The simple Bayes classifier (SBC), sometimes called Naive-Bayes, is built
based on a conditional independence model of each attribute given the class
[11, 7]. Formally, the probability of a class label value C; for an unlabelled

instance X = (Ay,..., Ap) consisting of n attribute values is given by
P(Ci | X)
=P(X | ;) -P(Cy)/P(X) by Bayes rule
x P(Ay, ..., An | C3)-P(C;) P(X) is same for all label values.

n

= H P(4; | Cy)-P(Cy) by conditional independence assumption.
j=1



The above probability is computed for each class and the prediction is made
for the class with the largest posterior probability. This model is very robust
and continues to perform well even in the face of obvious violations of this
independence assumption.

The probabilities in the above formulas must be estimated from the training
set. We address two separate issues related to the SBC: how to treat unknown
values and how to estimate the probabilities (especially when some of the counts
are zero). A large scale comparison of these variants on 37 datasets from the UCI
Repository [20] was done. We emphasize the extreme cases that led to interesting
insights.

Using the bias-variance decomposition, we show that while the SBC has
performed well on common benchmark datasets, its accuracy will not scale up
as the dataset sizes grow.

2 Improving the “Naive” Simple Bayesian Classifier

We investigate the various options that one could choose when using the SBC.
For each of these options we conducted experiments to show the differences in
error. We also can explain in some cases why these differences arise and when
one option is preferable. Before describing the different options, we describe the
methodology used throughout the paper.

2.1 Experimental Methodology

We chose all the datasets reported in Domingos and Pazzani [5], except lung-
cancer, labor-negotiations, and soybean (small), which had fewer than 100 in-
stances. We added more datasets, especially larger ones, such as segment, mush-
room, letter, and adult for a total of 37. The specific datasets are shown below
in Table 2.

Our main concern with estimating accuracy is that the estimate should be
precise. Therefore, we ran different inducers on these datasets in two forms. If
the dataset was large or artificial, indicating that a single test set would yield
accurate estimates, we used a training-set/test-set as defined in the source for
the dataset (e.g., Statlog defined the splits for DNA| letter, satimage; CART
defined the training size for waveform and led24) or a 2/3, 1/3 split, and ran the
inducer once; otherwise, we performed 10-fold cross-validation to improve the
reliability of the estimate.

The extreme, and therefore interesting, results are shown graphically. We
show both the absolute difference in error as bars, and the relative error rates
(i.e., one error rate divided by another) as symbols (e.g.pluses). Relative error
rates are especially useful when the error itself is low. For example, reducing the
error rate by 0.5% may not seem significant in terms of absolute errors, but if
the initial error rate was only 1%, the error would be halved! If each error costs
a significant amount of money, then the error ratio is most important. Note that
both types of information are shown on the same graph, with the left y-axis
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Fig. 1. Comparison of ignoring unknown values and considering them a separate value.
The left axis shows the scale for the bars (absolute error differences); bars above zero
indicate that ignoring unknowns is better. The right axis shows the scale for the pluses
(relative error ratio); pluses above the one line show better performance for ignoring
unknowns.

showing the scale for the bars and the right y-axis showing the scale for the
relative errors.

2.2 The Basic Classifier

We begin with a very simple SBC model. Continuous attributes are discretized
into 10 bins of uniform size and frequency counts are used to estimate the prob-
abilities. If there is a class label value with zero counts, that class is ignored
and will never be predicted. If there is a zero count for a class label C' and an
attribute value A, the conditional probability, P(4 | C'), will be zero.

Ties are broken in favor of the class with more instances in the original
dataset. This is important especially for this simple version because all classes
can end up with zero posterior probability, in which case we predict the majority
class.

2.3 How Should Unknowns be Treated?

The first option we investigate is how to handle unknowns. One can either con-
sider unknowns to be a separate value, as was done by Domingos and Pazzani
[5], or they can be ignored for a given instance by not including the matching
term in the overall product.

The optimal treatment of unknowns depend on their meaning in the domain.
If the unknown has a special meaning (e.g., an unknown (blank) for the army
rank of a person), it is likely that treating it as a separate value will be better.
If, however, the unknowns represent truly missing information because the data
was corrupted or the entry was mistakenly left blank, the latter approach should
be better, as it matches the Bayesian definition of marginalizing the appropriate
attribute. Figure 1 shows the experimental results for the datasets that differed.



Over all the datasets, the average error rate for considering unknowns to be a
separate value was 20.30% and for ignoring them it was 20.20%. In most datasets
(not shown) the unknown treatment was not important. Those that differed were
generally better for ignoring unknowns, except for the anneal dataset, where a
significant increase in error was observed. The encoding of the anneal dataset at
the UCI Repository appears to be flawed!. For this dataset, we converted the
unknowns to dashes and called the file anneal-U, which we will use in the rest
of this paper.

One reason to ignore unknowns in the algorithm is that users can always map
their unknowns to a separate values, while if unknowns are considered a separate
value, users cannot cause certain values to be ignored. We conclude that it is
better for algorithms to ignore unknowns, and in cases where unknowns represent
a special value, such as anneal, the unknowns should be converted to a separate
value. In the rest of the experiments, unknowns will be treated as true missing
values.

2.4 Estimating Probabilities

The class probabilities and the conditional probabilities in the above experiments
were based on pure frequency counts. An attribute value that does not occur
together with a given class label value will produce a zero estimate for P(A | C),
eliminating class C' from consideration. To overcome this problem of a single
value controlling the outcome, we examine two general approaches from the
literature:

The no-match approaches Replace a zero count (no-match) for P(A and )
with a factor that is inversely proportional to the number of instances,
m. The different approaches use a different numerator, but the idea is the
same. Clark and Niblett [4] and Domingos and Pazzani [5] used P(C')/m. In
MLC++ [14], the default was 0.5/m.

Laplace approaches Given a predefined factor f, if there are N matches out
of n instances for a k value problem, estimate the probability as (N+f)/(n+
kf). For a two valued problems with f = 1, we get the well-known Laplace’s
law of succession [11] (N + 1)/(N +2).

Table 1 summarizes the average errors and the average error ratios relative to
No-matches-PC (the No-match approach with the numerator factor set to P(C'))
for all the datasets. We can see that frequency counts is the worst performer,
and Laplace’s law of succession as second worst. No-matches-PC'is somewhere
in the middle. Very small settings for no-matches, such as 0.01/m and similar

! The description file says that “The ’-’ values are actually ’not-applicable’ values
rather than ’'missing-values’ (and so can be treated as legal discrete values rather
than as showing the absence of a discrete value)” yet there are no dashes in the file.
In addition, we tested C4.5 on the original and new encoding of the anneal dataset.
Under the original encoding, the 10-fold cross-validation error was 8.23% and under
the encoding with dashes, it decreased to 1.22%.



Approach Average error ratio Average error
relative to No-matches-PC
Laplace-m 0.96 18.58
No-matches-0.01 0.97 18.51
Laplace-0.01 0.98 18.70
No-matches-PC 1.00 18.62
No-matches-0.1 1.00 18.64
No-matches-0.5 1.02 18.76
Laplace-0.1 1.02 18.83
Laplace-1 (law of succession) 1.11 19.59
No-matches-0 (frequency counts) 1.17 20.16

Table 1. Comparison of different methods for estimating probabilities. No-match-f
denotes replacing zeroes with the given factor f over the number of instances. Laplace-f
denotes adding f to the numerator and f times the number of possible values to the
denominator. Laplace-m denotes adding a factor 1/m for m instances.

corrections for Laplace seem to perform best. Laplace-m sets the adjustment to
be 1/m, making it smaller as the file size grows.

Figure 2 shows the errors and error ratios for three of the variants and for
datasets that had significant differences. We can see that frequency counts (No-
matches-0) performs generally worse than No-matches-PC, except on the cars
and mushroom datasets where it performs significantly better. Laplace—m seems
to take the best of both worlds. It tracks No-matches-PC on most datasets, ex-
cept cars and mushroom where it tracks No-matches-0 well. The error differences
can be explained by two distinct and opposite effects. We begin with an expla-
nation of why frequency counts performs poorly sometimes.

When the conditional probability is set to zero based on frequency counts,
it is possible to rule out a class because of a single attribute value; moreover,
sometimes all classes are ruled out! An opposite effect happens when the prob-
abilities are biased too far away from zero as with Laplace’s law of succession.
In those cases, a single strong predictor can be weakened too much. Correcting
zero counts hurt performance on the cars and mushroom datasets because these
datasets rely on a single strong predictor being able to override many weaker
predictors for other classes.

Both methods for correcting frequency counts seem to work best when very
small correction values are used, which to our knowledge has not been previously
reported.

If, in addition to unknown handling and zero counts, we also discretize the
data using entropy minimization [6], the average absolute error for all datasets
decreases from 18.58% to 18.13% with an average relative error ratio of 0.94.

2.5 Limitations of the SBC

While the SBC shows good performance on many of the datasets from UCI, it
is still a very limited classifier. It is a “global” classifier and cannot make lo-
cal predictions as nearest-neighbors or decision trees can. Therefore, the simple
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Fig. 2. Comparison of three probability estimation methods. The baseline chosen was
No-matches-PC. Absolute errors and relative error ratios are shown with respect to
this baseline. The left axis shows the scale for the bars (absolute error differences);
bars above zero show worse performance than No-matches-PC. The right axis shows
the scale for the pluses and asterisks (relative error ratios); symbols above one show
worse performance.

Bayesian inducer cannot be consistent in the statistical sense without additional
strong assumptions (an inducer is consistent if the classifiers it produces ap-
proach the Bayes optimal error as the dataset size grows to infinity). Proofs
have been given for decision tree inducers [12] and for nearest-neighbor inducers
[8] under mild assumptions.

In the bias-variance decomposition of error [15, 10], the error is the sum of
two terms: the squared bias and the variance. The bias measures how well the
induced classifiers fit the data (low values are good), and the variance measures
the stability (low values indicate stability).

The SBC usually has low variance as perturbations of the training sets will
rarely cause large changes in its predictions, which are based on probabilities.
Contrast this with decision tree inducers that are unstable [2, 1] because if two
attributes are ranked very closely at the root of a subtree, their order might
change when the training set is perturbed, and cause the whole subtree to differ.
However, the SBC usually has high bias because of its inability to locally fit the
data.

Figure 3 shows the bias-variance decomposition as described by Kohavi and
Wolpert for the large datasets and two inducers: simple-Bayesian and MC4 (a
decision tree inducer in MLC++).? The evaluation set sampling (used to compute
the bias and variance) was 30%. The internal sample process to generate training
sets was half of the remaining 70% (so training sets were 35% of the original
dataset); ten such samples were generated. For datasets with fewer than 3000
instances, the whole process was repeated ten times and averaged (for a total of
100 runs).

The figure shows that the performance of SBC is generally inferior for all large

2 The bias-variance decomposition algorithm in MLC++ requires support routines
that are unavailable in C4.5, which is why we used MC4 here.
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Fig. 3. Bias-variance decomposition for the larger datasets for SBC and MC4, the
MULC++ decision tree inducer, which is similar to C4.5. The lower bar denotes bias,
the upper bar denotes variance, and the sum indicates the total error. The left axis
shows the error for the bars (lower is better). The right axis shows the ratio of MC4
to SBC (lower than one indicates MC4 is better).

datasets (except for DNA which is much better). Looking at the decomposed
terms, the variance of the the simple Bayesian inducer is always lower (except
for chess and hypothyroid). Since more data cannot change the bias of the simple
Bayesian model, we can conclude that error will not decrease much as the dataset
size grows.

3 Comparison with Other Classifiers

In the previous sections we proposed solutions for some of the decisions required
for the SBC. We reduced the overall error from 20.30% for the basic SBC to
18.13%, which is a relative improvement of 10.7%. Table 2 shows the dataset
characteristics and absolute errors for C4.5, C4.5-rules [21], and our SBC.

The average error for C4.5 is 17.85%, for C4.5-rules it is 17.90%, and for
SBC it is 18.19%. If we ignore the big datasets (datasets DNA through adult in
the table), C4.5’s error is 20.83%, C4.5-rules’s error is 20.93%, and SBC’s error
is 20.10%. The simple-Bayesian inducer and C4.5 are very fast inducers, never
taking more than a few minutes. C4.5-rules took over 4.5 hours to build a ruleset
for the adult dataset.

The SBC is a good fast algorithm. Its accuracy is very good on small datasets
but it may asymptote to a high error rate, making it less useful as a classifier
for very large databases.

4 Related Work

The SBC model is very simple and its explanatory power was previously noted
by Kononenko [17], who wrote that “Physicians found such explanations [using
conditional probabilities] as natural and similar to their classification. They also
summed up evidence for/against a diagnosis.”



Dataset Train/ Data | No of C4.5 C4.5-rules SBC
test set attr error error error
size size | cont/

nom

Z0O 91/10-CV 101| 0/16 | 7.054 0.71| 7.55+0.74 | 2.91+ 1.48

echocardiogram | 118/10-CV 131| 6/1 |37.624 1.29|37.93+1.21 | 38.85+ 3.16

lymphography | 133/10-CV 148 | 3/15 |23.424 1.05|22.71+0.99 | 16.10+ 2.98

iris 135/10-CV 150 | 4/0 | 5.20% 0.49| 4.53+0.50| 7.33+ 1.85

hepatitis 140/10-CV 155| 6/13 |20.754+ 1.08 |21.14+1.07 | 15.46+ 2.84

glass2 147/10-CV 163 | 9/0 |20.824 0.96|19.42+0.95 | 19.67+ 2.00

wine 160/10-CV 178 | 13/0 | 7.024+ 0.61| 6.41+0.58 | 1.14+ 0.76

auto 184/10-CV 205 |15/10 | 18.96+ 1.03 | 22.95+1.00 | 25.31+ 3.69

sonar 187/10-CV 208 | 60/0 |27.424 0.92 | 27.28+1.00 | 25.48+ 2.46

glass 193/10-CV 214 | 9/0 |33.174 0.94 | 34.06£0.96 | 29.89+ 2.29

led24 200/3000 3200 | 0/24 |34.33%+ 0.87|35.43+0.87 | 35.90+ 0.88

audiology 203/10-CV 226 | 0/69 |22.354+ 0.84 | 23.68+0.86 | 21.28%+ 2.23

breast (L) 257/10-CV 286 | 0/9 |26.154 0.73|29.29+40.77 | 26.59+ 2.24

cleve 273/10-CV 303 | 6/7 |24.02+ 0.76|20.274+0.81 | 17.12+ 2.32

solar 291/10-CV 323 | 3/9 |29.44+ 0.69|27.614+0.76 | 28.48+ 1.51

waveform-21 300/4700 5000 | 21/0 |29.744 0.67 | 28.57+0.66 | 21.43+ 0.60

primary-tumor | 305/10-CV 339 | 0/17 |57.99+ 0.80 | 59.56+0.83 | 51.35+ 2.84

liver-disorder 310/10-CV 345| 6/0 |34.67+ 0.77|33.454+0.80 | 43.78+ 2.35

ionosphere 316/10-CV 351 | 34/0 |10.79+ 0.57 | 10.2240.55 | 10.28%+ 1.43

horse-colic 331/10-CV 368 | 7/15 |14.76+ 0.57 | 17.07+0.63 | 20.14+ 2.55

cars 353/10-CV 392 7/1 | 2.40+ 0.27| 1.9140.23| 2.04+ 0.63

vote 392/10-CV 435 | 0/16 | 4.97+ 0.31| 4.4240.31| 9.66+ 0.68

soybean (L) 615/10-CV 633 | 0/35 | 8.20+ 0.39| 8.07+0.34| 6.59+ 0.85

crx 621/10-CV 690 | 6/9 |14.55+ 0.37|15.414+0.41|12.90+ 0.79

breast 629/10-CV 699 | 10/0 | 5.25+ 0.24| 4.71£0.25| 3.00% 0.50

pima 691/10-CV 768 | 8/0 |25.31% 0.5125.54+0.52|24.10+ 1.75

vehicle 761/10-CV 846 | 18/0 |27.22+ 0.47|27.154+0.46 | 38.88+ 1.55

anneal /U 808/10-CV 898 | 6/32 | 1.41+ 0.12| 1.474£0.13| 1.454+ 0.44

german 900/10-CV | 1000 7/13 |28.96+ 0.42|29.084+0.47 | 25.90+ 1.80

DNA 2000/1186 | 3186 |0/180| 7.34+ 0.76| 6.91+0.74 | 6.66+ 0.72

segment 2079/10-CV | 2310| 19/0 | 3.304 0.11| 3.98+0.13| 6.88+ 0.52

chess 2130/1066 | 3196 | 0/36 | 0.474 0.21| 1.13+0.32 |12.85+ 1.03

hypothyroid 2847/10-CV | 3163 | 7/18 | 0.73+ 0.05| 0.77+0.06 | 1.42+ 0.29

satimage 4435/2000 | 6435 | 36/0 |14.55%+ 0.79 | 14.80£0.79 | 18.20+ 0.86

mushroom 5416/2708 | 8124| 0/22 | 0.004 0.00| 0.26+0.10| 0.78%+ 0.17

letter 15000/5000 |20000 | 16/0 |12.364 0.47 | 13.44+0.48 | 25.02+ 0.61

adult 32561/16281 | 48842 | 6/8 |14.03% 0.27 | 15.8240.29 | 15.82+ 0.29

Table 2. Characteristics of datasets and a comparison of C4.5, C4.5-rules, and SBC.
The datasets are sorted by training set size. 10-CV indicates 10-fold cross-validation.

The numbers after the error indicate the standard deviation of the mean error. The SBC
model discretizes using entropy, estimates probabilities using Laplace-m, and ignores
unknown values during classification.



Some versions of the SBC, most notably the version described by Cestnik
[3], have used an alternative formulation that is mathematically equivalent, but
requires estimating P(C|A) instead of P(A|C). Comparisons (not reported here)
showed insignificant differences in accuracy between the two methods.

Many researchers have noted the good performance of SBC, including
Clark and Niblett [4], Kononenko [17], Langley and Sage [19], and Domingos
and Pazzani [5]. Proposed extensions generally resulted in little improvements
[16, 18, 22], although some recent proposals seem promising [9, 13].

5 Summary

We studied different options for handling unknowns, estimating probabilities,
and discretizing. Through a large scale comparison of 37 datasets, we were
able to pinpoint interesting datasets where error differences were significant and
explained many of the reasons for different error results. We proposed a new
method for estimating probabilities, Laplace-m, that outperformed the other
methods on the datasets we tested on.

Using the bias-variance decomposition, we showed that while the SBC per-
forms well on small datasets, it will not generally scale very well to larger datasets
because of its strong bias component. We compared the SBC with C4.5 and C4.5-
rules and showed that it is accurate and outperforms both inducers on many of
the smaller datasets from the UCI repository.
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