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ABSTRACT

This paper examines the induction of classification rules from examples
using real-world data. Real-world data is almost always characterized by two
features, which are important for the design of an induction algorithm. Firstly,
there is often noise present, for example, due to imperfect measuring equipment
used to collect the data. Secondly the description language is often incomplete,
such that examples with identical descriptions in the language will not always be
members of the same class.

Many induction systems make the ‘noiseless domain’ assumption that the
examples do not contain errors and the description language is complete, and
consequently constrain their search for rules to those for which no counter-
examples exist in the data used for induction. However, in real-world domains
correlations between attributes and classes in a data set are rarely without excep-
tions. To locate such correlations and induce rules describing them it is also
necessary to consider rules which may not classify all the training examples
correctly.

This paper firstly discusses some of the problems presented by noise and
proposes a top-down induction algorithm for induction in real-world domains.
Secondly, an experimental comparison of this algorithm with other induction
systems is presented using three sets of real-world medical data.
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1. Introduction

Automatic rule induction systems for inducing classification rules have already proved
valuable as tools for assisting in the task of knowledge acquisition for expert systems. In particu-
lar, two families of systems based on the ID3 and AQ algorithms have been especially successful.
ID3 has been successfully applied to the classification of chess endgames (for example [1], [2],
[3]) which were intractable to human experts because of the volume of data, and C4 (an ID3 des-
cendant) to the diagnosis of thyroid diseases [4]. Systems based on the AQ algorithm, such as
AQ11 [5] and GEM [6], have been successful in the fields of soya bean diagnosis ([6], [7]) and
chess [6].

We consider the principle task of a real-world induction system to be assisting the expert in
expressing his or her expertise. Consequently, we require that the induced rules are highly
predictive and are easily comprehensible to the expert. In particular, we wish the induction algo-
rithm to be tolerant of noise, which is almost always present in real-world problems.

Many induction systems make a ‘noiseless domain’ assumption that any genuine regularity
in the data will be perfect (ie. without counter-examples). Consequently, during the search for
useful generalizations, such systems explore only the space of rules which are completely con-
sistent with the training examples. By searching for the most general, consistent rules, these sys-
tems locate regularities which involve large numbers of training examples and hence are statisti-
cally unlikely to be due to chance choice of the training examples. Instead, they reflect genuine
correlations between attributes and classes in the domain and consequently perform well.

However, in most real-world domains major correlations are rarely perfect and instead often
have a few counter-examples in the training data. Such counter-examples arise due to the pres-
ence of noise and an inadequate description language for representing the domain. Searching
only the space of consistent rules does not find such regularities and instead more specific rules
based on only a few training examples tend to be selected. Although these rules perform per-
fectly on the training examples, their predictive accuracy on future test examples is often lower
because rules formed on the basis of small numbers of examples are susceptible to noise. The
small trends they reflect are more likely to be due to chance choice of training set compared with
other rules found reflecting major correlations, but rejected due to the presence of counter-
examples in the data. As a consequence, the rule set is both large and not of the highest predic-
tive power.

For an induction system to induce highly predictive rules in domains containing noise the
search space must be expanded to include rules for which counter-examples exist and the evalua-
tion of rules appropriately modified to enable the most predictive rules to be located. This paper



describes an algorithm in which these changes are implemented. The principle mechanism for
avoiding the selection of rules, which are specific, completely consistent but poorly predicting, is
the use of a statistical significance test. Rules which are found insignificant are deemed likely to
be due to chance choice of the training examples and are, consequently, discarded.

Firstly, the problems presented by noise are discussed and the algorithm CN2 for inducing
production-like rules is described. Secondly, in sections 3 and 4, we present experimental com-
parison of this system’s performance in 3 medical domains with 3 other induction systems.

2. Induction in Noisy Domains

2.1. The Problem of Noise

In any set of training data serving as input to a learning algorithm there may be correlations
between the attributes used to describe examples and the classes into which the examples are
catagorized. The strength of these correlations will vary depending on the numbers of examples
supporting and opposing the observed relationship. Some of these correlations will reflect some
genuine property of the domain in which there is either a causal relationship between the attri-
butes and class (ie. the attributes cause the class or vice versa) or an associative relationship (ie.
the attributes and class are due to the same common cause). Others will be due to chance, caused
by the particular selection of training examples presented to the system, and have no predictive
power. Strong correlations usually involve larger numbers of training examples and are, thus, less
likely to be due to chance as the effects of noise are reduced with increasing sample size.

In an ideal domain with an ideal description language, all regularities which are caused by
genuine correlations between features of the domain will be observed as ‘perfect’ (ie. without
counter-examples). However, in most real-world domains major regularities are rarely perfect
and instead often have a few counter-examples in the training data. Such counter-examples arise
from two causes :

g Errors due to transcription

Whenever an example situation is presented to a learning algorithm it must be described in
some manner. The process of recording and transcribing the attributes of an example is
prone to error from many causes (for example imperfect measuring equipment, mistaken
classification by an expert, typing errors etc.).

g Errors due to an insufficient description language

It is possible that no rule or set of rules, within the space or rules defined by the description
language, can completely and correctly classify all possible situations. This is quite com-
mon in medical domains, for example, where there may be several possible disease cata-
gories for a given set of observations and where further observations (ie. a more complete
description) are not possible for reasons of time or other costs.

If either or both of these features are present, then there is an important implication. This is
that rules induced by an induction system for which there are counter-examples in the training
data cannot be necessarily dismissed as not reflecting genuine correlations between attributes and
classes in the domain, and hence, as having no predictive power. Indeed these rules may be more
predictive than other more specific rules for which there are no counter-examples but are formed
on the basis of fewer training examples, and hence, being more susceptible to noise.



2.2. Coping with Noise

These problems of noise and description language have long been recognized and many of
the successful induction systems include methods designed to reduce their effect. Some of these
methods are now reviewed.

2.2.1. Removal of Erroneous Training Examples

One such technique is to perform induction using only representative training examples, as
selected by the expert or automatically, as was done by the ESEL system [8] for AQ11’s applica-
tion to the task of soya bean diagnosis.

2.2.2. Flexible Rule Application

A second technique is to use a ‘flexible matching’ procedure for applying the induced rules,
whereby their interpretation involves the use of weights and probabilities instead of solely
boolean values, thus exploiting to the maximum information contained in the training data. This
technique also used by AQ11 and is on of the important features of the AQ15 algorithm, see [9],
[10]. Misclassification by an erroneous rule may be overridden by other rules, whose conditions
are nearly met and which have higher weight attached.

2.2.3. Rule Truncation

A third method is, after induction, to remove the rules which represent the weakest correla-
tions found between attributes and classes, thus passing the classification task to other more reli-
able rules. This technique needs to be combined with flexible matching in order to allow exam-
ples which do not satisfy any condition of any rule to still be classified. AQ15 uses this tech-
nique, a truncation procedure being employed to remove the least reliable rules induced by the
system.

2.2.4. The Consideration of Rules for which Counter-examples exist

A fourth method is to alter the rule generation procedure, often involving the relaxing of the
constraint that the induced rules should be completely (or to the maximum extent, if complete-
ness is impossible) consistent with the training data. This allows induction to be halted in regions
of the search space where there is little training data to guide the system and where further search
is as often damaging as beneficial. Such learning algorithms use top-down, hypothesis driven
methods for forming rules, for example PLAGE [11] and CALM [12]. The pruning of decision
trees is also an example of this technique, as is done by Assistant [13] and C4 [14]. Quinlan [15]
presents a detailed empirical study of the effect of tree pruning in noisy domains.

2.2.5. The Use of Domain Knowledge

Additional domain knowledge can be used to reduce problems of description language and
noise. Explanation-based generalization, (for example [16], [17]), constrains generalization to be
performed only where the generalization’s validity can be proved. DISCIPLE [18] uses explana-
tions to guide generalization. AQ15 [9] allows the user to provide background knowledge to
assist in induction.



This paper presents a description and empirical evaluation of a new induction system based
on the 4th of these techniques, involving the relaxing of the requirement of complete consistency
of rules with the training data during their generation. This system, CN2, has been designed with
the aim of inducing short, simple, comprehensible rules in domains where problems of poor
description language and/or noise may be present. Induced rules are in a form similar to produc-
tion rules, with the condition being a conjunct of tests on an example’s attributes and the conclu-
sion being a class prediction. Thus, this paper can be viewed as an investigation of applying a
method similar to tree pruning to the generation of ‘production rule’-like expressions. These
rules are interpreted in a logical manner (not involving weights etc.) in order to maintain their
comprehensibility and keep inference well-defined for their later use.

2.3. The CN2 Algorithm

We now describe CN2, the algorithm proposed in this paper.

Rule Form

CN2 induces rules in a form similar to those generated by the AQ family of induction sys-
tems. A selector relates an attribute to an attribute value or disjunct of values, for example

[ Cloudy = yes ]
[ Weather = wet v stormy ]

[ Temp > 60 ]
Attributes are typed, the type for each attribute being declared by the user. The 3 types used are
binary, set or numeric, corresponding respectively to the 3 selectors above.

A selector or conjunction of selectors forms a complex. In CN2, a complex defines the con-
dition part of a decision rule for identifying a particular class.

A rule set is an ordered list of rules for identifying classes† (there may be zero or more rules
per class). For example, a rule set might be

[ Advice = do_not_use_umbrella ] <= [ Weather = sunny ]
[ Advice = use_umbrella ] <= [ Weather = wet v stormy ] & [ Indoors = no ]
[ Advice = do_not_use_umbrella ] <= [ Indoors = yes ]

Rule Interpretation

To use the rule set to classify new examples, CN2 applies a ‘strict match’ interpretation by
which each rule is tried in order until one is found whose conditions are satisfied by the attributes
of the example to classify. The prediction of this rule is then assigned as the class of that exam-
ple. In this way, the ordering of the rule set is important. The rules could of course be converted
to an order-independent form by adding negated selectors to the condition parts.

In the case of no rules being satisfied, a final ‘default rule’ assigns the class which occurred
most frequently in the training examples to the new example to be classified.

Search Technique

hhhhhhhhhhhhhhhh
† It is also possible for CN2 to induce a rule set for a single class by altering the evaluation function guid-

ing the rule search, for example by replacing CN2’s entropy function (described later) by AQR’s evaluation
function (also described later).



During induction, the rule set is gradually built up by generating the rules one by one. Each
rule is generated using the same following generation technique, though with a different set of
training examples. The training example set provided for generating each new rule represents
those examples not satisfying the conditions of any rule in the rule set generated so far.

ALGORITHM CN2
1. Search for a satisfactory rule
2. IF a satisfactory rule found

THEN gadd it to the end of the rule set so far
gremove from the training set of examples those which

satisfy this rule’s <conditions>
ggo to 1

ELSE stop.

Initially, the rule set is empty.

The system searches for predictive rules by performing a pruned general-to-specific search.
The search is for a complex which is satisfied by a large number of examples of any single class,
and few or none of other classes. The best complex found becomes the condition part of the new
rule and the most common class of examples it covers becomes the class prediction of the rule.

At each stage in the search, a (size-limited) set or star S of ‘best complexes found so far’ is
kept, and specializations of this set examined. Thus the system performs a beam search of the
space. The evaluation functions used to bias and prune this search are discussed after the rule
generation algorithm is described.



RULE GENERATION ALGORITHM
1. Form the set S of all most general complexes, ie. those containing

only one selector.
Set ‘best rule’ to be nil.

2. Evaluate each complex in S. Three types of evaluation are made :
gwhat is its quality?
gis it statistically significant?
gare any specializations of it statistically significant?

For each complex,
gif not significant AND cannot become significant by

specialization, discard it from S
gif significant AND better than ‘best rule’, replace ‘best rule’

with this complex.
3. IF set S is not empty

AND elements of S can be specialized further
THEN specialize each complex in S in all ways possible and goto 2
ELSE stop.

If the rule generation algorithm is provided with an empty set of training examples, it
immediately fails to find a rule.

Specialization of a complex is performed by either extending it with a new conjunctive term
or removing a disjunctive element a selector contains. Each complex can be specialized in
several ways, and all specializations are generated and evaluated. Such general-to-specific search
has a high branching ratio, and in order to constrain the search the star S of ‘best complexes
found so far’ is limited to a user-defined maximum number of elements maxstar. Trimming of the
star is performed after completion of step 2 by removing its lowest ranking elements as evaluated
by an evaluation function.

One implementation of this specialization process is to repeatedly intersect† the set of most
general complexes with itself, and after each intersection remove all self-contradictory and
unchanged elements in the set.

Numeric attributes are dealt with in a similar manner to Assistant, where the range of values
of an attribute is quantized into discrete regions. The complete range of values and size of each
region is provided by the user. Consequently, selectors are of the form

<attribute> <comparator> <region boundary>

where <comparator> is either ‘≥’ or ‘<’. Specialization occurs by shrinking the region covered by
the selector, either by moving the region boundary or adding a second conjunctive selector to
hhhhhhhhhhhhhhhh

† The intersection of set A with set B is formed by making the conjunct of each element of A with each
element of B in turn for all possible pairs, then removing duplicates. for example {aˆb, aˆc, bˆd} intersected
with {a, b, c, d} is {aˆb, aˆbˆc, aˆbˆd, aˆc, aˆcˆd, bˆd, bˆcˆd}. If we now remove unchanged elements in this set
we obtain {aˆbˆc, aˆbˆd, aˆcˆd, bˆcˆd}.



delineate both upper and lower bounds.

Following Quinlan’s discussion of techniques for dealing with unknown attribute values in
[14], we use the simple and effective method of replacing unknown values with the most com-
monly occurring value (or range, in the case of numeric attributes) for that attribute in the training
data.

A Prolog implementation of this algorithm is given in the appendix.

Heuristics

The above algorithm performs three evaluations using two evaluation functions. Firstly is
the function for assessing rule quality, determining if a new complex should replace the ‘best
rule’ so far, and which complexes in the star S should be discarded if its maximum size is
exceeded. To evaluate a complex, the set E of examples which it identifies (ie. which satisfy all
its selectors) is found and the probability distribution P = (p 1,... pn ) of examples in E amongst

classes calculated (where n = number of classes represented in the training data). For example, a
given complex may identify 4 examples of class C 1, 2 of C 2, 1 of C 3 and none of C 4, hence P =

(0.57, 0.29, 0.14, 0). Because the search is for complexes identifying a large number of examples
of any single class and few of other classes, a function f = p max−Σp ( ≠max ) (where p max is the

largest element of P) would be appropriate. However, it was found that using the information-
theoretic measure entropy

E =−Σp log2(p )

proved a better function to use (this function to be minimized). The behaviour of E and f are
roughly comparable. However, entropy will distinguish cases such as P = (0.7, 0.1, 0.1, 0.1) and
P = (0.7, 0.3, 0, 0) in favour of the latter, a desirable feature as there exist more ways of specializ-
ing the latter to a complex identifying only one class (for example if the examples of the majority
class are excluded by specialization, the distributions become P = (0, 0.33, 0.33, 0.33) and P = (0,
1, 0, 0) respectively). In addition, entropy tends to direct the search in the direction of more
significant rules ; empirically, rules of high entropy tend to also have high significance.

The second evaluation function used is to test whether a complex is significant. A complex
identifying only examples of one class is an expression of a regularity found in the training data.
By ‘significant complex’ we refer to one which expresses a regularity unlikely to have occurred
by chance, ie. reflects a genuine correlation between attribute values and classes in the domain.
To assess significance we compare the observed distribution amongst classes of examples satisfy-
ing the complex with the expected distribution under the null hypothesis that the complex is
selecting examples randomly. Some differences in these distributions are to be anticipated owing
to random variation. The question we ask is whether the observed distributions are too great to be
accounted for purely by chance, ie. that selecting examples at random from the training set would
rarely yield the distribution produced by the complex. If so, we consider that the complex is
likely to reflect a genuine correlation between attributes and classes.

To test significance we use the likelihood ratio statistic [19], given by

2
i =1
Σ
n

f i log ( f i /ei )



where the distribution F = ( f 1, . . . ,f n ) is the observed frequency distribution of examples

amongst classes satisfying the complex in question and E = (e 1, . . . ,en ) is the expected fre-

quency distribution of the same number of examples under the null hypothesis that the complex is
selecting examples randomly. This statistic provides an information-theoretic measure of the
(non-commutative) distance between the two distributions (we assume that F is continuous with
respect to E, ie. that the f are zero when the e are zero). If P = (p 1,

. . . ,pn ) is the observed

probability distribution of examples amongst classes satisfying the complex and Q =
(q 1,

. . . ,qn ) is the probability distribution of examples in the whole training set, then this meas-

ure becomes

2N =1Σ
n

p log (p /q )

where N =Σf is the total number of examples satisfying the complex, since e =q N . Under

suitable assumptions it can be shown that this statistic is distributed approximately as 2 with
n −1 degrees of freedom. This measure indicates significance - the lower it is, the more likely it
is that the regularity is due to chance choice of training examples.

In our situation P and Q are found from the observed distributions. We choose a
significance threshold α and compute or look up the corresponding significance level for α with
the number of degrees of freedom available for classification. Rules are rejected as being
insignificant if the likelihood ratio statistic produces a value less than this significance level. In
this case we are judging that selecting the same number of examples at random could have led to
the observed distribution.

Thirdly, a check is made in the algorithm to examine whether specializations of complexes
in the star could (but not necessarily will be) be significant. It does this by considering the proba-
bility distribution P, rather than actually generating such specializations. This check behaves as a
fast look-ahead, and is included purely for efficiency. If there are no significant specializations
possible, this complex can be discarded.

CN2 is implemented in Quintus Prolog and contains about 300 lines of code, taking approx-
imately 5 minutes run-time to induce a rule set in the lymphography domain (see section 3) on a
4 megabyte SUN-3 using a value of maxstar = 15.

2.4. Related Work

We have adopted the technique of a top-down rule generation procedure coupled with
significance thresholding to constrain the specialization process. In noisy domains, top-down
approaches generally work well because the early stages of rule formation spread their depen-
dence on training examples over a large proportion of the training set. Such top-down searches
have been used in other induction systems, such as CALM [12], its derivative SEQUOIA [20],
PLAGE [11] and by King [21]. These systems use different techniques for halting specialization,
based on classificational accuracy on training examples and rule coverage. CALM, for example,
includes a thresholding test for rules identifying positive examples at a rate greater than T µ and

negative examples at a rate lower than T (T µ and T being user-supplied ‘completeness’ and

‘contradiction’ ratios). Similarly, the top-down ID3 algorithm can use such thresholding or
‘pruning’ techniques, such as was done in Assistant [13], C4 [14] and by Niblett and Bratko [22].



CN2 is characterized by its use of entropy to guide rule specialization, and the use of a
significance test to halt specialization. These measures prove to be useful for controlling the
search, and avoid the (sometimes elaborate) manipulation of tunable parameters required of the
user until the algorithm induces well. In addition, tests based on percentage accuracies and cover-
age can miss small but statistically significant features of the domain. Consider a rule identifying
three examples of the same class - the probability that the rule performed this well by chance is
much larger if this class is common than if this class was very rare. Percentage accuracies and
coverages cannot discern between these two cases, whereas a significance test can identify small
but significant trends. Indeed, the authors of both SEQUOIA and CALM note that a 2

significance measure could be used as an alternative method for thresholding (see [20] and [23]).

Generally, simple bottom-up data-driven approaches cope poorly with noise, for example
the AQR system described later. However, more sophisticated data-driven approaches have been
successful, such as AQ11 [5] and AQ15 [9]. These systems use techniques to ensure that reliance
on those examples which produce poor and specific rules is removed through various selection
and pruning methods, reviewed earlier in section 2.2.

3. Experimental Comparison

CN2 was compared with four other algorithms in three medical domains. Firstly, we give a
brief description of the algorithms used for comparison. Secondly, details of the medical domain
are given and evaluation criteria presented.

3.1. Comparative Algorithms

3.1.1. Assistant

Assistant [13] is a descendant of ID3 [24] and CLS [25]. Assistant induces rules in the form
of decision trees. The entropy measure is used to guide the growth of the decision tree, as
described in [1]. In addition, Assistant can apply a tree pruning method based on a technique of
maximal classification precision. This technique detects the node at which additional branching
would cause more errors than if the tree building process was stopped at this particular node. The
effect of tree pruning, as illustrated later in table 1, is that the decision tree is smaller whilst
retaining the same predictive accuracy as the unpruned tree. One of the functions of the tree
pruning mechanism is to reduce problems with noisy data - the pruning mechanism halts growth
of nodes when the training examples used to guide growth become small in number. However,
even in relatively noiseless domains the tree can be pruned without loss of predictive accuracy.

3.1.2. A Bayesian Classifier

In addition, the performance of a simple Bayesian classifier was examined and compared to
the other algorithms. It should be noted that more sophisticated applications of the Bayes rule
also exist in which the attribute tests are ordered [26]. The classifier used represents its ‘decision
rule’ as a matrix of probabilities p (v j | Ck ) of the occurrence of each attribute value given each

class in turn. To classify a new example, Bayes’ theorem

p (C | Λv j )=
k
Σp (Λv j | Ck )p (Ck )

p (Λv j | C )p (C )hhhhhhhhhhhhhhhhh



is applied where the summation is over the n classes and p (C | Λv j ) denotes the probability that

the example is of class C given its attributes v j (we denote the conjunct of the example’s attri-

butes by Λv j ). This probability is calculated for every class and the predicted class is then

chosen as that of highest probability. p (Ck ) is estimated from the distribution of examples

amongst classes in the training examples. If independence of attributes is assumed, p (Λv j | Ck )
can be calculated using the probability matrix.

3.1.3. AQR

AQR is an induction system using the basic AQ algorithm to generate classification rules.
The AQ algorithm is used in a variety of ways by many systems, for example AQ11 [5] and GEM
[6]. Many such systems use this algorithm in a more sophisticated manner than AQR to improve
predictive accuracy and rule simplicity (for example AQ11 uses a more complex rule interpreta-
tion method involving degrees of confirmation), hence AQR represents a relatively simple AQ-
based system. The AQ rule generation algorithm is described well in the literature (for example
[3], [7], [8]) and only a brief overview will be presented here for comparison with CN2. Unlike
CN2, AQR generates a decision rule for each class in turn. Having chosen a class to generate a
rule for, a disjunct of complexes (‘cover’) forming the condition of the rule is generated in stages,
each stage generating a single complex. After generating a complex, the examples covered by it
are removed from the training set and another complex sought for. Complexes are generated until
all the examples of the class are covered.

The search for a complex proceeds as follows. First, an example of the class to generate a
rule for is chosen (the ‘seed’). Next, an example of a different class (a ‘negative example’) is
chosen, and the most general complexes satisfied by the seed but not by the negative example are
generated. This set (or ‘partial star’) of complexes is then repeatedly specialized to exclude more
and more negative examples whilst covering as many positive examples as possible, until all the
negative examples are excluded. The best complex is then chosen and returned from the genera-
tion algorithm. To make the search tractable, the size of the partial star is limited to a (user-
defined) maximum called maxstar, the worst elements being discarded should this be exceeded.

3.1.4. The Default Rule

In addition, the performance of a default rule was tested, which simply assigned the most
commonly occurring class in the training data to all new examples to be classified, independent
of their attributes.

3.2. Test Domains

The above algorithms were tested on three sets of medical data from the domains lymphog-
raphy, prognosis of breast cancer recurrence and location of primary tumor. The data was
obtained from the Institute of Oncology of the University Medical Center in Ljubljana, Yugosla-
via [13]. This data is identical to that used to test AQ15 in [9] and [10], and are now described.



3.2.1. Lymphography

Examples in this data set used 18 attributes, with four possible final diagnostic classes. 148
examples were available. The data was consistent, ie. examples of any two classes were always
different. All the tested algorithms produced fairly simple and accurate rules. Unlike the other
two domains, this data set was not submitted to a detailed checking after it was originally com-
piled by the medical center, and thus may contain errors in attribute values.

3.2.2. Prognosis of Breast Cancer Recurrence

For about 30% of patients that undergo a breast cancer operation, the illness reappears after
five years - thus prognosis of recurrence is important. This domain contained 9 attributes with
two possible classes of ‘no recurrence’ and ‘recurrence’. Data for 286 patients were known (201
who did not have recurrence after five years, 85 who did). This data was verified after collecting,
and thus is likely to be relatively error-free. The set of attributes was found to be relatively
incomplete, ie. not sufficient to induce high quality rules.

3.2.3. Location of Primary Tumor

Physicians distinguish among 22 possible locations of primary tumor, thus there were 22
classes in this domain. 17 attributes were used describe the patients’ diagnostic data. The data
was inconsistent, ie. examples of different classes existed with identical attribute values. This
data was verified after collecting, and thus is likely to be relatively error-free. The set of attri-
butes was found to be relatively incomplete, ie. not sufficient to induce high quality rules.

3.3. Evaluation Criteria

Ultimately, the evaluation of the performance of these systems as producing meaningful
rules must be done by an expert in the application domain. However, it is difficult to quantify
such an assessment. It has been shown on several occasions (for example [4], [9], [14]), that the
more quantifiable measures of classificational accuracy and rule simplicity are good general indi-
cators of a rule’s use to an expert. This empirical result is not surprising as we expect an expert to
be able to classify examples himself or herself accurately also. We use these two measures to
evaluate the induction systems described, thus also making this assumption that they are good
indicators of a rule’s utility. Direct examination of the produced rules by an expert has not yet
been carried out.

It should be also noted that there are other methods of assessment. One is to measure how
noise resistant the rules are, by introducing small variations to the training data and examining
the stability of the complexes. In addition, the performance of the algorithms in terms of com-
puter time and memory required to generate and apply their rules can be measured. These proper-
ties are not reviewed here, apart from making the observation that the systems were all able to
induce rule sets in the domains tested in an ‘acceptable’ time (less than 30 minutes run-time on a
SUN-3). O’Rorke [3] and Jackson [27] provide detailed comparisons of time and memory
requirements of ID3 and AQ11P in generating rules from examples using large chess endgame
databases.



3.3.1. Classificational Accuracy

Classificational accuracy is assessed by presenting the algorithms with examples not used at
induction time for inducing the rules, and measuring the percentage of times that the example’s
class is correctly predicted by the system. Cross-algorithm comparisons of rule complexity are
difficult, due to the large differences in rule languages used by the systems and the degree of sub-
jectivity involved in assessment of a rule’s complexity. For Assistant’s decision trees we meas-
ure complexity by the number of nodes (including leaves) in the tree. For CN2 and AQR we
measure complexity by the number of selectors in the final rule set. These measures reveal the
gross features of the induced decision rules. More detailed measures of rule complexity have been
done by O’Rorke [3] but are not used here.

3.3.2. Rule Complexity

Assessment of the complexity of a Bayesian rule is more difficult. One measure would be
to count the number of elements in the p (V j | Ck ) matrix. However, such a measure is indepen-

dent of the training examples and also does not take into account features of the matrix which
may make it more comprehensible (for example a few elements may be very large, the rest
small). In addition, the complexity of applying the rule is not taken into account. Due to these
difficulties and the subjectivity involved, we do not give a firm estimate of the complexity of
Bayes rules but only provide the size of the matrix as a rough guide.

A complexity of 1 is assigned to the default rule as it is equivalent to a decision tree with a
single leaf node.

3.3.3. Combining Accuracy and Complexity

We do not attempt to combine measures of accuracy and complexity, for example using a
function f =(accuracy − α complexity ), as such a combining function is dependent on the pur-
pose for which the rules are to be used. For example, a 1% fall in predictive accuracy may or may
not justify a 10% decrease in rule complexity, depending on the application.

4. Results and Discussion

The five algorithms were tested on each of the domains. Assistant was tested with and
without tree-pruning applied and CN2 tested at three levels of significance threshold. The results
of testing were averaged over five trials for each algorithm in each domain. They are shown in
table 1. In each test the training examples were selected at random from the entire data set, and
the remaining used for testing. The algorithms were all then run and their rules tested using the
same training and testing examples for each algorithm. In each case 70% of the total data was
used as training examples and the remaining 30% for testing.

From these results some interesting observations can be made. Most importantly, the algo-
rithms designed to reduce problems caused by noisy data (tree pruning Assistant and CN2)
achieve a lower rule complexity without damaging their predictive accuracy. In the lymphogra-
phy domain, for example, CN2 was able to achieve the same classificational accuracy as the
hhhhhhhhhhhhhhhh

† Complexity not supplied for Bayes classifier, as discussed earlier. The size of the probability matrix for
lymphography was 240 elements, for breast cancer 540 elements and for primary tumor 465 elements.

† AQR tries to attain 100% accuracy on the training data as far as is possible, but is unable to achieve this



Table 1. Measurements of rule accuracy and complexity of the tested algorithms
(cmpxs = number of complexes, sels = number of selectors per complex).

Domain Algorithm Accuracy Complexity

Default rule 56% 1 (always choose most common class)
Assistant :

(no pruning) 79% 41 (41 nodes, inc. 24 leaves)
(pruning) 78% 36 (36 nodes, inc. 21 leaves)

Bayes 83% †
Lymphography AQR 76% 76 (20 cmpxs, av. 3.8 sels)

CN2 :
(90% threshold) 78% 24 (18 cmpxs, av. 1.3 sels)
(95% threshold) 81% 22 (15 cmpxs, av. 1.5 sels)
(99% threshold) 82% 12 (8 cmpxs, av. 1.6 sels)

Default rule 71% 1 (always choose most common class)
Assistant :

(no pruning) 62% 112 (112 nodes, inc. 59 leaves)
(pruning) 68% 44 (44 nodes, inc. 24 leaves)

Bayes 65% †
Breast AQR 72% 208 (47 cmpxs, av. 4.4 sels)
Cancer CN2 :

(90% threshold) 70% 28 (12 cmpxs, av. 2.5 sels)
(95% threshold) 70% 20 (8 cmpxs, av. 2.2 sels)
(99% threshold) 71% 4 (3 cmpxs, av. 1.3 sels)

Default rule 26% 1 (always choose most common class)
Assistant :

(no pruning) 40% 178 (178 nodes, inc. 93 leaves)
(pruning) 42% 52 (52 nodes, inc. 27 leaves)

Bayes 39% †
Primary AQR 35% 562 (105 cmpxs, av. 5.4 sels)
Tumour CN2 :

(90% threshold) 37% 33 (8 cmpxs, av. 3.6 sels)
(95% threshold) 36% 42 (10 cmpxs, av. 4.3 sels)
(99% threshold) 36% 19 (5 cmpxs, av. 3.4 sels)

Table 2. Accuracy of the different algorithms on training and testing data.

Accuracy Of Accuracy Of
Domain Algorithm Decision Rules On Decision Rules On

Training Data Testing Data

Default rule 54% 56%
Assistant (no pruning) 100% 79%

Assistant (pruning) 98% 78%
Bayes 89% 83%



Lymphography AQR 100% 76%
CN2 (90% threshold) 100% 78%
CN2 (95% threshold) 99% 81%
CN2 (99% threshold) 91% 82%

Default rule 70% 71%
Assistant (no pruning) 92% 62%

Assistant (pruning) 85% 68%
Breast Bayes 70% 65%
Cancer AQR 100% 72%

CN2 (90% threshold) 76% 70%
CN2 (95% threshold) 74% 70%
CN2 (99% threshold) 72% 71%

Default rule 23% 26%
Assistant (no pruning) 73% 40%

Assistant (pruning) 53% 42%
Primary Bayes 48% 39%
Tumour AQR 75%† 35%

CN2 (90% threshold) 40% 37%
CN2 (95% threshold) 45% 36%
CN2 (99% threshold) 37% 36%

other algorithms by inducing on average only 8 short rules at the highest threshold value tested.

It is perhaps surprising that different methods of halting the rule specialization process,
besides having the desirable effect of reducing rule complexity, do not greatly affect predictive
accuracy. This effect has been reported in a number of papers, (for example [9], [10], [13], [22]).
Indeed it perhaps may be the case that any technique will have this effect, providing a certain
maximum level of pruning is not exceeded. If this is the case then an algorithm should be pre-
ferred if it most closely estimates this maximum level.

Secondly, in our experiments in the breast cancer domain none of the algorithms were able
to induce rule sets which classified more accurately than the default rule ("always choose the
most common class in the training data"). Indeed, there seems to be little if any observable corre-
lation between attribute values and final class. This is reflected in CN2’s inability to locate
significant complexes during induction. As the threshold on CN2 is increased, the significance
test for assessing a rule’s performance becomes more strict - at a cutoff of 99% CN2 was virtually
unable to find any significant rules in this domain at all (on average four complexes containing
1.3 selectors in each). This contrasts with CN2’s performance in the two other domains at the
same threshold level, where a greater number of rules were located. Thus significance threshold-
ing has the desirable effect that if there are few or no correlations in the data, it will induce few or
no rules to supplement the default rule of chosing the most common class, rather than induce
regardless of the correlations in the data.

Thirdly, in the primary tumour domain Assistant’s decision trees perform slightly better
than the rules induced in an production rule form by AQR and CN2. This result was also found in
our earlier tests with these algorithms, and is shown in the results presented here. This third



domain has a large number of different classes (21 populated classes) unlike the lymphography
and breast cancer domains (4 and 2 classes respectively), which could perhaps be responsible for
this effect.

Fourthly, it should be noted that the Bayesian classifier tested also produced accurately clas-
sifying decision rules and that the superiority in terms of classificational accuracy of other induc-
tion algorithms over the Bayesian classifier was not demonstrated in our tests. As stated earlier,
the classifier tested used a relatively simple application technique of the Bayes rule - more com-
plex statistical classifiers could well perform even better.

Both tree pruning Assistant and CN2 apply a similar technique to reducing rule complexity,
namely sometimes halting specialization of branches/rules before they classify training examples
perfectly. Thus CN2 can be partly viewed as applying a kind of ‘tree pruning’ technique to deci-
sion rules expressed in terms of complexes rather than trees. By performing such pruning these
‘noisy’ algorithms are applying the principle that a sacrifice of classificational accuracy on the
training data may achieve increased rule simplicity whilst not damaging the predictive accuracy
on new test data. This can be seen in table 2. The performance of the pruned assistant trees on the
training data compared with that of the unpruned trees is lower, as is that of CN2 compared with
AQR. However, as was shown in table 1, the predictive accuracy of the rules was not impaired
whilst their complexity reduced.

Table 3. Degree of generalization achieved per complex, measured as the average
number of training examples covered per complex in the final rule set.

Domain Algorithm Coverage of Number Coverage
rule set of cmpxs per cmpx

(no. of exs) (no. of exs)

AQR 102 20 5.1
Lymphography CN2 (90% threshold) 97 18 5.4

CN2 (95% threshold) 86 15 5.7
CN2 (99% threshold) 73 8 9.1

AQR 197 47 4.2
Breast CN2 (90% threshold) 75 12 6.3
Cancer CN2 (95% threshold) 63 8 7.9

CN2 (99% threshold) 24 3 12.0

AQR 204 105 1.9
Primary CN2 (90% threshold) 73 8 9.1
Tumour CN2 (95% threshold) 95 10 9.5

CN2 (99% threshold) 51 5 10.2

The generality of induced rules was also investigated. In table 3 the number of examples
covered per complex in the final rule set is shown. As the significance threshold for CN2 is
increased, the generality of the rules becomes greater as they cover more examples each. By a
complex using more examples to assess its performance, its apparent accuracy on training data is
more likely to reflect its genuine accuracy on new testing data. This desirable feature is



counteracted by the increasing rarity of such general, accurate rules in the space as the generality
of complexes is increased. The resultant rule set at high significance threshold contains a smaller
number of more general rules, which may classify the training examples well but not 100%
correctly.

AQ15 similarly achieved large reduction in rule complexity without damage to predictive
accuracy, compared with complete rule sets generated by the AQ algorithm. However, the
methods by which AQ15 and CN2 achieve these results differ. AQ15 first uses an advanced form
of the AQ algorithm to generate a rule set. Secondly, a method of knowledge reduction is applied
which truncates ordered covers and uses them to classify new examples by a technique of flexible
matching, based on an assessment of the degree of similarity between the example and the condi-
tion part of rules. CN2 uses a different rule generation procedure and may halt specialization of
candidate rules in regions of the search space where there are few examples (where further spe-
cialization is considered insignificant as described in section 2). These rules are applied to new
examples using a ‘strict match’, examining whether the rule’s conditions are satisfied or not by
new examples. AQ15’s method of cover truncation and CN2’s halting of rule specialization can
be viewed as applying techniques of ‘post-pruning’ and ‘pre-pruning’ respectively, in order to
avoid specific poorly-classifying rules being included in the final rule set.

5. Conclusion and Future Issues

This paper has demonstrated that a relatively simple rule induction algorithm is able to
achieve a large reduction in rule complexity without damaging classificational accuracy as com-
pared with the other algorithms tested. Especially important is that this result was found in both
relatively noiseless and noisy domains. Secondly, the induced rules are in a relatively simple
form, similar to the the standard production rule framework used in many expert systems. Both
these features are important requirements for practical applications of such an induction system.
It should be noted that the rules induced by CN2 may not cover the entire space of examples (ie.
there may exist examples for which no rule has its condition part satisfied). This is a feature also
common to many AQ-based induction systems, but not to many ID3-based systems where the
decision tree will classify all new examples.

Another important result is that the method of significance testing using the likelihood ratio
test proved an effective mechanism for controlling search and avoiding regions of the space
where examples were sparse.

Currently CN2 requires that an arbitrary confidence parameter is supplied by the user. One
direction for future work would be to investigate methods whereby such a parameter can be
chosen automatically by the system.

CN2, like tree pruning Assistant, may halt specialization of rules before they classify the
training examples perfectly during rule generation. An alternative approach would be to allow the
specialization process to continue until the rules did classify perfectly, and then apply a post-
pruning technique to either generalize the rules again or reject them completely. CN2 makes an
estimate of the utility of attempting rule specialization (using the significance test as described in
section 2). Post-pruning techniques actually perform such specialization and then having done so
can evaluate the performance exactly. Post-pruning techniques have been used in AQ15 as men-
tioned earlier, on ID3 trees [22] and may also be applicable to the CN2 rule generation procedure.
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19. Kalbfleish J. (1979) Probability and Statistical Inference II, New York: Springer-Verlag.

20. Haiech J., Quinqueton J., Sallantin J. (1986) Concept formation from sequential data
Proceedings of EWSL 1986 Orsay: Université de Paris-Sud.
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