The Bivariate Marginal Distribution Algorithm

=

Martin Pelikan', Heinz Muehlenbein?

! Dept. of Mathematics, Slovak Technical University,
81237 Bratislava, Slovakia, email: pelikan@svf.stuba.sk
2GMD Forschungszentrum Informationstechnik,
D-53754 Sankt Augustin, Germany, email: muehlenbein@qgmd.de

Keywords: evolutionary algorithm, marginal distribution, dependency
graph, decomposable problems

Abstract

The paper deals with the Bivariate Marginal Distribution Algorithm (BMDA).
BMDA is an extension of the Univariate Marginal Distribution Algorithm
(UMDA). Tt uses the pair gene dependencies in order to improve algorithms
that use simple univariate marginal distributions. BMDA is a special case of
the Factorization Distribution Algorithm, but without any problem specific
knowledge in the initial stage. The dependencies are being discovered during
the optimization process itself. In this paper BMDA is described in detail.
BMDA is compared to different algorithms including the simple genetic algo-
rithm with different crossover methods and UMDA. For some fitness functions
the relation between problem size and the number of fitness evaluations until
convergence is shown.

1. Introduction

Genetic algorithms work with populations of strings of fixed length. In this pa-
per binary strings will be considered. From current population better strings
are selected at the expense of worse ones. New strings are generated using the
recombination/crossover operator and mutation. The recombination operator
combines the information contained in two strings. Mutation performs a small
perturbation to these strings in order to keep the population diverse and to
introduce new information. The theory behind these operators is based on the
schema theorem [1]. It is known that the operators often cause the disrup-
tion of schemata of large defining length. This may cause bad performance of
genetic algorithms on problems where these schemata are needed to obtain
the optimum. This has lead to new approaches for doing recombination. The
first line of research uses different reordering methods and other methods that
decrease the defining length of important schemata. In these methods, the val-
ues of bits on different positions are not the only thing that is optimized as

Iñaki Inza
Nota
Es un artículo metodológico, no de aplicación. Si os ha gustado el tema de los EDAs, este trabajo presenta la ampliación y extensión del UMDA visto en clase (y que tiene LiO implementado donde indica EDAs). La extensión-"mejora" consiste en ir más allá de la asunción que hace UMDA de que las variables del problema son independientes entre sí, y trata de modelar relaciones entre pares de variables para tratar de mejorar el proceso de optimización.

2

it was with classical genetic algorithm. The order of bits and other features
are optimized as well. The methods work quite well for decomposable prob-
lems although they require some prior knowledge about the problem and they
are usually very memory and time consuming. This direction has lead to the
GEMGA (Gene Expression Messy Genetic Algorithm) [2].

The second line of research is based on the estimation of probability distribu-
tion. The simplest way is to estimate the distribution using univariate marginal
frequencies in the set of selected parents. This is what UMDA (Univariate
Marginal Distribution Algorithm) [3] is based on. This algorithm works per-
fect for linear problems as is shown in [3]. But it also works very well for
problems that don’t contain significant dependencies. Performance of UMDA
can be estimated with the use of the variance decomposition [3]. In general,
the greater the rate of additive variance to the sum of higher order variances,
the better UMDA performs.

For problems with dependencies among different genes this approach is not
sufficient. The theory of UMDA has been extended to problems where the
probability model is known. In FDA (Factorization Distribution Algorithm) it
is assumed that the probability can be written as some product of marginal fre-
quencies [4]. This is an ideal schema algorithm, because no important schemata
can be disrupted. A more pragmatic way to extend UMDA is to use bivariate
marginal distributions.

In the MIMIC algorithm [5] the distribution is assumed to be a simple chain-
like product. All bits are ordered into a chain using a simple greedy algorithm
first taking as input the univariate and bivariate marginal frequencies in the
set of selected parents. For each new individual, the first bit is generated us-
ing its univariate marginal frequency. All other bits are generated using the
conditional probability given the previous bit. Another approach, presented
in [6], uses a tree structure for the probability model. The tree is constructed
to maximize the sum of the so-called mutual information of genes that are
connected. The value for the bit corresponding to the root of this tree is gen-
erated using its univariate frequency. The remaining bits are generated using
conditional probability given the value of their parent in the dependency tree.
Both univariate and bivariate frequencies are calculated incrementally. In our
approach we combine these two methods. The mutual information dependency
measure is replaced by Pearson’s chi-square statistics, in order to be able to
identify pairs that are independent with a certain probability. These pairs are
mapped into a dependency graph. The algorithm will be precisely described
in the next sections. Even though the algorithm and all terms are defined for
chromosomes defined as binary strings of fixed length, these can be easily re-
formulated for any finite alphabet. The first position in a string is referred as
the Oth position in this paper. This makes the equations simpler.

2. Marginal Frequencies and Pearson’s statistics

Let us denote the length of chromosome as n. Let P be a set of binary strings
of length n (the population). The size of P will be denoted as N. For each
position i € {0,...,n— 1} and each possible value on this position z; € {0,1},
we define the univariate marginal frequency p;(z;) for set P as the frequency
of strings that have x; on ith position in set P. Similarly, for any two positions
i #j €{0,...,n—1} and any possible values on these positions z;,z; € {0,1},
we define the bivariate marginal frequency p; j(z;, z;) for set P as the frequency
of strings that have z; and z; on positions ¢ and j, respectively. Sometimes the
term of probability will be used instead of frequency. With the use of univariate
and bivariate marginal frequencies, the conditional probability of appearance
of the value z; on ith position having given the value z; on jth position can
be calculated as ()
_ Pij\Zi,
pz,]($1|$1) p](fb']) (1)

Pearson’s chi-square statistics [7] is defined by

bserved — expected)?
x2=30 2
Z expected @)

Here, for each pair of positions, the observed quantity is the number of possible
pairs of values on these positions. If these two positions were independent,
the number for each of these pairs of values could be easily calculated using
the basic probability theory. This is the expected quantity. Then, in terms of
univariate and bivariate frequencies and the total number of points taken into
account, for positions i # j, we get [7]

2

Xizj _ Z (Npi,j(@i, z;) — Npi(zi)p;(z;)) 3)
i Npi(zi)p;(z;)

If positions ¢ and j are independent for 95%, then for Pearson’s chi-square

statistics following inequality holds [7]

X7, <3.84 (4)

3. The Construction of a Dependency Graph

In this section the construction of a dependency graph will be described. The
graph will be defined by three sets, V, E, and R, i.e. G = (V,E,R). V is
the set of vertices, £ C V x V is the set of edges and R is a set containing
one vertex from each of the connected components of G. In a dependency
graph each node corresponds to a position in a string. There is one to one
correspondence between the vertices and positions in a string. Thus, we can
use the set of vertices V = {0,...,n — 1}, where vertex i corresponds to the

4

ith position. As it will be clear from the construction of a dependency graph,
the graph does not have be connected. That means that it does not have to
form a tree. The dependency graph is always acyclic. It can be seen as the set
of trees that are not mutually connected. The generation of new strings does
not depend on the number of connected components of the dependency graph.
When talking about frequencies in this section, we always mean the set which
is used for creation of a dependency graph. In the description of the algorithm
it is always said which one is meant.

Let us denote A the set of vertices that have not been processed yet. At the
start of the algorithm A is set to V. Then, successively, as edges are being
added into E, A gets smaller. The algorithm ends up with A equal to an
empty set what means that all vertices have been processed. Another set is
denoted D. It is the set of all pairs from V' x V that are not independent for
95% (see Equations 3 and 4), i.e.

D={(,j)li#j€f0,....n—1} A X2, > 3.84} (5)

Then, the algorithm for the construction of a dependency tree is defined as
follows

Algorithm for the Construction of a Dependency Graph

1. set V «{0,...,n —1}
set AV
set £+ 0

2. v + any vertex from A

add v into R

remove v from A

if there are no more vertices in set A, finish

5. if in D there are no more dependencies of any v and v where v € A and
v €V \ A, goto?2

6. set v to the vertex from A that maximizes Xav, over all v € A and
vV eV\A

7. add edge (v,v") into the set of edges E

8. goto3

- w

The basic idea of the algorithm is very simple. It is similar to the well-known
algorithm for obtaining the largest spanning tree. First, an arbitrary vertex is
added to the graph. Then, the vertex with the greatest dependency with some
of previously added vertices and the edge corresponding to this dependency
are added to the graph. The last step is repeated until there is no dependency
between already added vertices and the rest. If this is the case, an arbitrary
vertex is added into graph and the process repeats. The whole process repeats
until all vertices are added into the graph. The effect is that an acyclic graph
with a maximal sum of chi-square statistics values over the connected vertices
is constructed. Resulting graph does not have to be connected, as it was already
mentioned above. As the first vertex from each component (that is successively

5

created by adding vertices according to the dependencies) is added into the
graph, it is added also into the set R (i.e., to the set of special vertices, one
for each component of the resulting graph).

Since the set A is initialized to a finite set of vertices and in each cycle at least
one vertex is removed from it, the algorithm does always finish and therefore
it is well-defined. The time complexity of the described algorithm is O(n?).

4. Generation of New Individuals

To generate new individuals, a previously described dependency graph G =
(V,E,R) is used. For each individual the values for positions contained in
R are generated by the univariate marginal frequencies. Then, if there exist
a position v that is yet not generated and it is connected to some already
generated position v’ (according to the set of edges E), it is generated using
the conditional probability (see Equation 1) for a position v having given the
value on a position v'. The last step is repeated until values for all positions
are generated.

In the following description of the algorithm for the generation of a new indi-
vidual, one important set, among sets defining graph G, appears. It is denoted
as K and it stands for the set of all positions that have been already generated.
The individual is a string of length n and will be denoted by x. Its ith bit will
be denoted as z;.

Algorithm for the Generation of a New Individual

1. set K« V

2. generate x, for all r € R using univariate frequencies, i.e. set it to the

value a with probability p,(a)

set K+~ K\R

if K is already empty, finish

4. choose k from K such that there exist k' from V \ K connected to k in
the graph G

5. generate xj using conditional probability having given value for zy, i.e.
set it to value a with probability pg i (alzr)

6. remove k from the set K

7. goto4

w

The set K is initialized as a finite set and in each cycle one vertex is removed
from it. For each connected component, at least one vertex is generated first.
The algorithm is therefore well-defined. The generation of one individual can
be done in O(n) steps. The generation of different individuals is independent.
The algorithm for generation of new individuals is therefore well suited for
parallelization.

6
5. Bivariate Marginal Distribution Algorithm

Having defined the algorithms for the construction of a dependency graph
and the generation of new individuals, the bivariate marginal distribution al-
gorithm (BMDA) can be described. In BMDA, the population is randomly
generated first. From this population, the better individuals are selected. Uni-
variate and bivariate marginal frequencies for these individuals are then cal-
culated. Using these frequencies, a dependency graph is constructed as it is
described in Section 3. Having given the dependency graph, new individuals
are generated as described in Section 4. New individuals are then added into
the old population from which the individuals were originally selected. They
replace some of the old ones, usually the worst of them, so that the number
of individuals in the population remains constant. From the new population,
individuals are selected again. The process, starting off with the selection of
better individuals and ending with adding the new individuals into the old
population, repeats until the termination criteria are met. The termination
criteria can cause the algorithm to stop if it has already found the optimum or
the diversity of population is too low. The value of the optimum is usually un-
known by the breeder. That is why the second condition is the more important
one. When the diversity is too low almost all individuals in the population are
the same. That means that there is not enough information in the population
to create new individuals that would fit the problem better than already found
ones.

Bivariate Marginal Distribution Algorithm

1. set t <0
randomly generate initial population P(0)

2. select parents S(t) from P(t)
calculate univariate frequencies p; and bivariate frequencies p;; for the
selected set S(t)

3. create dependency graph G = (V, E, R) using the frequencies p; and p; ;

4. generate the set of new individuals O(t) using dependency graph G and
frequencies p; and p; ;

5. replace some of individuals from P(t) with new individuals O(t)
sett+—t+1

6. if termination criteria are not met, go to 2

The termination criterion due to the lack of diversity is defined as follows:
if all univariate frequencies are closer than € > 0 to 0 or 1, the algorithm is
terminated. If this is the case, we say the algorithm e-converged. In most of
our experiments, we use this termination criterion.

The probability model used by BMDA is given by

p@) =[] pr@@) I pico (@ilzem) (6)

r€ER i€EV\R

7

where e(7) returns the vertex connected to the vertex ¢ but added sooner than
this vertex using the algorithm for the construction of a dependency graph from
Section 3. To say it in another way, e(7) is the vertex that is the next one on
the way from ith vertex to the r € R that corresponds to the component where
the vertex 4 is located. This factorization is a special case of the factorization
considered in [4].

6. How Does It Work and Why?

The distribution of BMDA is based on the use of conditional probabilities for
pairs of positions that seem to be dependent. This information is estimated
from the current population of strings. Any binary function can be decomposed
as follows [4]

f(.Z') =a-+ Zailmil + Z Qi1 ,i5Ti; Tig + ...+ Q01,...n—1L0T1 ... L1 (7)
i1

11 <i2

A function is decomposable of order £ if all coefficients of higher order are 0.
Let us talk about decomposable functions of order at most two, first. For this
class of functions, the best dependency graph can be constructed fairly easily.
It can be done by connecting the vertices ¢ and j just when the coeflicient a; ;
is not equal to zero. A graph constructed this way does not have to be acyclic.
If this graph is acyclic or this can be achieved by deletion of only insignificant
dependencies, then it serves as the best dependency graph that can be used
for the generation of new individuals. If BMDA found this dependency graph
and used it for generation of new individuals, it would perform very well. It
would perform as well as UMDA does with linear functions. The performance
of BMDA therefore relies on whether it is able to detect these dependencies
having no problem-specific knowledge in an initial stage. In the empirical part
of this paper it will be shown that most of the dependencies are usually found
after only a few generations. If the mentioned graph is not acyclic and this
property cannot be satisfied by deletion of significantly unimportant depen-
dencies from it, the problem becomes impossible to solve within the use of this
model. This problems could be possibly solved by the use of terms of condi-
tional independence. Not only conditional probabilities for a position having
given the value for another one but for a position having given values for a set
of some of other positions as well would be taken into account. The problem
with this approach is, as it was already mentioned above, that BMDA does
not get any problem-specific knowledge about the problem that is solved. Dur-
ing optimization, it is learning the structure of the problem itself. From the
beginning, the information about dependencies is very unclear and almost no
pair of positions seems to be independent. The approximation gradually gets
more and more accurate. There is no effective method for the prediction of
the more complex model. Moreover, the fitness function does not have to be
decomposable. A model that is simpler than the correct model may serve well

8

in many cases. This can be demonstrated by the good performance of UMDA
for many nonlinear problems. The right choice is somewhere between the ac-
curate model and a simple model as univariate marginal distributions. The
character of this class of algorithms does not allow very complex predictions
of the model due to the amount of available information about the problem.
The problem arises when the optimized function is additively decomposable of
order three or more. If this is the case, the given fitness distribution cannot be
covered by the BMDA model. The best BMDA can do is to use the model that
is as close as possible to the original distribution. The discovery of higher order
dependencies is significantly more time and space complex and that is why it
is hard to say if it was worthy to follow the way of enlarging the blocks taken
into account. Moreover, there is again lack of information about the problem to
predict the more complex models. If all the dependencies were known from the
beginning, the best way would be to use them as in FDA [4]. Experiments show
that BMDA performs well on problems of higher order dependencies as well.
Higher order dependencies are usually substituted by chain-like dependency
structures in our model.

7. Experiments

First experiments were done for a few different fitness functions. The choice
of the fitness functions was done to make the behavior of the used algorithm
more clear. Comparisons to some other methods were done. But the main
purpose of this section is the explanation of the behavior of BMDA. The size
of the paper does now allow us to take into account all other algorithms that
could possibly compete with BMDA for solving these problems. For most of
the problems the decomposition of the problem is shown too, to make things
more clear.

In the experiments the so-called ordering parameter [8] is often used as a
measure of convergence. The ordering parameter is defined as follows

=25 (m- 1) ®

n <
=0

where p is the vector of univariate marginal frequencies p;(1). The closer the
parameter is to one, the less diversity the population contains.

For some fitness functions a permutation of the variables will be allowed. The
permutations will be denoted as 7, where k € {1,...,n}. The permutation
7, is well-defined for any k such that n can be divided by k. It is defined as

follows od B) 4
(i) = {MJ 9)

m is the identity. For mo and n = 12 we get w2 =(0, 2, 4, 6, 8, 10, 1, 3, 5,
7,9, 11). Permutations will be used to change the order of the positions of a

9

string to show the behavior of different algorithms with respect to the used
permutation.

For all experiments a fixed selection method (Truncation selection [3] with
7 = 50%) was used. The worse half of the old population was replaced by the
new individuals.

7.1 Onemax fitness function

This fitness function is actually a simple linear function over the single bits
with all coefficients equal to 1. That means it is just the sum of all bits in a
string, i.e.

n—1
fonemam(m) = Z Z; (10)
=0

where z; is the value on the ith position in string z. Onemax fitness function
does not have a permutation as an input parameter because its value is the
same for any permutation of bits in an input string. This function is decom-
posable of order one, as we can see from its basic form already. That means
that BMDA should give good results for this function. As it was already shown
in [3], UMDA works very well for this class of problems. For UMDA a very
small population size is sufficient for its convergence into the optimum. BMDA
uses a more complex distribution and to make this correct the dependencies
that are present in the problem have to be discovered well. That is why the
population size has to be enlarged. For each algorithm, the set of parameters is
chosen to make it converge to the optimum in 100% of totally 30 independent
runs. For all algorithms the e-convergence termination criterion was used with
€ = 0.05.

As it is shown in Figures 1 and 2, BMDA converges slower than UMDA and
the simple genetic algorithm with uniform crossover. This is caused by the
use of statistical methods to discover dependencies that require to enlarge the
population. UMDA takes the bits as independent from the beginning, so it
uses the information BMDA has to discover! If BMDA had this information,
it would perform exactly the same as UMDA. GA with uniform crossover
and a great crossover rate performs similar to UMDA [3], i.e. it performs
very well for linear problems. Genetic algorithm with onepoint crossover keeps
the dependencies among neighboring bits so it has the same disadvantage
with linear problems as BMDA. In Figure 1, an average number of fitness
evaluations until convergence for 30 independent runs is shown. In Figure 2
the evolution of ordering parameter in a randomly chosen run is shown.

7.2 Quadratic Function

The quadratic fitness function used for comparisons in this section is defined

as .
2_1

fquadmtz’c(%ﬂ) = Z f2(377r(2i);$7r(2i+1)) (11)

=0

10

n 7000 T T T T T
c
S 6000 UMDA
o GA(uniform) ------
® 5000 - GA(onepoint) -------
o BMDA -
@ 4000
e
£ 3000 -
s 2000
o L
E 1000 |-
=z
0
20 40 60 80 100 120 140 160 180

Size of the problem

Figure 1. Number of fitness evaluations for fonemasz. The ranges of the used pop-
ulation size (for n = 30 to n = 180) were 50 — 170 for UMDA, 32 — 100 for GA
(uniform), 32 — 160 for GA (onepoint), and 120 — 260 for BMDA. The truncation
selection with 7 = 50% was used.

1 T T T /,/’
08 |- |
2 06 .
5
© ,
5 o4 .
UMDA
02 BMDA ------ 7
0 el | | |
0 500 1000 1500 2000 2500

Number of function evaluations

Figure 2. Ordering parameter for fonemaz, # = 90. The population sizes were 110
for UMDA and 180 for BMDA. The truncation selection with 7 = 50% was used.

where f5 is defined as

f2(u,v) =0.9—-0.9(u + v) + 1.9uv (12)

With both arguments equal to 0 we get f2(0,0) = 0.9. With different argu-
ments we get f2(0,1) = f2(1,0) = 0. With both arguments equal to 1 we get
f2(1,1) = 1. The optimum is clearly in the string with 1’s on all positions.
Criteria for convergence as well as the requirement for 100% convergence in
30 independent runs and the choice of optimal parameters for all algorithms
are the same as in the last section. UMDA was not used for comparisons since

11

it performed much worse than any of other methods. An average number of
function evaluations until convergence over 30 runs is taken into account.

The function is not deceptive and that is why it should be not so hard to find
the optimum for simple GA. It is an ideal function for the BMDA because
it is decomposable of order 2 (see its definition) and the dependencies do
not form cycles. First, the foyadretic With permutation m (i.e., identity) will
be discussed. Experiments have shown that although this function is not a
big problem to solve by simple GA, BMDA performs much better. For GA
with onepoint crossover the number of fitness evaluations seems to grow much
faster than for BMDA with increasing size of a problem (see Figure 3). GA
with uniform crossover performs significantly worse than GA with onepoint
crossover (see Figure 4, notice that there is used a log-scaling for the number
of fitness evaluations in this figure). The bad performance of GA is caused by
the similar fitness values for both leading schemata that are opposite to each
other and by the fact that their disruption significantly decreases the fitness. In
both figures 4 an average number of fitness evaluations needed for convergence
in 30 independent runs is shown.

Another permutation that was used for comparisons was w2 that spreads pairs
of positions (2i) and (2i + 1) so that the distance between them is half of the
size of a string. This reordering of bits has different effect on different algo-
rithms. For BMDA (as well as it would be for UMDA), it actually does not
affect anything because both algorithms are independent of positioning of bits.
For simple GA with uniform crossover the situation is analogical. The prob-
lem arises for simple GA with onepoint crossover. In this case, this algorithm
performs very poorly. Already for a problem of size n = 30, GA with onepoint
crossover requires about 10 times more fitness evaluations than with 7;. This
gap enlarges with the size of a problem. Results for BMDA and simple GA
with uniform crossover are just slightly different from results with permutation
Y-

7.3 Deceptive function of order 3

Deceptive function is often used for comparisons of different optimization
methods for its being deceptive. With deceptive problems, the average fitness
of low order schemata present in optimum is lower than the average fitness of
alternative ones. This property makes this class of functions hard to solve by
the simple genetic algorithm as well as UMDA and many other evolutionary
algorithms because these algorithms are based on the superior position of low
order schemata that are matched by optimum. The fitness function is then
defined as

-1

f3deceptive (T, ™) = Z F3(Tr(3i) + Ta(3it1) T Tr(3it2)) (13)
i=0

ol

where z is a bit string, 7 is any permutation of order n, and f3 is defined as

12

140000 T T T T T
120000 - /'

BMDA
GA(onepoint) ------ Fa—
80000 / n
60000 / 4

40000 | i

100000 |-

20000 | i

Number of fitness evaluations

40 80
Size of the problem

Figure 3. Number of fitness evaluations for f,yadretic. The ranges of the used pop-
ulation size (for n = 30 to n = 120) were 200 — 570 for BMDA and 260 — 2500 for
GA (onepoint). The truncation selection with 7 = 50% was used.

0.9 ifu=0
0.8 ifu=1
=90 ifu=2 (14)

1 otherwise

Two different ordering permutations m; and 73 (see Equation 9) are used. The
73 operator mixes up the positions of the bits in a string so that the three
neighboring bits (31), (3i + 1), and (37 + 2) are positioned so that the distance
between each two of them is at least one third of the length of chromosome. For
instance, for n = 12 we get 73 = (0,4,8,1,5,9,2,6,10,3,7,11). The problem
is actually the same for any permutation although for 73 the dependencies are
distributed more widely so that important schemata are of a greater defining
length than originally.

Results for the problem of size n = 30 are shown in Table 1.

Table 1. Number of fitness evaluations for fsqeceptive. The population sizes for a
permutation w1 were 400 for GA (onepoint) and 1300 for BMDA. For permutation
73 the population size for BMDA was 1300. GA (uniform) for both used permutations
and GA (onepoint) for permutation w3 did not achieve 100% convergence even for
populations larger than 15000 (there is given a lower bound for the number of fitness
evaluations in the table). The truncation selection with 7 = 50% was used.

fitness eval. for m; | fitness eval. for w3
BMDA 17,550 17,420
GA (onepoint) 1,977 > 230, 000
GA (uniform) > 650, 000 > 650, 000

13

. :I.e+06E T T T T T T T 3
° F BMDA — T
2 [GA(onepoint) ---

= L GA(uniform) --- .-~

= 100000 | TS
® E T

8 F -

é s ////////

= 10000 | i

[s] F _

o] [.-~

g E

[S

=]

< 1000 —L—L L 1 L L 1 |

30 40 50 60 70 80 90 100 110 120
Size of the problem

Figure 4. Number of fitness evaluations for fyuedratic (log-scaling). The ranges of
the used population size (for n = 30 to n = 120) were 200—570 for BMDA, 260 —2500
for GA (onepoint), and 680 — 7000 for GA (uniform). The truncation selection with
7 = 50% was used.

7.4 NK fitness function

There are two important input parameters for the so-called NK fitness func-
tion [10], the length of an input string n, the number of neighbors to take into
account k. When the function is initialized, for each position of a string there
are chosen k other positions at random. In this fashion we get n groups of po-
sitions, each of length k4 1. Each position is contained in at least one of these
groups. Let us denote {p; 0,...,pir} to be the ith group. For each group there
is randomly generated value for each of possible combinations of values on cor-
responding positions. That means that for ith group, there are generated 2¥+1
values. Let us denote by f; the function that returns the generated value for
combination of values {2y, ,,...,Zp,, } on positions from ith group. Then for
given matrix of positions P = (piJ)’Z;:lbk and vector of functions F = (f;)"=}
(both generated in the initial stage) the fitness function is defined as

n—1
fNK(x) = Zfi(wpi,oi“‘pri,k) (15)
=0

Since the neighbors are picked at random it makes no sense to use any per-
mutation to reorder the positions. NK fitness function is clearly decomposable
of order at most k£ + 1. Random generation of both the neighbors and of the
values can reduce the order, of course. However, the chance that this is the
case is very small.

For n = 50 two different & were used, k = 2 and k = 3. For each of them, the
matrix P and vector of functions F' was generated first. Only one generated
set of these parameters was used for each k. Results for various algorithms are
presented in Table 2.

14

Since the optimum is not known for any of possible &, the best found number
ever was taken as optimal and all algorithms were required to converge to this
number. The problem space was explored by all algorithms with populations
that should be large enough to find the real optimum. Even if this is not the
case, i.e. the optimum was not found well, the best number ever found is taken
into account, and even if the optimum were different from this number, this
would not change anything on comparisons and their results.

Table 2. Number of fitness evaluations for fxx. The population sizes for n = 50 and
k = 2 were 210 for UMDA, 220 for GA (uniform), 340 for BMDA and 500 for GA
(onepoint). The population sizes for n = 50 and k& = 3 were 300 for GA (uniform), 700
for GA (onepoint), 2500 for BMDA and 8000 for UMDA. The truncation selection
with 7 = 50% was used.

(B = (50,2) | () = (50,3)
BMDA 5,480 51,625
GA (onepoint) 11,010 17,440
GA (uniform) 4,288 7,826
UMDA 3,398 259.600

8. Conclusions

For linear and quadratic problems, BMDA works well what can be explained
by the use of probabilistic distribution based on pair dependencies for the gen-
eration of new individuals. For linear problems UMDA and GA with uniform
crossover perform better and GA with onepoint crossover performs similarly
or worse than BMDA. The convergence of BMDA is slowed down by the need
to discover the probabilistic model during optimization first. For quadratic
problem, BMDA performs best among all compared algorithms. The GA with
onepoint crossover performs best of all other algorithms but it fails when the
defining length of important schemata is enlarged by different ordering of bits
in a string. Experiments have shown that the gap between BMDA and other
algorithms is for a quadratic function very large. The difference between this
and other algorithms with linear function is insignificant in this context.

For BMDA, the problem arises with problems with dependencies of a higher
order than two. For this class of problems, the used model of the search space is
not sufficient. It is approximated somehow but this is often not sufficient. For
deceptive fitness function of order 3, BMDA converged slower than GA with
onepoint crossover. The GA with uniform crossover converged much worse
than BMDA and UMDA was mislead in most of the cases even for huge pop-
ulation sizes. What is important though is that when the length of schemata
is enlarged, GA with onepoint crossover performs very poor even for huge
populations sizes and the number of fitness evaluations but the performance
of BMDA remains almost the same. This, as well as the results for quadratic
function, gives an evidence that GA with onepoint crossover does not effec-
tively discover and use the schemata of a large defining length. It works very

15

well for short building blocks. Uniform crossover is independent of the length of
schemata but it disrupts dependencies very often. UMDA disrupts dependen-
cies too. BMDA takes into account dependencies of order at most two and this
causes that although it is independent of length of the schemata and it does
not disrupt dependencies of order two, it might disrupt the dependencies of
a higher order. The dependencies of a higher order are substituted by chain-
like structures composed of the dependencies of order two but this is often
not sufficient. The solution to this problem might be the use of Factorization
Distribution Algorithm although this requires a problem specific knowledge
in the initial stage. This is not required by any of UMDA, BMDA, or GA. If
this were overcome, FDA would perform very well for all problems that are
decomposable.

Acknowledgements

Authors would like to thank The Department of Mathematics of Slovak Tech-
nical University and The German National Center for Information Technology
(GMD) for a technical support of the project. Martin Pelikan’s stay at GMD
was supported by Catholic Academic Program for Foreigners (KAAD, Bonn).
Special thanks to Vladimir Kvasnicka and Jiri Pospichal for useful comments
and help with the preparation as well as the completion of the paper.

References

1. Goldberg D E 1989 Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA

2. Kargupta H 1996 The Gene Expression Messy Genetic Algorithm. In: Proceedings
of the 1996 IEEE International Conference on Evolutionary Computation. Nagoya,
pp 631-636

3. Muehlenbein H 1998 The Equation for Response to Selection and its Use for
Prediction. Ewvolutionary Computation 5: 303-346

4. Muehlenbein H, Rodriguez A O 1998 Schemata, Distributions and Graphical Mod-
els in Evolutionary Optimization, submitted for publication

5. De Bonet J S, Isbell Ch L, Viola P 1997 MIMIC: Finding Optima by Estimating
Probability Densities. In: Mozer M, Jordan M, Petsche Th (Eds) 1997 Advances in
Neural Information Processing Systems 9. MIT Press, Cambridge

6. Baluja S, Davies S 1997 Using Optimal Dependency-Trees for Combinatorial Op-
timization: Learning the Structure of the Search Space. Report Number CMU-CS-
97-107, Carnegie Mellon University, Pittsburgh, PA

7. Marascuilo L A, McSweeney M 1977 Nonparametric and Distribution-Free Meth-
ods for the Social Sciences. Brooks/Cole Publishing Company, CA

8. Kvasnicka V, Pelikan M, Pospichal J 1996 Hill Climbing with Learning (An Ab-
straction of Genetic Algorithm). Neural Network World 5: 773-796

9. Baluja S 1994 Population-Based Incremental Learning: A Method for Integrat-
ing Genetic Search Based Function Optimization and Competitive Learning. Report
Number CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA

10. Kauffman S A 1993 The Origins of Order: Self-Organization and Selection in
Evolution. Oxford University Press, Inc., NY

