=

The Compact Genetic Algorithm

Georges R. Harik
Fernando G. Lobo
David E. Goldberg

University of Illinois at Urbana-Champaign
Urbana, IL 61801

IIIiGAL Report No. 97006
August 1997

Ilinois Genetic Algorithms Laboratory
Department of General Engineering
University of Illinois at Urbana-Champaign
117 Transportation Building
104 South Mathews Avenue
Urbana, IL 61801

Iñaki Inza
Nota
Es un artículo metodológico muy atractivo, no es una aplicación. El método que propone está a "medio camino" entre Genéticos y EDAs. Sencillo de entender. Su código seguro que lo encuentras en Internet. Habla a veces de otro algoritmo, PBIL, que es un EDA muy parecido a UMDA. Creo que algo veréis de él en las clases teóricas.

The Compact Genetic Algorithm

Georges R. Harik, Fernando G. Lobo, and David E. Goldberg
[linois Genetic Algorithms Laboratory
University of Illinois at Urbana-Champaign

Abstract

This paper introduces the compact genetic algorithm (¢cGA). The ¢GA represents the pop-
ulation as a probability distribution over the set of solutions, and is operationally equivalent
to the order-one behavior of the simple GA with uniform crossover. It processes each gene
independently and requires less memory than the simple GA. Therefore, it can be used to give
a quick estimate of a problem’s difficulty.

In addition, this work raises important questions about the use of information in a genetic
algorithm, and its ramifications show us a direction that can lead to the design of more efficient
GAs.

1 Introduction

There is a tendency in the community of evolutionary computation to treat the population with
almost mystical reverence, and certainly the population deserves our respect as it is the source
of all that goes right (or wrong) in a genetic algorithm (GA) with respect to function evaluation,
schema evaluation, and partition identification (Kargupta & Goldberg, 1996). But if one lesson is
clear from the history of GA analysis and design, it is that genetic algorithms are complex objects
and multiple perspectives are useful in understanding what they can and cannot do.

In this paper, we take a minimalist view of the population and create a GA that mimics the
order-one behavior of a simple GA using a finite memory bit by bit. Although the resulting
compact genetic algorithm (cGA) is not intended to replace population-oriented GAs, it does teach
us important lessons regarding GA memory and efficiency. Moreover, as a practical matter, the
resulting algorithm can act as a filter to discriminate whether problems are easy or hard. As a
matter of design, the cGA shows us an interesting way of getting more information out of a finite
set of evaluations.

We start by discussing the inspiration of this work from a random walk model that has been
recently proposed. Then, we present the cGA and describe the mapping of the sGA’s parameters
into those of an equivalent cGA. Along the way, computer simulations compare the two algorithms,
both in terms of solution quality and speed. At the end of the paper, important ramifications are
outlined concerning the design of more efficient simple GAs.

2 Motivation and related work

This work is primarily inspired by the random walk model introduced by Harik, Canti-Paz, Gold-
berg, and Miller (1997). In that work, the authors gave accurate estimates of the GA’s convergence
on a special class of problems: problems consisting of non-overlapping building blocks (BBs) of

bounded difficulty. Because there are no interactions among BBs, the authors made the assump-
tion that the BBs could be solved independently. Therefore, they focused on one BB (partition) at
a time. The next paragraph describes the basic idea of the model.

In the initial population, there will be some instances of the correct BB. Then, during the action
of a GA run, the number of instances of the correct BB can increase or decrease. Eventually, the
correct BB will spread throughout all the population members or it will get extinct.

This type of process is easily modeled using a random walk as a mathematical tool. Using such
a model, Harik et al., were able to accurately predict the GA’s convergence. There, the random
walk variable represents the number of BBs in the population at a given time. Two absorbing
barriers (one at 0 and one at the population size) represent the success or failure in the overall
decision of the GA. The transition probability of the random walk is given by the probability that
the GA commits a decision error on two competing schemata. This error in decision making occurs
because a schema is always evaluated within the context of a larger individual. The GA can make
an incorrect decision in a partition because of the noise coming from the remaining partitions.
In the model, the population plays the role of a memory to account for a finite number of such
decision-errors.

The dynamics of the random walk model suggests that it is possible to directly simulate its
behavior for order-1 problems. The idea is to simulate ¢ independent random walks bit by bit.
The next section, which introduces the ¢cGA, shows how this is possible. The cGA represents the
population as a probability distribution over the set of solutions. By discretizing its probability
representation, the proposed algorithm reduces the GA’s memory requirements. In addition, the
manner in which the cGA manipulates this distribution allows it to mimic the order-1 behavior
of the simple genetic algorithm (sGA). But before introducing the cGA, let’s review other related
works.

Ackley (1987) introduced a learning algorithm that manipulates a gene vector via positive
and negative feedback coming from the population members. To describe his algorithm, he used a
political metaphor where the voters (population) express their satisfaction or dissatisfaction towards
an /-member government (a point in the search space).

Syswerda (1993) introduced an operator called bit-based simulated crossover (BSC) that uses the
statistics in the GA’s population to generate offspring. BSC does a weighted average of the alleles of
the individuals along each bit position (a bit column). By using the fitness of the individuals in this
computation, BSC integrates the selection and crossover operators into a single step. A variation
of BSC was also discussed by Eshelman and Schaffer (1993) in the context of investigating how
GAs differ from population-based hillclimbers.

Population-based incremental learning (PBIL) was introduced by Baluja (1994) (Baluja & Caru-
ana, 1995) As opposed to storing the whole population as in BSC, PBIL uses a probability vector
over the chromosome to represent its population. Specifically, it records the proportion of ones (and
consequently zeroes) at each gene position. These probabilities are initially set to 0.5 and move
towards 0 or 1 as the search progresses. The probability vector is used to generate new solutions,
and thus represents the combined experiences of the PBIL algorithm at any one time. Using the
probability vector, PBIL generates a certain number of solutions, and updates the vector based on
the fitnesses of these solutions. The aim of this update is to move the probability vector towards
the fittest of the generated solutions. The update rule is similar to that used in learning vector
quantization (Hertz, Krogh, & Palmer, 1993). The number of individuals generated, the number of
individuals to update from, the stopping criterion, and the rate of the probability vector’s change
are all parameters of the algorithm. Attempts were made to relate PBIL’s parameters to the simple
GA. For instance, the number of samples generated was equated with the GA’s population size.
These attempts were not successful because the GA manipulates its distributions in a different way.

The following section, which introduces the compact GA, shows how this is possible in a related
algorithm.

3 The Compact Genetic Algorithm

Harik, Canti-Paz, Goldberg, and Miller (1997) analyzed the growth and decay of a particular gene
in the population as a one-dimensional random walk. As the GA progresses, genes fight with their
competitors, and their number in the population can go up or down, depending on whether the
GA makes good or bad decisions. These decisions are made implicitly by the GA when selection
takes place. The next section explores the effects of this decision making.

3.1 Selection

Selection gives more copies to better individuals. But it does not always do so for better genes.
This is because genes are always evaluated within the context of a larger individual. For exam-
ple, consider the onemax problem (that of counting ones). Suppose individual a competes with
individual b.

individual chromosome fitness
a 1011 3
b 0101 2

When these two individuals compete, individual ¢ will win. However, at the level of the gene,
a decision error is made on the second position. That is, selection incorrectly prefers the schema
*0** to *1**. The role of the population is to buffer against a finite number of such decision errors.

Imagine the following selection scheme: pick two individuals randomly from the population and
keep two copies of the better one. This scheme is equivalent to a steady-state binary tournament
selection. In a population of size n, the proportion of the winning alleles will increase by 1/n. For
instance, in the previous example the proportion of 1’s will increase by 1/n at gene positions 1 and
3, and the proportion of 0’s will also increase by 1/n at gene position 2. At gene position 4, the
proportion will remain the same. This thought experiment suggests that an update rule increasing
a gene’s proportion by 1/n simulates a small step in the action of a GA with a population of size
n.

The next section explores how the generation of individuals from a probability distribution
mimics the effects of crossover.

3.2 Crossover

The role of crossover in the GA is to combine bits and pieces from fit solutions. A repeated
application of most commonly used crossover operators eventually leads to a decorrelation of the
population’s genes. In this decorrelated state, the population is more compactly represented as a
probability vector. Thus the generation of individuals from this vector can be seen as a shortcut
to the eventual aim of crossover. Figure 1 gives pseudocode of the compact GA.

1) initialize probability vector
for i :=1 to £ do p[i] := 0.5;

2) generate two individuals from the vector
a := generate(p);
b := generate(p);

3) let them compete
winner, loser := evaluate(a, b);

4) update the probability vector towards the better one
fori:=1to £ do
if winner[i] # loser[i] then
if winner[i] = 1 then p[i] := p[{] + 1/n
else p[i] := p[i] — 1/n;

5) check if the vector has converged
for i :=1to £ do
if p[i] > 0 and p[i] < 1 then
return to step 2;

6) p represents the final solution
compact GA parameters

n: population size.
£: chromosome length.

Figure 1: pseudocode of the compact GA

3.3 Two main differences from PBIL

The proposed algorithm differs from PBIL in two ways: (1) it can simulate a GA with a given
population size, and (2) it reduces the memory requirements of the GA.

The update step of the compact GA has a constant size of 1/n. While the simple GA needs
to store n bits for each gene position, the compact GA only needs to keep the proportion of ones
(and zeros), a finite set of n numbers that can be stored with logy n bits. With PBIL’s update
rule (for details see Baluja and Caruana (1995)), an element in the probability vector can have any
arbitrary precision, and the number of values that can be stored in an element of the vector is not
finite. Therefore, PBIL can’t achieve the same level of memory compression as the cGA.

PBIL typically generates a large number of individuals from the probability vector. According
to Baluja and Caruana (1995) that number was something analogous to the population size. In the
compact GA, the size of the update step is the “thing” that is analogous to the population size.

4 Experimental results

This section presents simulation results and compare the compact GA with the simple GA, both
in terms of solution quality and in the number of function evaluations taken. All experiments are
averaged over 50 runs. The simple GA uses binary tournament selection without replacement, and
uniform crossover with exchange probability 0.5. Mutation is not used, and crossover is applied all
the time. All runs end when the population fully converges—that is—when all the individuals have
the same alleles at each gene position. Figures 2 and 3 show the results of the experiments on a
100-bit onemax problem (the counting ones problem). Figure 2 plots the solution quality (number
of correct bits at the end of the run) for different population sizes. Figure 3 plots the number of
function evaluations taken until convergence for the various population sizes. On both graphs, the
solid line is for the simple GA, and the dashed line is for the compact GA. Additional simulations
were performed with the binary integer function, and with De Jong’s test functions (De Jong, 1975).
The results obtained were similar to these, and are collected in appendix A. The match between
the two algorithms seems accurate, and gives evidence that the two are doing roughly the same
thing and that they are somehow “equivalent”. Note however that while the sGA has a memory
requirement of n * £ bits, the cGA requires only log, n * £ bits.

100

90

80 |

70

correct bits

60

50 I I I I
0 20 40 60 80 100

population size

Figure 2: Comparison of the solution quality (number of correct bits at the end of the run) achieved
by the compact GA and the simple GA on a 100-bit onemax problem. The solid line is for the
simple GA. The dashed line is for the compact GA.

4000 T | T |
3500
3000 -
2500 -
2000 -
1500 |
1000 |
500 |

0]]]]
0 20 40 60 80 100

function evaluations

population size

Figure 3: Comparison of the compact GA and the simple GA in the number of function evaluations
needed to achieve convergence on a 100-bit onemax problem. The solid line is for the simple GA.
The dashed line is for the compact GA.

5 Simulating higher selection pressures

This section introduces a modification to the compact GA that allows it to simulate higher selection
pressures. We would like to simulate a tournament of size s. The following mechanism produces
such an effect: (1) generate s individuals from the probability vector and find out the best one. (2)
let the best individual compete with the other s — 1 individuals, updating the probability vector
along the way. Clearly, the best individual wins all the competitions, thus the above procedure
simulates something like a tournament of size s. Experiments on the onemax problem with s = 2,4
and 8 are shown in figure 4 confirming our expectations. Once more, the graphs show the solution
quality and also the number of function evaluations needed to reach convergence. The runs were
done for different population sizes and the results agree with the predictions of the population
sizing theory (Harik, Cantd-Paz, Goldberg, & Miller, 1997). The top graphs are for s = 2, the
middle ones for s = 4, and the bottom ones are for s = 8. In all of them, the solid line is for the
simple GA, and the dashed line is for the compact GA.

Being able to simulate higher selection rates should allow the compact GA to solve problems
with higher order building blocks in approximately the same way that a simple GA with uniform
crossover does. It is known that in order to solve such problems, high selection rates are needed to
compensate for the highly disruptive effects of crossover. Moreover, the population size required to
solve such problems grows exponentially with the problem size (Thierens & Goldberg, 1993). To
test the compact GA on problems with higher order building blocks, 10 copies of a a 3-bit deceptive
sub-function are concatenated to form a 30-bit problem. Each sub-function is a 3-bit trap function
with deceptive-to-optimal ratio of 0.7 (Ackley, 1987), (Deb & Goldberg, 1993). The results are
presented in figure 5.

In this case there is a discrepancy between the two algorithms. This can be explained on
schema theorem grounds. Using uniform crossover, an order-k BB has a survival probability of
2=k According to the schema theorem, the simple GA should be able to propagate these BBs as
long as the selection rate is high enough to compensate for the crossover disruption. For an order-3
schema, the survival probability is 1/4, so the sGA should start to work well when the selection
rate is greater than 4. In the case of the cGA, we can think of a global schema theorem. The
survival probability of a schema H under the cGA would then be given by:

P(survival of H) = H Di
1€H
In the cGA, all the p; start with 1/2. This means that initially the survival probability of an
order-3 BB is 1/8. Therefore, the BB should grow when the selection rate is greater than 8. This
argumentation explains the results obtained in figure 5 (see the cases s = 4 and s = 8). Observe
that a selection rate of s = 2 is not enough to combat the disruptive effects of crossover. No matter
what population size is used, the compact GA (and also the simple GA) with s = 2 will fail to solve
this problem. This is an indication that the problem has higher-order building blocks and that it
can only be solved with these kind of algorithms by raising the selection pressure.

100 4000 . . . T
3500
90
2 3000
S
2 T 2500
5 80 3
3 3 2000
5 70 S 1500
(&)
50 5 1000
500
50 0
100 4000 . . . T
i SGA (s=4) — |
0 3500 CGA (s=4) ———
2 3000 | -
S
2 T 2500 |- :
5 80 3
S 3 2000
g 70 S 1500 |- -
=
50 5 1000 | s
500 |- ’ .
50 0 |]]]
0 20 40 60 80 100
100 4000 . . T T
L sGA (s=8) — |
% 3500 CGA (5=8) -
2 3000 .
o
2 I - i
;: 80 E 2500
S 3 2000 .
5 70 S 1500
(&)
50 5 1000
500
50 | | | | 0
0 20 40 60 80 100
population size population size

Figure 4: The plots illustrate the mapping of the selection rate of the compact GA into that of the
simple GA using the onemax function. Selection rates are 2, 4, and 8. On the left side, the graphs
plot the number of correct bits at the end of the run for the various population sizes. On the right
side, the graphs plot the number of function evaluations taken. Selection rates are s = 2 (top),
s = 4 (middle), and s = 8 (bottom). The solid lines are for the simple GA, and the dashed lines
are for the compact GA.

10 T T T T 140000 T T T

cGA (s=2) - 120000
100000

T
o
(@)
>

)
[

D

|
|
1

T
\
1

80000 7
60000 7

T
\
1

correct BBs

40000 o T

function evaluations

20000 g .

0 | | | | |
0 500 1000 1500 2000 2500 3000

140000 T T T

T
sGA (s=4) —
120000 [cGA (s=4) -

100000 T
80000 - -
60000 - A

correct BBs
function evaluations

40000 7 T
20000 o _

0 | | | | |
0 500 1000 1500 2000 2500 3000

140000 T T T

T
sGA (s=8) —
120000 | cGA (s=8) - B

100000 -
80000 -

60000 s

correct BBs

40000 - B

function evaluations

20000 === T

0 1 1 1 1 1 0 I 1 1 1 1
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

population size population size

Figure 5: These plots compare the compact GA and the simple GA on the 10 copies of a 3-bit trap
function, using selection rates of 2, 4, and 8. On the left side, the graphs plot the number of correct
building-blocks (sub-functions) at the end of the run for the various population sizes. On the right
side, the graphs plot the number function evaluations taken. Selection rates are s = 2 (top), s =4
(middle), and s = 4 (bottom). The solid lines are for the simple GA, and the dashed lines are for
the compact GA.

6 Getting more with less

This section introduces a concept that is unusual in terms of standard GA practice. To motivate
the discussion, let’s start with an analogy between the selection operator of a GA and a tennis (or
soccer) competition.

In tennis there are two kinds of tournaments: elimination and round-robin. In both cases, the
players are matched in pairs. In the elimination case, the losers get out of the tournament, and
the winners proceed to next round. In the round-robin variation, everybody plays with everybody.
It’s also possible to have competitions that are something in between these two. An example is the
soccer world cup. There, the teams are divided in groups, and within each group the teams play
round-robin. Then, the top-k within each group proceed to the next phase.

After this brief detour, let’s shift back to our discussion on genetic algorithms. Typically, a GA
using binary tournament selection is very much like an elimination tennis competition. The only
difference is that in the GA, each individual participates in two tournaments. This is because we
don’t want the population to be chopped by a half after each generation. Round-robin competi-
tions are not usually done in GAs, because this would make the population size grow after each
generation.

The remaining of this section shows how it is possible to have round-robin like competitions
within the compact GA while maintaining the population size fixed. In order to implement it,
we do the following: instead of generating two individuals, generate m individuals and make a
round-robin tournament among them, updating the probability vector along the way. Steps 2, 3,
and 4 of the cGA’s pseudocode (figure 1) would have to be replaced by the ones shown in figure 6.

This results in a faster search, because O(m?) binary tournaments are made using only O(m)
function evaluations. On the other hand, this scheme takes bigger steps in the probability vector,
and therefore more decision-making mistakes are made. When m = 2 the tournaments are played
using elimination. When m = n the tournament is played in a round-robin fashion among all
the population members. When m is between 2 and n we get something that is neither a pure
elimination scheme, nor a pure round-robin scheme.

2) generate m individuals from the vector and store them in M
for i :==1tom do
MTi] := generate(p);

3) do the round-robin tournament
for j:=1tom —1do
for k:=j+1tomdo
begin
winner, loser := evaluate(M[j], M[k]);
update probability vector (step 4 of cGA code)
end

Figure 6: modification of the compact GA that implements a round-robin tournament. This would
replace steps 2, 3, and 4 of the cGA code.

10

Experiments of the cGA with a selection rate of s = 2 are performed again, but this time using
different values of m. Plots for the onemax problem are shown in figures 7, 8 and 9. Figure 7
shows the solution quality (number of correct bits at the end of the run) of the compact GA with
m = 2,4,8,40, for different population sizes. Figure 8 shows the number of function evaluations
taken by the compact GA with m = 2,4,8,40, for the different population sizes. Figure 9 is a
combination of figures 7 and 8. It shows that a given solution quality can be obtained faster by
using m = 4 or m = 8 instead of m = 2. In other words, although using higher values of m
reduces the solution quality, the corresponding increase in speed makes it worth its while. Observe
that after a certain point, it’s not worth to increase m. In this example, using m = 40 is worse
than using m = 4 or m = 8. This shows that there must be an optimal m and raises important
questions concerning GA efficiency. Specifically, how to develop a theory of an “optimal m”, and
most important, how to use such a theory in order to design more efficient simple GAs.

100

90

80 |

correct bits

Aol
A0
.
7 .
O — !
f
'
'

60

50 I I I I
0 20 40 60 80 100

population size

Figure 7: This graph shows the solution quality on a 100-bit onemax problem for various population
sizes, using different values of m. Observe that the solution quality decreases as m increases.

11

4000 | T T |
3500
3000
2500
2000
1500
1000
500

function evaluations

population size

Figure 8: This graph shows the number of function evaluations needed reach convergence on a
100-bit onemax problem, using various population sizes, and different values of m. Observe that
the speed increases as m increases.

100

90

80

70

correct bits

60 - -

50 I I I
0 500 1000 1500 2000

function evaluations
Figure 9: This is a combination of the previous two graphs. It shows that to achieve a given solution

quality, it is better to use m = 4 or m = 8 instead of m = 2 or m = 40. In other words, the best
strategy is neither to use a pure elimination tournament, nor a pure round-robin tournament.

12

7 Extensions

Two extensions are proposed for this work: (1) investigate extensions of the ¢cGA for order-k
problems, (2) investigate how to maximize the information contained in a finite set of evaluations
in order to design more efficient GAs.

The compact GA is basically a 1-bit optimizer and ignores the interactions among the genes. The
set of problems that can be solved efficiently with such schemes, are problems that are somehow
easy. The representation of the population in the compact GA explicitly stores all the order-1
schemata contained in the population. It is possible to have a similar scheme that is also capable
of storing higher order schemata in a compact way. Work has already begun on this topic and will
be presented in a later report.

Another direction is to investigate more deeply the results discussed in section 6, and find out
their implications for the design of more efficient simple GAs. Our preliminary work has shown
that it’s possible to extract more information from a set of n function evaluations, than the usual
information extracted by the simple GA. But how to use this additional information in the context
of a simple GA is still an open question and deserves further research.

8 Conclusions

This paper presented the compact GA, an algorithm that mimics the order-one behavior of a
simple GA with a given population size and selection rate, but that reduces its memory require-
ments. The design of the compact GA was explained, and computational experiments illustrated
the approximate equivalence of the compact GA with a simple GA using uniform crossover.

Although the compact GA approximately mimics the order-one behavior of the simple GA
with uniform crossover, it is not a replacement for the simple GA. Simple GAs perform quite
well when the user has some knowledge about the non-linearities in the problem. In that case,
the building blocks can be tightly coded, and they can be propagated throughout the population
through the repeated action of selection and recombination. Note that in general, this linkage
information is not known. However, in most applications the GA user has some knowledge about
the problem’s domain, and tends to code together in the chromosome, features that are somehow
spatially related in the original problem. In a way, the GA user has partial knowledge about the
linkage. This is probably one of the main reasons why simple GAs have had so much success in
real-world applications.

As a practical consequence of this work, the compact GA can be used as a quick way to check
if a given problem is easy or not. A problem is easy if the compact GA can solve it using a low
selection rate. As the problem’s difficulty increase, higher selection rates must be used.

Finally, this study has introduced new ideas that have important ramifications for GA design.
By looking at the simple GA from a different perspective, we learned more about its complex
dynamics and opened new doors towards the goal of having more efficient GAs.

Acknowledgments

We thank the comments of Dirk Thierens, Erick Canti-Paz, and Brad Miller.

This study was sponsored by the Air Force Office of Scientific Research, Air Force Materiel
Command, USAF, under grants F49620-94-1-0103, F49620-95-1-0338, and F49620-97-1-0050. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

13

The views and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, either expressed or implied,
of the Air Force Office of Scientific Research or the U. S. Government.

14

Appendix A

This appendix presents simulation results comparing the compact GA and the simple GA on the
binary integer function, and on De Jong’s test functions (De Jong, 1975). All experiments are
averaged over 50 runs. The simple GA uses binary tournament selection without replacement, and
uniform crossover with exchange probability 0.5. Mutation is not used, and crossover is applied
all the time. All runs end when the population fully converges—that is—when all the individuals
have the same alleles at each gene position.

The binary integer function is defined as f = Zle 2iz;. The GA solves this problem in a
sequential way (domino-like). First it pays attention to the most significant bits and then, once
those bits have converged, it will move on to next most significant bits. For this function, the
solution quality is measured by the number of consecutive bits solved correctly.

For De Jong’s test functions, the solution quality is measured by the objective function value
obtained at the end of the run. Each parameter is coded with the same precision as described in
his dissertation (De Jong, 1975). The functions F1-F5 are shown below:

3
[(X) =D "a3, —5.12 < x; < 5.12
i=1
f2(X) = 100(z? — z2)% + (1 — z1)?, —2.048 < z; < 2.048
5
f3(X) = integer(z;), —5.12 < z; < 5.12
i=1
30
f1(X) = ia} + Gauss(0,1), —1.28 < ; <1.28
=1

-1

25 1
6) , —65.536 < z; < 65.536

X) = 10.002
fs(X) +JZ:1 J+ Timi (@i — aij)

15

Binary integer

30 5000
2
o
g 2 w 4000 F
0 5
g 2 g
) = 3000 [
=2 5]
g 15 3
o S 2000 |
s 10 B
° 5
S g = 1000 |
o]
[
O | | | | | | O | | | | | |
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
population size population size

Figure 10: Comparison of the simple GA and the compact GA on a 30-bit binary integer function.
The figure on the left shows the solution quality obtained at the end of the runs. On the right, the
figure shows the number of function evaluations taken. The solid line is for the simple GA and the
dashed line is for the compact GA.

De Jong’s F1

: : 4000 —r——T—T—T—T—T—T—
SGA — 3500 |

] 3000 |
2500 |-
2000 |
1500 |
1000
500 |

=1 1 0 1 1 1 1 1 1 1 1 1

60 80 100 0 10 20 30 40 50 60 70 80 90 100

objctive function value
function evaluations

population size population size

Figure 11: Comparison of the simple GA and the compact GA on function F1. The figure on the
left shows the solution quality obtained at the end of the runs. On the right, the figure shows the
number of function evaluations taken. The solid line is for the simple GA and the dashed line is
for the compact GA.

16

De Jong’s F2

5 5000
S a4t w» 4000
[[
> K}
c =1
S 3} S 3000
O ©
c >
2)
g 2 é 2000
kS 1k = 1000

0 0

0 0 20 40 60 80 100
population size population size

Figure 12: Comparison of the simple GA and the compact GA on function F2. The figure on the
left shows the solution quality obtained at the end of the runs. On the right, the figure shows the
number of function evaluations taken. The solid line is for the simple GA and the dashed line is
for the compact GA.

De Jong’s F3

T T 70000 T
A I
o oA 60000 |-
=) T (%)
g S 50000
5 i g
5 =2 40000 |
c >
2 o
g _ é 30000
8 S 20000 [
o) - —
°© 10000 |-
! ! 0 = el R N R T R B
60 80 100 0 10 20 30 40 50 60 70 80 90 100
population size population size

Figure 13: Comparison of the simple GA and the compact GA on function F3. The figure on the
left shows the solution quality obtained at the end of the runs. On the right, the figure shows the
number of function evaluations taken. The solid line is for the simple GA and the dashed line is
for the compact GA.

17

De Jong’s F4

100 90000 T T T T T T T 1
80000 -
[}
80 n
§ g 70000
c % 60000 |
K] 60 S
k3] © 50000 [
5 o 40000
g 40 5
5 *§ 30000 -
j;s’ 20 2 20000 |-
10000 -
0 0
0 10 20 30 40 50 60 70 80 90 100
population size population size

Figure 14: Comparison of the simple GA and the compact GA on function F4. The figure on the
left shows the solution quality obtained at the end of the runs. On the right, the figure shows the
number of function evaluations taken. The solid line is for the simple GA and the dashed line is
for the compact GA.

De Jong’s F5

100 6000 T T T T T T T T
S gof w 5000
g 5
c = 4000
S 60 3
o ©
§ & 3000 -
o 40 [S
5 T 2000 -
2 5
s 20r 1000 |-
0 0 | | | | | | | |
0 0 10 20 30 40 50 60 70 80 90 100
population size population size

Figure 15: Comparison of the simple GA and the compact GA on function F5. The figure on the
left shows the solution quality obtained at the end of the runs. On the right, the figure shows the
number of function evaluations taken. The solid line is for the simple GA and the dashed line is
for the compact GA.

18

Appendix B - Physical interpretation

An analogy with a potential field can be made to explain the search process of the compact GA, and
is easily visualized for 2-bit problems. Similar results were obtained by Hohfeld and Rudolph (1997)
in the context of studying the convergence behavior of the PBIL algorithm. For completeness, they
are presented again.

0.1 1,1

0.0 1,0

Figure 16: The black circle represents the population. Its coordinates are p and ¢, the proportion
of 1’s in the first and second gene positions. The four corners are the points in the search space.

Imagine the particle in the figure above. Its position is given by p,q, which represents the
proportion of 1’s in the first and second genes. The particle (population) is submitted to a potential
field on the search space, seeking its minimum. As the search progresses, the particle (population)
moves up or down, left or right (the proportions of 1’s in each gene increase or decrease by 1/n) and
eventually, one of the corners will capture the particle (the population converges). Let’s illustrate
this with a 2-bit onemax problem and with the minimal deceptive problem (MDP) (Goldberg,
1987).

Onemax

Let p and g be the proportion of 1’s at the first and second genes respectively. The search space,
the potential field, and a graphical interpretation is shown below:

point fitness

00 0
01 1
10 1
11 2

The potential at position p,gis: 2—(0(1 —p)(1—q)+1(1—p)g+1p(1—q)+2pq) = 2—p—q

19

MDP

Likewise, for the minimal deceptive problem, the search space is:

point fitness

00 2
01 1
10 0
11 3
and the potential at position p, g is: 3—(2(1—p)(1—q)+1(1—p)g+0p(1—q)+3pq) = —4pg+q+2p+1

Figure 17: Potential field for the 2-bit onemax problem.

Figure 18: Potencial field vector for the MDP.

Figure 17 shows that the onemax is an easy function. Figure 18 gives a visual representation of
Goldberg’s observation (Goldberg, 1987) that on the MDP, the GA could converge to the deceptive
attractor given certain initial conditions (high proportion of 00 in the initial population).

20

References

Ackley, D. H. (1987). A connectionist machine for genetic hill climbing. Boston: Kluwer Aca-
demic.

Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic search
based function optimization and competitive learning (Tech. Rep. No. CMU-CS-94-163). Pitts-
burgh, PA: Carnegie Mellon University.

Baluja, S., & Caruana, R. (1995). Removing the genetics from the standard genetic algorithm
(Tech Rep. No. CMU-CS-95-141). Pittsburgh, Pennsylvania: Carnegie Mellon University.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. Doctoral
dissertation, University of Michigan, Ann Arbor. (University Microfilms No. 76-9381).

Deb, K., & Goldberg, D. E. (1993). Analyzing deception in trap functions. In Whitley, L. D.
(Ed.), Foundations of Genetic Algorithms 2 (pp. 93-108). San Mateo, CA: Morgan Kaufmann.

Eshelman, L. J., & Schaffer, J. D. (1993). Crossover’s niche. In Forrest, S. (Ed.), Proceedings
of the Fifth International Conference on Genetic Algorithms (pp. 9-14). San Mateo, CA:
Morgan Kaufmann.

Goldberg, D. E. (1987). Simple genetic algorithms and the minimal, deceptive problem. In Davis,
L. (Ed.), Genetic Algorithms and Simulated Annealing (pp. 74-88). San Mateo, CA: Morgan
Kaufmann. (Also TCGA Report 86003).

Harik, G., Canti-Paz, E., Goldberg, D., & Miller, B. (1997). The gambler’s ruin problem, ge-
netic algorithms, and the sizing of populations. In Béack, T. (Ed.), Proceedings of the Fourth
International Conference on Evolutionary Computation (pp. 7-12). New York: IEEE Press.

Hertz, J., Krogh, A., & Palmer, G. (1993). Introduction to the theory of neural computation.
Addison-Wesley.

Hohfeld, M., & Rudolph, G. (1997). Towards a theory of population-based incremental learn-
ing. In Béck, T. (Ed.), Proceedings of the Fourth International Conference on Evolutionary
Computation (pp. 1-5). New York: IEEE Press.

Kargupta, H., & Goldberg, D. E. (1996). SEARCH, blackbox optimization, and sample com-
plexity. In Belew, R. K. and Vose M. D. (Ed.), Foundations of Genetic Algorithms 4 (pp.
291-324). San Francisco, CA: Morgan Kaufmann.

Syswerda, G. (1993). Simulated crossover in genetic algorithms. In Whitley, L. D. (Ed.), Foun-
dations of Genetic Algorithms 2 (pp. 239-255). San Mateo, CA: Morgan Kaufmann.

Thierens, D., & Goldberg, D. E. (1993). Mixing in genetic algorithms. In Forrest, S. (Ed.),
Proceedings of the Fifth International Conference on Genetic Algorithms (pp. 38-45). San
Mateo, CA: Morgan Kaufmann.

21

