
Genetic Algorithms and the Automatic Generation of

Test Data

Marc Roper� Iain Maclean� Andrew Brooks� James Miller and Murray Wood
Dept� Computer Science�
University of Strathclyde�

Livingstone Tower�
Richmond Street�

Glasgow G� �XH� U�K�
Tel� ��� �	
��� ��� ��		 x�
���

Fax� ��� �	
��� ��� ���	�
email� marc�cs�strath�ac�uk

RR�
���
� �EFoCS��
�
��

Abstract

Although it is well understood to be a generally undecidable problem� a number of
attempts have been made over the years to develop systems to automatically generate
test data to achieve a level of coverage �branch coverage for example� � These approaches
have ranged at early attempts at symbolic execution to more recent dynamic approaches
and� despite their variety �and varying degrees of success�� all the systems developed have
involved a detailed analysis of the program or system under test� In a departure from this
approach� this paper describes a system developed to explore the use of genetic algorithms
to generate test data to automatically meet a level of coverage�

Genetic algorithms are commonly applied to search problems within AI� They main�
tain a population of structures that evolve according to rules of selection� mutation and
reproduction� Each individual in the environment receives a measure of its �tness in the en�
vironment� Reproduction selects individuals with high �tness values in the population� and
through crossover and mutation of such individuals� a new population is derived from which
individuals may be even better �tted to their environment� Translating these concepts to
the problem of test data generation� the population is the set of test data� each element in
the set �e�g� a group of data items used in one run of the program� is an individual� and
the �tness of an individual corresponds to the coverage it achieves of the program under
test�

A system has been developed to support this process� It takes the program to be
tested �currently in C� and instruments it with probes to provide feedback on the coverage
achieved� The system creates an initial population of random data based on a description
of the input data and then performs an iterative search which involves running this data

�

Iñaki Inza
Nota
Que no te "heche para atrás" el concepto "Generation of Test Data". Este campo de aplicación de los genéticos lo vas a entender enseguida y es muy interesante. Y muy informático además... Algoritmos Genéticos para generar pruebas que comprueben que un código es correcto

and measuring its coverage �and hence� �tness�� A sample of this population is selected
�depending on the �tness value� to go forward to the new population and a proportion
of this new population is then subjected to mutation and crossover� The process is then
applied again until a maximum level of �tness is reached by the test data� The details
of the system are described within the paper and its application demonstrated on several
programs� The paper concludes with an evaluation of the system so far and a plan of future
work �such as stopping the system from trying to �nd solutions in the presence of infeasible
paths��

Keywords� Automated testing� test data generation� genetic algorithms�

�

� Introduction

In this paper we are concerned with the problem of taking an arbitrary program �free from
supporting information in the form of a speci�cation� for example� and automatically generating
test data to achieve a certain level of coverage of the program �e�g� execute every statement�
or the true and false outcomes of every branch etc��� In spite of being an undecidable problem
	��
 a number of attempts have been made over the years to develop systems to automatically
generate test data� Recent developments have made signi�cant progress� but are still hampered
by problems � often caused by having to perform a detailed analysis of the program or system
under test �for example� to develop symbolic value for input variables or to maintain a trace of the
value of variables�� The approach described in this paper uses the ideas of Genetic Algorithms
�GAs� to automatically develop a set of test data to achieve a level of coverage �branch coverage
is used within the paper�� Using GAs neatly sidesteps many of the problems encountered by
other systems in attempting to automatically generate test data�

The paper gives a brief overview of automatic test data generation followed by an introduction
to genetic algorithms� The combination of the two ideas is described in section �� and section

 describes the system built to implement this� Section � demonstrates the application of the
system and section � contains our initial analysis and plans for further development�

� Automatic Test Data Generation

Early automatic test generation tools fell into the category known as pathwise test data genera�
tors �the approach and potential problems is well described in 	�
 and reviewed in other papers
� e�g� 	�
�� In this approach� the program is viewed as a directed graph� A path is then chosen
through this graph and is symbolically executed in order to give a predicate for that path �the
conjunction of the predicates along the path� which de�nes a subset of the input space� Choosing
values from this input space will cause this path to be taken� If no value can be found then it is
indicative of contradictory predicates and an unexecutable path� Even if the path is executable
the path predicates will either be linear or non�linear� If they are linear then linear programming
techniques may be applied to solve them and thus �nd a value to follow that path� If they
are non�linear then the problem is more di�cult and it is necessary to use non�linear program�
ming techniques often coupled with heuristics to increase e�ciency� Further problems in dealing
with structures such as loops� arrays� module calls� infeasible paths and dynamic data structures
have prevented pathwise test data generators moving from research prototypes to commercial
products�

More recent approaches are exempli�ed by the work of Korel	�
 and DeMillo and O�ut	�� �
�
Korel�s approach is to monitor the execution of the input data and if the path followed is not
the one selected �i�e�� the input data has caused it to stray in some fashion�� then the values
of input variables which would cause the correct path to be followed are automatically found�
This searching activity is speeded up by the use of dynamic data �ow analysis to pinpoint the
variables responsible for the wrong path� The approach can also handle the presence of arrays
and pointers which are reknowned for being notoriously di�cult to handle� DeMillo and O�ut�s
system supports mutation testing by automatically generating test data to kill mutants �created

�

by another tool�� The system uses a constraint satisfaction system �which captures the testing
requirements imposed by the mutations� along with pathwise analysis and symbolic evaluation
techniques� Promising as both these approaches are� they have still encountered di�culties
and areas which need further attention �such as handling procedure calls and improving the
optimization techniques in the former� and the complexity of the algorithms presenting scalability
problems in the latter�� Further reviews of testing tools may be found in 	�� �� �
�

� Genetic Algorithms

Genetic algorithms are commonly applied to a variety of problems involving search and optimi�
sation within the AI domain �see 	
� ��
 for example�� The principle behind GAs is that they
create and maintain a population of individuals represented by chromosomes �essentially a char�
acter string analagous to the chomosomes appearing in DNA�� These chromosomes are typically
encoded �solutions� to a problem �e�g� they may be a sequence of nodes in a graph representing
Travelling Salesman tours�� The chromosomes then undergo a process of evolution according to
rules of selection� mutation and reproduction�

Each individual in the environment �represented by a chromosome� receives a measure of its
�tness in the environment� This is an indication of how successful the individual is at competing
in the environment� Reproduction selects individuals with high �tness values in the population�
�i�e� those individuals which are considered to be �successful�� and through crossover and mu�
tation of such individuals� a new population is derived in which individuals may be even better
�tted to their environment� The process of crossover involves two chromosomes swapping chunks
of data �genetic information� and is analogous to the process of sexual reproduction� Mutation
introduces slight changes into a small proportion of the population and is representative of an
evolutionary step�

The process may sound rather haphzard and random but a GA is emphatically not a random
search for a solution to a problem� Despite using stochastic processes� the approach is much
better than random�

The pseudocode for a simple GA is�

initialise�population��

evaluate�population��

while �not done� do

�

select�population��

crossover�population��

mutate�population��

evaluate�population��

�

The algorithm will iterate until the population has evolved to form a solution to the problem�
or until a maxiumum number of iterations have taken place �suggesting that a solution is not
going to be found given the resources available��

�

� Combining Genetic Algorithms and Test Data Gen�

eration

The problem we have to solve is given an arbitrary program� �nd a set of data that will test
to program to a particular level of coverage� In translating the concepts of genetic algorithms
to the problem of test data generation we �rst of all consider our population to be a set of test
data� This test data is randomly generated according to the format and type of data used by
the program under test �but uses no information about the internal structure of the program��
The genetic algorithm is going to take this population and evolve it towards a solution �i�e� the
test data will be changed according to the operations of selection� mutation and crossover until
it achieves the required level of coverage��

Each individual in the population �a chromosome� is an element in the test data set �i�e�
a group of data items used in one run of the program�� and the �tness of this chromosome
corresponds to the coverage it achieves of the program under test� In this case we are considering
branch coverage �although the ideas are equally � and easily � applicable to any level of coverage
such as multiple condition coverage� any of the data�ow measures� or other approaches such as
mutation analysis�� so in a program with two sets of branches �say an if�then�else statement
inside a while loop� a group of data items �individual� which covered all � branches would have
a �tness level of ���� whereas one which covered only two would have a �tness level of ��
 and
so on� The population is evaluated by running the program under test with each individual and
assessing the �tness of this individual�

Once the whole population has been evaluated� individuals are selected to contribute towards
the next generation �there are a number of ways in which this may be done � the details are
discussed in the next section�� Each individual may then be subjected to crossover �i�e� swapping
elements with another individual� and mutation �e�ecting small changes in the individual�� The
likelihood of crossover and mutation taking place is governed by �adjustable� system parameters�

In the traditional GA approach the population would evolve until there was one individual
from the whole set which represented the solution �e�g� the nodes in a Hamiltonian path�� In
our case� this would correspond to one group of data items achieving maximum coverage of the
program �exercising the true and false outcomes of every branch� for example�� Whilst this is
feasible for some programs� the majority of programs cannot be �covered� by just one group of
data items � it might take many groups and several runs of the program to achieve the desired
level of testing� So� to make the approach feasible� the population evolves until a combined subset
of the population achieves the desired level of coverage� This is done by noting which parts of the
program each individual has �visited� and halting the evolution when a set of individuals have
�visited� the entire program� The solution is this set�

� The System

A system has been developed in C�� to support this process and its architecture is represented
in Figure �� It prompts for the name of the program to be tested �written in C or C��� and
instruments it with probes to provide feedback on the coverage achieved �and hence the �tness

of the chromosome to its environment�� This instrumentation process is similar to that carried
out by dynamic analysers and inserts probes at the beginning of every block of code � i�e� at
the beginning of each function and after the true and false outcomes of each condition� As was
mentioned earlier� this is enough to monitor branch coverage� To generate data to achieve a higher
level of coverage� either the probe module would have to be enhanced or a proprietary dynamic
analyser incorporated into the system� The probes are calls to a function �also automatically
inserted into the program under test� which writes the probe number to a �le each time it is
activated� The probe numbers are unique� starting at � and incrementing by � for each probe
inserted� The instrumented program is then compiled�

The system then prompts for the user to provide a description of the format of the input
data �in terms of number of �les used� data types and size�� and converts this into a chromosome
representation �an internal character string representation that the GA can use� of the individual�
So� if our input consisted of two integers and a character� each individual would consist of a ��
byte character string �� for each integer and � for the character�� The GA maintains this internal
representation to allow the crossover and mutation operations to take place easily� A description
of the data is also maintained �to allow it to be converted back into its original representation��
The system then prompts for details of mutation and crossover rates and the population sizes
�the number of individuals in the population��

An initial population of random data is then created and the instrumented program is com�
piled� The random data generated depends on the data type� Floats have the largest range�
integers are constrained to maxint� characters to any character and strings to printable charac�
ters� Each individual in the population is initialised and stores its data in the internal form�

Once all the system parameters are established and the initial population created� the system
then performs the iterative search which proceeds as follows�

�� An individual from the population is selected and its internal data is translated into the
data format that the program can use �i�e� � characters turn back into and integer etc���
The instrumented program is then executed with this data� For each individual� the route it
takes through the program will activate a set of probes �which write their unique number to
a �le� and after each execution� this �le is examined to obtain the level of �tness achieved
by the individual �i�e� how much of the program it has visited� and which parts of the
program it has covered �this is noted in a bit string associated with each individual��

�� The individual is returned to a temporary population and the bit string which recorded the
areas of the program visited is compared with that of the other individuals in this temporary
population� If the individuals in this temporary population combined would achieve the
maximum level of coverage then the iteration halts and the temporary population becomes
the �solution�� Otherwise step � is repeated until there are no more individuals in the
population �i�e� the �tness of each has been assessed and they are collected in the temporary
population��

�� The individuals in this temporary population are then selected to go forward to the new
population� A number of approaches to selecting elements of this population have been
implemented� �above average� which selects those individuals with an above average level
of �tness� �roulette� which favours individuals with a higher level of �tness� and �the one

�

Get

Info
Test Prog

 Program Details

Test Program

Instrumented
Program

Decode

 some
Chromo-

Add
Probes

Execute
Program Data File

Chromosomes
Population of

Generate

ulation
New Pop-

 Fitness

User

Figure �� System Architecture

�

currently being experimented with� �tournament� which randomly chooses a sub�population
and then selects the individual in this sub�population with the highest level of �tness� The
selected individuals may then be subjected to crossover and mutation� If crossover does
occur then the data belonging to two individuals is broken in half at some point and
recombined to generate two new individuals� Mutation works by randomly changing some
of the bits in the character representation of the data� In this way the population evolves
�i�e� the test data changes��

This process is then repeated until either a maximum level of �tness is reached by a subset of
the population or the number of generations �new populations� exceeds a prede�ned limit which
suggests that a solution is not going to be found within the near future�

� Application

To demonstrate the application of the system� consider the following two small contrived ex�
amples� The �rst example below illustrates the execution of the system �the initial interaction
with the system has been deleted to save space� and demonstrates the way in which it gravitates
towards a solution� The initial set of data is random and any of this data which is successful
�executes the �rst true branch in the program above� for example� then this data �chromosome�
will receive a higher �tness value� This information is fed back into the system and the individ�
ual is more likely to contribute to future data� This example is solved in � generations �from
a population size of �� � smaller than normal for demonstration purposes� which means that
the selection� crossover and mutation processes were carried out � times� When necessary� the
system redirects the standard input to read from a �le� The data below is that read from the
�le and echoed by the program� Note that the input takes a form of two integers and a char�
acter� Sometimes the character does not appear which means that the system has generated an
unprintable character�

A second example follows this which involves trying to match a ��character string� This ends
up being solved in �
 generations with a population size of ��� The initial program interaction
and �voluminous� output has been deleted leaving the contents of the �nal temporary generation
to demonstrate that the system deals with a set of test data that achieves the required level of
coverage �as opposed to one precisely matching datum��

�

�� First Example Program ��

�include �stdio�h�

main��

	

int x
y�

char c�

�� Read � numbers and a character

scanf�
�d �d �c

 �x
 �y
 �c��

printf�
�d �d �c�n

x
y
c��

if �x��� �� x � �����

	

printf�
One �n
��

if �y������ �� y��������

	

printf�
Two �n
��

if �c���a� �� c���z��

	

printf�
Three �n
��

�

�

�

�

�st generation

����� ���� �

���� ��� �

One

����� ����

����� ���� i

����� ����� �

����� ����� N

���� ����

One

����� ����� �

���� ����� w

����� ���� �

����� ����

����� �����

���� �����

����� ����� �

���� ����� V

����� �����

����� �����

����� ���� �

����� �����

����� ����

����� �����

����� ����

����� �����

����� ����� p

���� �����

One

Two

����� ����� �

���� ����

����� ����� i

����� �����

����� ���� C

�nd generation

���� �����

One

Two

��������� �����

���� ���� �

One

����� ����

����� ������

�������� ����

����� ���� �

����� �����

���� ����� �

One

Two

��������� �������

�������� �������

����� �����

���� ���� �

One

������� ������

���� ����

One

���� ����� �

���� ����� �

��������� �������

���� ����

One

�

����� �������

���� ���

One

���� ���� �

One

������ ��������

���� ��������

One

���� ��� �

One

���� �����

One

Two

���� ����

One

���� �����

One

Two

���� �����

One

Two

���������� ���������

Generations �
 � and � deleted

�th generation

!���������� �����

���� �����

One

Two

�������� �����

������ ���������

���� �������

One

���� �����

One

Two

!���������� �����

������� ����������

������� �����

������� �����

!���������� �����

���� �����

One

Two

���� �����

One

Two

������� ������

��������� �����

���� �����

One

Two

!���������� �����

�������� �����

���� �������

One

���� ���������

One

������� ���������

�������� �����

������ �������

���� �����

One

Two

���������� ��������

��������� �����

��������� ���������

���� �����

One

Two

���� ���������

One

���� ����� i

One

Two

Three

Finished with � Generations

��

�� Second Example ��

�include �stdio�h�

�include �stdlib�h�

�include �string�h�

void message�void�

	

�

int main��

	

FILE �fp�

char name"�#�

if��fp�fopen�
�var�tmp�data�dat

r
����NULL�exit����

read�fileno�fp�
name
���

printf�
�s�n

name��

if�name"�#���M��	��

if�name"�#���a��	��

if�name"�#���r��	��

if�name"�#���c��	��

message���

�

Finished with �� Generations

Contents of temporary population$

H�r�

haOc

%Og

Ha�

H&c

IAa

IiOb

Has

Ok

HaK

H%Oc

MiOc

��

	 Analysis and Conclusions

We have presented an initial exploration into the possibilities of using Genetic Algorithms to
automatically generate test data and built a system to support this process� The results of
the system so far are encouraging and the system presents several advantages over the more
traditional approaches to automatic test data generation in that no analysis or interpretation
of the program under test is necessary� the function minimisation problems are avoided and the
system can deal with any type of program � procedure and function calls pose no problems� nor
do dynamic data types�

There is much more in the way of evaluation that we intend to carry out� For example�
changing the mutation rate� crossover rate and population size can greatly a�ect the speed at
which a solution is found� Experimenting with the system so far has found that the best results
have been achieved with a mutation rate of ��� at the chromosome level and
� at the gene
level �meaning that there is a probability of ��� that a chromosome will be selected for mutation
and if selected there is a probability of ���
 that each gene � a bit in the string � will be
changed�� a crossover rate of ��� and a population size of ��� Further experimentation involves
quantifying the performance of the system on large scale software and evaluating its e�ectiveness
as a testing tool�

There are also a number of possible improvements under investigation� These include basing
the initial population on a partial solution �e�g� a set of functional tests� rather than a random
population� and use the system to ��ll in the gaps� which the functional tests have missed� A
reduction in time to achieve an optimal solution may also be improved by storing previous good
solutions which have been lost in the reproduction process� A further development involves the
problem of stopping the system from trying to �nd solutions in the presence of infeasible paths�
Other enhancements involve controlling the mutation and crossover so they do not �destroy� their
data types � the second example in the application shows a simple mutation can change a string
into an unprintable character�

References

	�
 C� J� Burgess� Software testing using an automatic generator of test data� In Proc� SQM

�� � Software Quality Management� pages
���

�� Elsevier Science Publishers� �����

	�
 Richard A� DeMillo� W� Michael McCracken� and R� J� Martin a nd John F� Passa�ume�
Software Testing and Evaluation� Benjamin Cummings� �����

	�
 Richard A� DeMillo and A Je�erson O�ut� Experimental results from an automatic test
case generator� ACM Transactions on Software Engineering Methodology� �������������
April �����

	�
 Richard A� DeMillo and A� Je�erson O�utt� Constraint�based automatic test data genera�
tion� IEEE Transactions on Software Engineering� �������������� September �����

	

 D� E� Goldberg� Genetic Algorithms in Search� Optimization and Machine Learning�
Addison�Wesley� �����

��

	�
 J�C� Huang� An approach to program testing� Computing Surveys� ������������� September
���
�

	�
 Darrel Ince� The automatic generation of test data� The Computer Journal� ������������
�����

	�
 Bogdan Korel� Automated software test data generation� IEEE Transactions on Software

Engineering� �������������� August �����

	�
 Ronald E� Prather and J�Paul Myers� Jr� The path pre�x software testing strategy� IEEE
Transactions on Software Engineering� SE�������������
� July �����

	��
 M� Srinivas and Lalit M� Patnaik� Genetic algorithms� A survey� IEEE Computer� ���������
��� June �����

	��
 Elaine J� Weyuker� The applicability of program schema results to programs� Int� Jnl�

Comput� Inform� Sci�� ���������� October �����

��

