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Abstract. Algorithms are tested on the satellite range scheduling prob-
lem, using data from the U.S. Air Force Satellite Control Network. A
simple heuristic, as well as local search methods, are compared against a
genetic algorithm. The simple heuristic works well on an existing bench-
mark, but fails to scale to larger, more complex problems. The genetic
algorithm yields the best overall performance on larger, more difficult
problems.

1 Problem Description

The U.S. Air Force Satellite Control Network (AFSCN) is responsible for coor-
dinating communications between users on the ground and satellites in space.
A key mission of the AFSCN is satellite range scheduling (SRS), which involves
scheduling communications between users on the ground and more than 100
satellites in space. All communications are performed via nine ground stations
located around the globe, with an aggregate of sixteen antennas. The AFSCN
scheduling center typically receives over 500 user requests for a single day.

Each user request specifies at a minimum an antenna at a particular ground
station, a required duration, and a time window within which the duration must
be allocated. Requests are classified as either low or high-altitude, corresponding
to the orbit of the target satellite. The durations of low-altitude requests are
typically equal to the visibility windows, leaving little scheduling flexibility. In
contrast, high-altitude satellites are visible to more ground stations for longer
periods of time. Consequently, high-altitude requests often specify alternative
antennas and/or visibility windows. The objective of the SRS problem is to
minimize the number of unsatisfied requests.

The SRS problem is over-subscribed in the sense that all requests can rarely
be scheduled at either the primary or alternative resource/times; to satisfy all
user requests, some form of arbitration process is required. Several algorithms for
related oversubscribed scheduling problems have been reported in the literature
(e.g., see [Pem00] [VLS96] [WS00]), but none directly address the peculiarities
of the satellite range scheduling problem, including alternative resources and/or
time-windows.



Researchers at the Air Force Institute of Technology (AFIT) have developed
a number of algorithms for the SRS problem. Gooley and Schalck introduced
an algorithm based on a combination of mixed integer programming (MIP) and
insertion heuristics [Goo93] [Sch93], which scheduled between 91% to 95% of
user requests for small problem instances. However, performance failed to scale,
due to a combination of the MIP formulation and the need to decompose the
problem instance into independent sub-problems. Later, Parish used a genetic
algorithm called GENITOR to solve the SRS problem [Par94]. GENITOR out-
performed the MIP approach, nominally scheduling 96% of user requests. Both
the MIP algorithm and the GENITOR genetic algorithm were evaluated using
the same set of seven problems; we refer to this collection of instances as the
“AFIT benchmark”.

Currently, there is no accepted state-of-the-art algorithm for satellite range
scheduling. Because it is an extremely important application, we have been en-
gaged in a study of various algorithms for this problem. Currently the GENITOR
algorithm appears to be the best known method for solving larger problems.

In this paper, we replicate the results reported by Parish [Par94] using GENI-
TOR to solve the AFIT benchmark problems, and investigate reasons for GENI-
TOR’s strong relative performance. We identify a simple heuristic that can solve
all of the problems in the AFIT benchmark. Finally, we generate new problems
similar to the ones in the AFIT benchmark and explore conditions where the
heuristic fails. GENITOR continues to display good results for new problems.

2 Algorithms for Satellite Range Scheduling

In this section, we document the various algorithms considered in this study. We
first discuss the method of encoding solutions, and the procedure for decoding
solutions into actual schedules. Next, we define the three algorithms used in
our analysis: random sampling, local search under a shift neighborhood, and
the GENITOR genetic algorithm. We then conclude by briefly discussing our
decision to omit two well-known families of scheduling algorithms in our analysis.

2.1 Solution Representation and Decoding

Each of the algorithms we consider represents solutions as permutations of the
integers 1 through N , where N is the total number of requests to be scheduled. A
permutation represents the order in which requests are given access to particular
resources. A greedy heuristic is then used to generate a schedule from a permu-
tation, by attempting to schedule the requests in the order in which they appear
in the permutation. Each request is assigned to the first available resource (from
its list of alternatives), and at the earliest possible starting time. If the request
cannot be scheduled on any of the alternative resources, it is dropped from the
schedule (i.e., bumped). The “fitness” of a schedule is then defined as the total
number of requests bumped from the schedule.



2.2 Random Sampling

Random sampling produces schedules by generating random permutations of
length N . By randomly sampling a large number of schedules, we can character-
ize the distribution of solutions in the search space. Further, the performance of
random sampling provides a baseline measure that provides some indication of
problem difficulty.

2.3 Local Search under the Shift Neighborhood

A key component of any local search algorithm is the move operator. Because
problem-specific knowledge for the SRS problem is lacking, we selected the
“shift” move operator. The shift operator has been successfully applied to a
number of well-known scheduling problems, such as the permutation flow-shop
scheduling problem [Tai90]. The neighborhood under the shift operator is de-
fined by considering all (N − 1)2 pairs (x, y) of positions in a current solution
π, subject to the restriction that y 6= x − 1. The neighbor π

′

corresponding to
the position pair (x, y) is produced by shifting the job at position x into the
position y, while leaving all other relative job orders unchanged. If x < y, then
π′ = (π(1), ..., π(x − 1), π(x + 1), ..., π(y), π(x), π(y + 1), ..., π(n)). If x > y, then
π′ = (π(1), ..., π(y − 1), π(x), π(y), ..., π(x − 1), π(x + 1), ..., π(n)).

Given the relatively large neighborhood size, we use the shift operator in
conjunction with next-descent search. The neighbors of the current solution
are examined in a random order, and the first neighbor with either a lower
or equal fitness (i.e., number of bumps) is accepted. Search terminates when a
pre-specified number of evaluations is exceeded.

2.4 The GENITOR Genetic Algorithm

GENITOR [Whi89] is a “steady-state” genetic algorithm [Dav91]. Previous stud-
ies of the SRS problem at AFIT [Par94] report good results when using GEN-
ITOR in conjunction with permutation encoding of solutions. In each step of
GENITOR, a pair of solutions is selected and used to generate a single child,
which then replaces the worst solution in the current population. The result is
a form of elitism, in which the best P − 1 individuals generated during search
are maintained in a population of size P .

In GENITOR, the parent solutions are selected based on the rank of their
fitness, relative to other solutions in the population. A linear bias is used such
that individuals that are above the median fitness have a rank-fitness greater
than one and those below the median fitness have a rank-fitness of less than one.

The typical genetic algorithm encodes solutions as bit strings, enabling the
use of standard crossover operators such as one-point and two-point crossover
[Gol89]. Because we encode solutions as permutations, a special crossover op-
erator is required to ensure that the recombination of two parent permutations
results in a child inheriting relevant characteristics of the two parents. We use



Syswerda’s (relative) order crossover operator [Sys91], which preserves the rela-
tive order of the elements in the parents when constructing the child. Syswerda’s
operator has been successfully applied in a variety of scheduling applications.

2.5 Other Scheduling Algorithms

We also considered straightforward implementations of Tabu search for the SRS
problem, but the performance of these algorithms was not competitive. With 500
requests, the number of neighbors under shift or swap-based move operators is
roughly 5002; consequently, Tabu search and other local search algorithms based
on steepest descent are simply not practical. We briefly explored methods for
reducing the neighborhood size, but in all cases the reduction in neighborhood
size severely impacted algorithm performance.

Additionally, we developed constructive search algorithms based on texture-
based [BDSF97] and slack-based [SC93] constraint-based scheduling heuristics
that select the maximal subset of tasks that can be feasibly scheduled. We found
that texture-based heuristics are highly effective when the size of the problem
is small (e.g., less than 100 requests) and when alternative or backup requests
are not considered. However, on larger problems, the consideration of alternative
times makes the straightforward use of constraint-based methods ineffective.

3 The AFIT benchmark

The AFIT benchmark problems 1 were derived using the ASTRO system, a com-
puter application developed to aid human schedulers. These problems represent
the user requests and visibilities for seven days, from October 12 to October 18,
1992. The low-altitude requests in these problems can be scheduled only at one
ground station (by assigning it to one of the antennas present at that ground
station). The number of requests to be scheduled for the seven problems are
322, 302, 300, 316, 305, 298, and 297 respectively. We note that since 1992, the
number of requests received during a typical day has increased substantially.

In our experimental setup we replicated the conditions and the reported
results from Parish’s study [Par94]. We ran GENITOR on each of the seven
problems in the benchmark, using the same parameters: population size 200,
selective pressure 1.5, order-based crossover, and 8000 evaluations 2 for each
run. We also ran random sampling and local search on each AFIT problem, with
a limit of 8000 evaluations per run. For each algorithm, we performed a total
of 30 independent runs on each problem. The results are summarized in Table
1. Included in the table are the results obtained by Schalck using Mixed Integer
Programming [Sch93]. As previously reported, GENITOR yields the best overall
performance.

1 We thank Dr. James T. Moore, Associate Professor of Operations Research at the
Department of Operational Sciences, Graduate School of Engineering and Manage-
ment, Air Force Institute of Technology for providing the data.

2 An increase in the number of evaluations to 50k and of the population size to 400
did not improve the best solutions found for each problem.



GENITOR Local Search Random Sampling MIP
Day Min Mean Stdev Min Mean Stdev Min Mean Stdev

1 8 8.6 0.49 15 18.16 2.54 21 22.7 0.87 10

2 4 4 0 6 10.96 2.04 11 13.83 1.08 6

3 3 3.03 0.18 11 15.4 2.73 16 17.76 0.77 7

4 2 2.06 0.25 12 17.43 2.76 16 20.20 1.29 7

5 4 4.1 0.3 12 16.16 1.78 15 17.86 1.16 6

6 6 6.03 0.18 15 18.16 2.05 19 20.73 0.94 7

7 6 6 0 10 14.1 2.53 16 16.96 0.66 6

Table 1. Performance of GENITOR, local search, and random sampling on the AFIT
benchmark problems, in terms of the best and mean number of bumped requests. All
statistics are taken over 30 independent runs. The last column reports the performance
of Schalck’s Mixed-Integer Programming algorithm [Sch93].

To exploit the differences in scheduling slack and number of alternatives
between low and high-altitude requests, we designed a simple greedy heuristic
(which we call the “split heuristic”) that first schedules all the low-altitude re-
quests (in the order given by the permutation), followed by the high-altitude
requests. We now show that: (1) for more than 80% of the best known schedules
found by GENITOR, the split heuristic does not increase the number of conflicts
in the schedule, and (2) the split heuristic typically produces good (and often
best-known) schedules.

We hypothesized that GENITOR may be learning to schedule the low-altitude
requests before the high-altitude requests, leading to the strong overall perfor-
mance. If true, the evaluation of high-quality schedules should, on average, re-
main unchanged when the split heuristic is applied. To test this hypothesis, we
ran 1000 trials of GENITOR on each AFIT problem. The results are summa-
rized in Table 2. The second column (labeled “Total Number of Best Known
Found”) records the number of schedules (out of 1000) with an evaluation equal
to the best found by GENITOR in any run. We then applied the split heuristic
to each such schedule. The schedules resulting from the split heuristic fall into
three categories. First, the conflicts are identical to those found by GENITOR;
the number of schedules in this category is given in the third column (“Same
Evaluation Same Conflicts”). Second, the evaluation is the same but the con-
flicts are different; the number of schedules in this category is given in column
“Same Evaluation Different Conflicts”. Third, the evaluation is different; the
last column reports the number of schedules in this category. By separating the
requests from the schedules produced by GENITOR into low and high-altitude
requests, the evaluation of more than 80% of the schedules remains unchanged.
The numbers in the last column of the table also warn that when using the split
heuristic only a subspace of the permutations is considered (the permutations
that are separated into low and high-altitude requests); this subspace does not
contain all the best-known solutions, and, in fact, for different instances of the
problem this subspace could be suboptimal.



Day Total Number of Same Evaluation Same Evaluation Worse
Best Known Found Same Conflicts Different Conflicts Evaluation

1 420 38 373 9

2 1000 726 106 168

3 996 825 115 56

4 937 733 50 154

5 862 800 12 50

6 967 843 56 68

7 1000 588 408 4

Table 2. The effect of applying the split heuristic when evaluating best known sched-
ules produced by GENITOR
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Fig. 1. Algorithm performance for the seven AFIT benchmark problems

Our second hypothesis is that using the split heuristic results in solutions with
a small number of conflicts. Figure 1 presents a summary of the results obtained
when using the GENITOR, Local Search and Random Sampling without the
split heuristic (30 experiments, 8000 evaluations per experiment), as well as the
split versions denoted by GENITOR-S, Local Search-S and Random Sampling-S.
The split versions of the three algorithms were run in 30 experiments with 100
evaluations per experiment. The minimum number of bumps in 30 experiments
is recorded for each problem as the percent of requests scheduled. The left half
of Figure 1 presents the average percentage of requests scheduled for the seven
problems by each algorithm. The corresponding average CPU times (in seconds)
appear in the right half of the figure.

For all the problems, Random Sampling-S finds the best known solutions, as
illustrated in Table 3. Since the best known solutions were obtained by randomly
sampling a small number of permutations, solving the problems in the AFIT
benchmark is easy using the split heuristic.

We can build a simple problem instance for which the optimal solution cannot
be found using the split heuristic. Consider the problem represented in Figure 2.
There are only two ground stations and each ground station has two antennas



Best Random Sampling-S
Day Known Min Mean Stdev

1 8 8 8.2 0.41

2 4 4 4 0

3 3 3 3.3 0.46

4 2 2 2.43 0.51

5 4 4 4.66 0.48

6 6 6 6.5 0.51

7 6 6 6 0

Table 3. Results of running random sampling in 30 experiments, by generating 100
random permutations per experiment. A problem-specific heuristic is used in the eval-
uation function, where the low-altitude requests are evaluated first.

(meaning that at each ground station at most two requests can be scheduled at
the same time). There are two high-altitude requests, R3 and R4, with durations
3 and 7 respectively. R3 can be scheduled between start time 4 and end time
13; R4 can be scheduled between 0 and 9. Both R3 and R4 can be scheduled
at either of the two ground stations. The rest of the requests are low-altitude
requests. R1 and R2 request the first ground station, while R5, R6, R7, and R8
request the second ground station. This problem fits the description of the SRS
problems in the AFIT benchmark: the low-altitude requests can be scheduled
only at a specific ground station, with a fixed start and end time, while the high-
altitude requests have alternative resources and a time window specified. For all
the permutation schedules, if the split heuristic is used R3 and R4 can not be
scheduled. However, it is possible to find schedules where both R3 and R4 get
scheduled, and only one request (R1, R2, or R8) gets bumped. The subspace
containing the permutations with all the low-altitude requests before the high-
altitude requests is suboptimal - the global optimum is not necessarily contained
in this subspace. The example shows the potential for failure to generate optimal
solutions using the split heuristic.

4 Generalizing the AFIT problems

Does the algorithm performance obtained for the AFIT benchmark transfer to
larger sets of similar problems? To explore this question, we built a problem
generator which produces problems similar to the AFIT benchmark by mod-
eling features encountered in the real-world problems. Then we compare the
results of running GENITOR, local search and random sampling on problems
produced by the problem generator to the results reported for the AFIT prob-
lems. We show that: (1) GENITOR consistently results in the smallest number of
unscheduled requests, and (2) the performance of the split heuristic on the seven
AFIT problems does not transfer to the problems produced by our generator.

Two main features characterize our problem generator. First, it models differ-
ent types of requests encountered in the real-world satellite scheduling problem,
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Fig. 2. Example of a problem for which the split heuristic can not result in an optimal
solution. Each ground station has two antennas; the only high-altitude requests are R3
and R4.

such as downloading data from a satellite, transmitting information or com-
mands from a ground station to a satellite, checking the health and status of a
satellite. Second, the problem generator uses models for customer behavior. The
generator produces a predefined number of requests for each customer and each
request type. With a 0.5 probability we determine if a request is a low-altitude or
high-altitude one. For low-altitude requests, we decided to preserve the AFIT def-
inition by assigning the duration equal to the size of the time window. However,
we define alternative ground stations for both low and high-altitude requests.

In order to generate the alternatives for a request, we compiled data collected
on the Web about the visibilities of various satellites 3 from the locations of the
nine ground stations.

We repeat the experiments described for the AFIT problems by running
GENITOR, local search and random sampling for problems produced by our
generator. To compare our results to the ones reported for the AFIT problems,
but also to generate realistic problems, we ran the experiments for problem sizes
300, 350, 400, 450, and 500. For each size, we generated 30 problem instances.

We again ran GENITOR, local search and random sampling, with and with-
out the split heuristic, performing 30 runs with 8000 evaluations per run for each
problem.An increase in the number of evaluations to 50k and of the population
size to 400 did not improve the best solutions found for each problem. We record
the number of unscheduled requests for each run. Figure 3 shows that GENI-
TOR on average outperforms GENITOR-S and both versions of local search
and random sampling. In fact GENITOR (without the split heuristic) always
outperforms all the other algorithms. In Table 4 we first subtract the minimum
number of bumped requests for each problem from the minimum number of
bumped requests reported by each of the algorithms (with or without the split
heuristic) for that problem in 30 runs. Then we average these differences over the

3 See: http://earthobservatory.nasa.gov/MissionControl/overpass.html for visibilities;
thanks to Ester Gubbrud for helping us to compile the databases.



GENITOR Local Search Random Sampling
Size Mean Stdev Mean Stdev Mean Stdev

300 0.000 0.000 0.000 0.000 0.167 0.213

350 0.000 0.000 0.333 0.368 1.067 1.099

400 0.000 0.000 1.233 1.702 2.833 3.523

450 0.000 0.000 3.667 3.678 5.967 6.240

500 0.000 0.000 8.300 3.941 11.767 7.840

GENITOR-S Local Search-S Random Sampling-S
Size Mean Stdev Mean Stdev Mean Stdev

300 0.767 0.737 0.767 0.737 0.867 0.671

350 0.667 0.851 0.967 1.551 1.367 2.033

400 1.100 1.128 2.167 2.626 2.933 3.168

450 1.467 1.223 3.967 4.309 5.200 6.717

500 2.200 2.097 8.700 8.907 10.667 10.161

Table 4. The difference between the minimum number of bumps reported by an algo-
rithm and the minimum number of bumps found by any of the six algorithms (with or
without the split heuristic) is averaged over the 30 instances for each problem size

30 instances generated for each size. From both Figure 3 and Table 4, it is clear
that the split heuristic always results in an average decrease in performance.

5 Conclusions

Satellite Range Scheduling is an important real world problem that impacts the
use of expensive and limited resources. We first considered a version of the prob-
lem studied at AFIT. For planning and experimental control purposes, we also
built a problem generator that generalizes features found in the AFIT problems
and introduces new realistic features. We show that all the seven problems in the
AFIT benchmark are trivial to solve when a simple heuristic is used. But, when
applied to more realistic problems, the split heuristic results in poor-quality so-
lutions. Finally, our results indicate that a genetic algorithm, GENITOR, using
a permutation representation yields the best overall performance and does so in
a modest amount of time.
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