
An Anytime Algorithm for Scheduling of Aircraft Landing TimesUsing Genetic Algorithms �Vic Ciesielski, Paul ScerriDepartment of Computer Science,RMIT University,GPO Box 2476V, Melbourne, Vic 3001E-mail: vc@cs.rmit.edu.au4th August 1998AbstractEvolutionary approaches are not usually considered for real time scheduling problems due to longcomputation times and uncertainty about the length of the computation time. We argue that forsome kinds of problems, such as optimizing aircraft landing times, genetic algorithms have advantagesover other methods as a best solution is always available when needed, and, since the computationis inherently parallel, more processors can be added to get higher quality solutions if necessary.Furthermore, the computation time can be decreased and the quality of the generated schedulesincreased by seeding the genetic algorithm from a previous population. We have performed a seriesof experiments on landing data for Sydney airport on the busiest day of the year. Our results showthat high quality solutions can be computed in the time window between aircraft landings.1 IntroductionReal time problems are characterized by the need to have certain computations completed and answersready within a limited time otherwise it will be too late for the answers to be of any use. One approachto real time problems is the use of `anytime algorithms' [6], procedures which can be interrupted at anytime and will always have a result available but will produce a better result given more time.Genetic algorithms[3, 5] are a problem solving strategy, based loosely on Darwinian evolution, thathas been successfully used for a large number of scheduling and optimization problems[2, 9]. Geneticalgorithms are generally associated with long computation times and great uncertainty about how longa computation will take. Consequently they are not normally considered for real-time problems, suchas the optimal scheduling of aircraft landing times. Despite the perceived computational disadvantages,we believe that genetic algorithms might in fact, perform well in real time situations, since:1. A population of potential solutions (i.e. schedules) is always available. The longer one runs thecomputation the better these solutions should become. However, at any time, there is always abest solution available. Thus genetic algorithms can be considered as a form of anytime algorithm.2. Genetic algorithms are inherently parallel. If more computation is needed to get an acceptableresult in the time available, one can simply add more processors.The scheduling of aircraft arrival times at a busy airport is a di�cult problem for many reasons. Thereis an inherent tradeo� between leaving wide safety margins between aircraft and maximizing the numberof aircraft that take o� and land each hour, particularly during peak hours. It has been estimated thatthe problem of air tra�c congestion will cost $US10 billion in Europe alone by the year 2000.1Appears in Australian Journal of Intelligent Information Processing Systems, Vol 4, No 3/4, Spring/Summer (SouthernHemisphere), Pages 206{213, 1997.

1.1 GoalsOur primary goal is to investigate the applicability of genetic algorithms to the problem of real timescheduling of aircraft arrival times at airports. We are particularly interested in:1. Whether the constraints and the constantly changing situations such as aircraft landings and newarrivals in the scheduling horizon can be adequately represented with the a genetic algorithmapproach.2. Whether the landing sequences computed in the time available will be good enough.3. Whether specialized crossover and mutation operators which favour changes to newly arrived planesare better than standard binary crossover and mutation.4. A deployed scheduling system is required to deliver a new schedule when a plane lands or newplanes enter the scheduling horizon. Thus a sequence of schedules need to be generated. Weexpect that new schedules constructed by seeding the new optimization run with chromosomesfrom the previous population will be better than those constructed from scratch.2 Scheduling of Aircraft Arrival TimesThe focus of this work on is what happens after planes enter the `scheduling horizon' of an airport,usually about 40 minutes before landing. The location and landing order of planes is controlled by thelocal air tra�c controllers. When a plane enters the scheduling horizon, it has an optimal landing time.This is the time it would land if there were no other aircraft at the airport and it could travel at itsoptimal speed. At busy times, planes arrive at a faster rate than can be landed. Slow planes come intothe scheduling zone before faster ones. If planes were allocated landing times on a �rst come �rst servedbasis, runways would remain idle as the queue of planes wanting to land increased. The key resource inthis domain is time on a runway.At Sydney airport, for which we have data, landing slots are allocated at 3 minute intervals. This leavesa conservative margin for safety and permits several takeo�s between landings, however it is a majorcontributor to congestion. The work reported in this paper is concerned with variable times betweenlandings. Other factors that must be taken into account in generating schedules are:� Some planes have higher priority than others; a 747 will generally have higher priority than aCessna.� While arriving planes have a preferred runway, some planes are constrained to use speci�c runways.� There are constraints in the amount of time that must pass before, say, a small plane can landafter a big plane.It is undesirable to change landing times too much after they have been allocated since this causes ripplee�ects and additional communication in notifying pilots of changes in landing arrangements. Schedulingof take-o�s is not considered since these are interspersed with landings. A plane can be asked to land upto 3 minutes earlier than its optimal time to improve a schedule. It is not possible for a plane to landmore than three minutes early, that is, more than three minutes before its optimal arrival time..A closely related problem that has received much attention in the literature is the job shop schedulingproblem[1, 10].3 The Test DataThe data we are using for the problem was generated from a simulation of air tra�c for Easter Thursdayat the Sydney airport, which is the busiest day of the year. Two data sets were generated, one containing28 planes arriving in a 37 minute period, the other 29 planes arriving in a 38 minute period.

4 The Genetic AlgorithmNote that we actually need to solve a sequence of optimization problems. Whenever planes land andnew planes enter the scheduling horizon we have a new optimization problem.We have compared two genetic algorithms:1. The standard binary genetic algorithm as described in [3] and implemented in the GAUCSDpackage[4]. In this case each problem in the sequence requires a new chromosome encoding whichdeletes planes that have landed and adds planes that have recently arrived. The new schedules arebuilt from `scratch', that is from a random initial population as shown below:Standard AlgorithmFor each 3 min interval doRandomly initialize populationWhile (time < 3 mins or not(convergence)) doSelect 2 parentsApply crossover operationApply mutation operatorInsert new children into the populationUse elitist strategy where the best 10%from theprevious generation are copied to next generation2. A `seeding' modi�cation. Rather than starting from scratch, we build, or seed, the new initialpopulation from the one left at the end of the last problem by deleting planes that have landedand inserting newly arrived planes as shown below:Seeding ApproachFor each 3 min interval doIf �rst 3 min intervalthen Randomly initialize populationelse Seed from �nal population of previous 3 minintervalWhile (time < 3 mins or not(convergence)) doSelect 2 parentsApply crossover operationApply mutation operatorInsert new children into the populationUse elitist strategy where the best 10%from theprevious generation are copied to next generation4.1 EncodingEach gene on the chromosome consists of 8 bits and represents a landing time (7 bits) and a runway (1bit) as shown in �gure 1. A plane with a zero landing time will be the next one landing (T ime = now).A non zero landing time is the number of 30 second intervals from now. In our data there are tworunways so 1 bit is enough to encode the runway.Time R Time R Time R Time R . .Figure 1: Encoding of Chromosomes

Associated with with the chromosomes is a global table of planes as shown in �gure 2.1 2 3 40 0 6 1 9 0 . .index Id Size Opt0 Opt11 TXZ Big 12:01 12:042 FDS Small 12:03 12:003 JKL Big 12:01 12:05Figure 2: Encoding of Chromosomes: ExampleStatic information about planes is kept in a global table as shown in �gure 2. The `opt0' column givesthe optimal landing time on runway 0 and the `opt1' column the optimal landing time on runway 1.Assuming that now = 12 : 00, the encoding shown in �gure 2 corresponds to a schedule where plane 1 isto land at 12:00:00 on runway 0, plane 2 at 12:03:00 on runway 1 and plane 3 at 12:04:30 on runway 0.A landing schedule as presented to the user is a table consisting of a time, a runway and the Id of theplane scheduled to land. The schedule must be shown in order of increasing landing times. Producinga landing schedule from any chromosome simply requires building an empty table of landing slots at 30second intervals for each runway, walking down the chromosome and using the time and runway to indexand �ll in this table. This is similar to the `schedule builder' approach used in job shop scheduling [8].Note that a considerable number of these 30 second landing slots will be empty.The advantages of this encoding are that very �ne time slices (30 seconds) can be represented and thatfast binary crossover and mutation operators can be used. A big disadvantage is that invalid schedulesare generated by crossover and mutation, for example two planes can be scheduled to land at the sametime on the same runway.Note that while it may appear that the problem requires a variable length chromosome to deal with anarbitrary number of planes waiting to land, this is in fact not the case since each 30 seconds any planesthat have landed in that time are removed from the static table and the chromosomes, and new planesreaching the scheduling area added. This results in a sequence �xed length optimization problems.The encoding described above was chosen after considerable analysis and experimentation with alterna-tives. Originally we treated the problem as a rearrangement/permutation problem and used order andposition based operators[7]. A pair of genes on the chromosome corresponded to a 3 minute landing sloton each of two runways. Each slot contained the Id of the plane scheduled to land at that time. Thisencoding, while it is a relatively natural encoding of the problem had a number of disadvantages:1. It resulted in illegal solutions since schedules were generated in which planes were listed to landearlier than was physically possible. In some runs there was not a single valid schedule in thepopulation.2. It required long chromosomes, which would need to be 6 times longer to deal with 30 secondlanding slots.3. The position based crossover and mutation operators executed very slowly.4.2 Fitness FunctionWe have chosen to deal with invalid solutions by use of the �tness function. Thus the �tness functionmust punish sub-optimal solutions and severely punish invalid ones. We have used the penalties shownin �gure 3.The �tness function used is also shown in �gure 3. The value of total early is found by �nding all planeswhich are scheduled to arrive too early, for each such plane �nding the amount of time by which it is

Fitness = INVALID PENALTY (If Applicable)+ CLASH PENALTY (If Applicable)+ No planes too close * TOO CLOSE PENALTY+ No planes adj too close * ADJ PENALTY+ total early * EARLY PENALTY+ total delay * DELAY PENALTYPenalty Description ValINVALID The schedule is invalid for anyreason. 100CLASH Two planes scheduled to landat the same time. 10TOO CLOSE Planes are scheduled to land onthe same runway without anadequate time gap. 10ADJ Planes are scheduled to landon adjacent or crossed runwayswithout an adequate time gap 10EARLY A plane scheduled to land tooearly. 3DELAY A plane is scheduled to landtoo long after its optimal land-ing time. 1Figure 3: Fitness Function and Penaltiestoo early and computing the total for all early planes. Total delay is the result of a similar calculationfor planes which are scheduled to land later than their optimal time.The relative sizes of the penalties can be roughly determined from domain knowledge, for example aninvalid schedule must be heavily punished, while a plane landing after a small delay should only receivea small penalty. Determining the actual sizes of the penalties was mostly an empirical exercise.4.3 Genetic OperatorsWe have compared standard binary crossover and mutation operators and modi�ed binary crossover andmutation operators. The modi�cations are based on domain knowledge: Since we desire that the earlyparts of schedules do not change very much (a domain requirement) we decrease the probability of amutation or crossover at the beginning of the chromosomes and increase it the end of the chromosome.Note that, due to the encoding, recently arrived planes are represented toward the end of the chromosome.Thus the operators tend to leave alone planes that have been in the system for some time and focus onnewer arrivals.For our chosen encoding there are no straightforward ways of repairing invalid solutions or modifyingthe crossover and mutation operators to ensure that illegal solutions cannot arise. We use the �tnessfunction to heavily penalize invalid solutions thus lowering the probability of their being selected forreproduction.5 ResultsThe runs were carried out using a modi�ed version of GAUCSD[4] using the elitist (10%) strategy. Allruns up to 50,000 trials completed in less than 30 seconds on a SPARC workstation.

In a deployed scheduling system it is absolutely imperative for the system to deliver a valid schedule ondemand. The schedule should be optimal or very close to optimal. Thus in our experiments we havefocused on the number of valid schedules in the population, the �tness of the schedules, and how theyvary with genetic algorithm parameters. Ideally we would like to �nd the settings which give the bestpossible results on both measures.Special Operators Standard OperatorsTrials Seeding No Seeding Seed No Seeding500 53.17 47.67 56.94 47.201,000 53.96 46.55 55.65 49.482,000 65.75 48.97 58.95 45.475,000 48.10 50.20 55.94 50.1210,000 62.81 51.61 65.63 55.4950,000 58.00 44.76 56.79 49.07Table 1: Percentage of Valid Solutions. Population = 50, Crossover rate = 0.1, Mutation rate = 0.01We expected that the number of valid schedules would stay relatively constant and the �tness wouldincrease uniformly with the number of trials, but, as the tables below show, this turned out not to bethe case.Tables 1 and 2 show the results of a number of runs whose goal was to determine whether the seedingapproach was better than starting from scratch. Table 1 shows the number of valid schedules in thepopulation as the number of trials increases. The results for seeding are clearly superior. We expectedthat the runs where seeding was not used would start with a lower number of valid schedules but wouldeventually reach the performance as when seeding was used. This turned out not to be the case. Thenon seeding performance never `catches up' to the seeding performance. The same result is evident inthe �tness of the best solutions as shown table 2.Special Operators Standard OperatorsTrials Seeding No Seeding Seeding No Seeding500 289.46 348.37 228.06 370.741,000 268.58 368.12 233.59 312.122,000 159.57 327.60 183.34 335.165,000 297.42 327.71 243.49 313.4410,000 166.74 261.28 167.84 206.5450,000 278.19 373.07 238.42 321.81Table 2: Best Fitness. Population = 50, Crossover rate = 0.1, Mutation rate = 0.01Tables 1 and 2 also show comparisons of results with our special crossover and mutation operators andthe standard binary ones. Comparison of columns 2 and 4 and 3 and 5 of table 1, and 2 and 4 and 3and 5 of table 2 reveals that there is no real di�erence.Tables 3 and 4 were generated only for the seeding approach. They show how the number of validsolutions changes with population size, mutation and crossover rates. Results for both the special andstandard crossover and mutation operators are shown.The best results for both number of valid solutions and �tness were obtained for a high population size(500), a high crossover rate (0.6) and a very low mutation rate (0.001) after 20,000 trials and using thestandard binary crossover and mutation operators. In general better results are associated with a highpopulation and a low mutation rate. There is no clear superiority of the special crossover and mutationoperators over the standard ones or vice versa.As notes earlier we expected the �tness of the schedules to increase as the number of trials increased.As can be seen from the results its behaviour was somewhat erratic. Further investigation is needed todetermine the reason for this.

Special xover and mutationRun Pop Xover Mut % Valid % ValidRate Rate 2,000 Trials 20,000 Trials1 500 0.1 0.1 66.54 67.242 500 0.6 0.001 64.82 63.113 50 0.6 0.01 52.68 45.884 50 0.1 0.1 57.38 55.855 50 0.1 0.01 65.75 50.51Standard xover and mutationRun Pop Xover Mut % Valid % ValidRate Rate 2,000 Trials 20,000 Trials1 500 0.1 0.1 55.59 58.382 500 0.6 0.001 67.72 68.773 50 0.6 0.01 58.29 60.014 50 0.1 0.1 58.04 57.265 50 0.1 0.01 58.95 62.47Table 3: Percent of valid solutions for di�erent GA parameter values6 ConclusionsThe major goal of this work was to determine whether it was possible to develop an anytime algorithmbased on genetic algorithms for scheduling aircraft landing times. We have established that such analgorithm can generate good schedules in the time available between landings. Thorough inspectionand validation of the generated schedules by domain experts has not yet been done, but preliminaryindications are that the schedules are of high quality and could be used at Sydney airport.The application involves a sequence of scheduling problems since new schedules must be generatedwhen planes land and new planes enter the scheduling horizon. Seeding new optimization runs fromthe chromosomes available at the end of the previous problem has turned out to be very satisfactory.Seeding leads to improved the �tness and a higher number of valid solutions in the population.Domain knowledge suggested that specialized crossover and mutation operators which favoured newlyarrived planes at the end of the chromosome might give improved performance. However they did notresult in any real improvement over the standard operators.We have established that genetic algorithms can produce high quality schedules in real time. The nextstage in the development of a scheduling system based on genetic algorithms is to investigate whetherthe air tra�c controllers' preferences, special requirements and exceptions can be adequately capturedin the �tness function.AcknowledgementsWe thank Rick Evertsz from the Australian Arti�cial Intelligence Institute for providing the the data forthe project and discussions related to the meaning of the data and general constraints and problems ofaircraft arrival scheduling. We thank Dr. Linda Stern from the University of Melbourne for providing uswith a position based crossover program for GAUCSD, and for key discussions on the encoding options.We also thank Glen Stevens for the early work done on the permutation based approach to the problem.References[1] H. L. Fang, P. Ross, and D. Corne. A promising genetic algorithm approach to job-shop schedul-ing, rescheduling, and open-shop scheduling problems. In Proceedings of the Fifth International

Special xover and mutationRun Pop Xover Mut % Valid % ValidRate Rate 2,000 Trials 20,000 Trials1 500 0.1 0.1 162.33 157.852 500 0.6 0.001 150.31 137.843 50 0.6 0.01 284.19 310.444 50 0.1 0.1 271.24 250.815 50 0.1 0.01 159.57 309.33Standard xover and mutationRun Pop Xover Mut % Valid % ValidRate Rate 2,000 Trials 20,000 Trials1 500 0.1 0.1 212.27 177.972 500 0.6 0.001 147.49 132.973 50 0.6 0.01 269.96 267.654 50 0.1 0.1 222.00 223.095 50 0.1 0.01 183.34 280.12Table 4: Fitness of best solution for di�erent GA parameter valuesConference on Genetic Algorithms, pages 375{382, University of California, San Diego, 1993.[2] P. S. Gabbert, D. E. Brown, C. L. Huntley, B. P. Markowicz, and D. E. Sappington. A system forlearning routes and schedules with genetic algorithms. In Proceedings of the Fourth InternationalConference on Genetic Algorithms, pages 430{436, University of California, San Diego, 1991.[3] Goldberg. Genetic and evolutionary algorithms come of age. Communications of the CACM, 37,1994.[4] J. J. Grefenstette and N. N. Schraudolph. A User's Guide to GAUCSD 1.4. Computer Science &Engineering Department, University of California, July 1992.[5] Z. Michalewicz. Genetic algorithms + data structures = evolution programs. Arti�cial Intelligence.Springer-Verlag, New York, 1992.[6] S. J. Russell and S. Zilberstein. Composing real-time systems. In Proceedings of the TwelfthInternational Conference on Arti�cial Intelligence, pages 212{217. Morgan Kaufman, 1991.[7] Glen Stevens. An Approach to Scheduling Aircraft Landing Times Using Genetic Algorithms. Hon-ours thesis, RMIT, Department of Computer Science, November 1995.[8] G. Syswerda. Schedule optimization using genetic algorithms. In Lawrence Davis, editor, Handbookof Genetic Algorithms. Van Nostrand Reingold, 1991.[9] G. Syswerda and J. Palmucci. The application of genetic algorithms to resource scheduling. In Pro-ceedings of the Fourth International Conference on Genetic Algorithms, pages 502{508, Universityof California, San Diego, 1991.[10] Serdar Uckun, Sugato Bagchi, Kazuhiko Kawamura, and Yutaka Miyabe. Managing genetic searchin job shop scheduling. IEEE Expert, 8(5):15{24, October 1993.

