An Anytime Algorithm for Scheduling of Aircraft Landing Times
Using Genetic Algorithms *

Vic Ciesielski, Paul Scerri
Department of Computer Science,
RMIT University,

GPO Box 2476V, Melbourne, Vic 3001
E-mail: vc@Qcs.rmit.edu.au

4th August 1998

Abstract

Evolutionary approaches are not usually considered for real time scheduling problems due to long
computation times and uncertainty about the length of the computation time. We argue that for
some kinds of problems, such as optimizing aircraft landing times, genetic algorithms have advantages
over other methods as a best solution is always available when needed, and, since the computation
is inherently parallel, more processors can be added to get higher quality solutions if necessary.
Furthermore, the computation time can be decreased and the quality of the generated schedules
increased by seeding the genetic algorithm from a previous population. We have performed a series
of experiments on landing data for Sydney airport on the busiest day of the year. Our results show
that high quality solutions can be computed in the time window between aircraft landings.

1 Introduction

Real time problems are characterized by the need to have certain computations completed and answers
ready within a limited time otherwise it will be too late for the answers to be of any use. One approach
to real time problems is the use of ‘anytime algorithms’ [6], procedures which can be interrupted at any
time and will always have a result available but will produce a better result given more time.

Genetic algorithms[3, 5] are a problem solving strategy, based loosely on Darwinian evolution, that
has been successfully used for a large number of scheduling and optimization problems[2, 9]. Genetic
algorithms are generally associated with long computation times and great uncertainty about how long
a computation will take. Consequently they are not normally considered for real-time problems, such
as the optimal scheduling of aircraft landing times. Despite the perceived computational disadvantages,
we believe that genetic algorithms might in fact, perform well in real time situations, since:

1. A population of potential solutions (i.e. schedules) is always available. The longer one runs the
computation the better these solutions should become. However, at any time, there is always a
best solution available. Thus genetic algorithms can be considered as a form of anytime algorithm.

2. Genetic algorithms are inherently parallel. If more computation is needed to get an acceptable
result in the time available, one can simply add more processors.

The scheduling of aircraft arrival times at a busy airport is a difficult problem for many reasons. There
is an inherent tradeoff between leaving wide safety margins between aircraft and maximizing the number
of aircraft that take off and land each hour, particularly during peak hours. It has been estimated that
the problem of air traffic congestion will cost $US10 billion in Europe alone by the year 2000.

L Appears in Australian Journal of Intelligent Information Processing Systems, Vol 4, No 3/4, Spring/Summer (Southern
Hemisphere), Pages 206-213, 1997.

1.1 Goals

Our primary goal is to investigate the applicability of genetic algorithms to the problem of real time
scheduling of aircraft arrival times at airports. We are particularly interested in:

1. Whether the constraints and the constantly changing situations such as aircraft landings and new
arrivals in the scheduling horizon can be adequately represented with the a genetic algorithm
approach.

2. Whether the landing sequences computed in the time available will be good enough.

3. Whether specialized crossover and mutation operators which favour changes to newly arrived planes
are better than standard binary crossover and mutation.

4. A deployed scheduling system is required to deliver a new schedule when a plane lands or new
planes enter the scheduling horizon. Thus a sequence of schedules need to be generated. We
expect that new schedules constructed by seeding the new optimization run with chromosomes
from the previous population will be better than those constructed from scratch.

2 Scheduling of Aircraft Arrival Times

The focus of this work on is what happens after planes enter the ‘scheduling horizon’ of an airport,
usually about 40 minutes before landing. The location and landing order of planes is controlled by the
local air traffic controllers. When a plane enters the scheduling horizon, it has an optimal landing time.
This is the time it would land if there were no other aircraft at the airport and it could travel at its
optimal speed. At busy times, planes arrive at a faster rate than can be landed. Slow planes come into
the scheduling zone before faster ones. If planes were allocated landing times on a first come first served
basis, runways would remain idle as the queue of planes wanting to land increased. The key resource in
this domain is time on a runway.

At Sydney airport, for which we have data, landing slots are allocated at 3 minute intervals. This leaves
a conservative margin for safety and permits several takeoffs between landings, however it is a major
contributor to congestion. The work reported in this paper is concerned with variable times between
landings. Other factors that must be taken into account in generating schedules are:

e Some planes have higher priority than others; a 747 will generally have higher priority than a
Cessna.

e While arriving planes have a preferred runway, some planes are constrained to use specific runways.

e There are constraints in the amount of time that must pass before, say, a small plane can land
after a big plane.

It is undesirable to change landing times too much after they have been allocated since this causes ripple
effects and additional communication in notifying pilots of changes in landing arrangements. Scheduling
of take-offs is not considered since these are interspersed with landings. A plane can be asked to land up
to 3 minutes earlier than its optimal time to improve a schedule. It is not possible for a plane to land
more than three minutes early, that is, more than three minutes before its optimal arrival time..

A closely related problem that has received much attention in the literature is the job shop scheduling
problem([1, 10].

3 The Test Data

The data we are using for the problem was generated from a simulation of air traffic for Easter Thursday
at the Sydney airport, which is the busiest day of the year. Two data sets were generated, one containing
28 planes arriving in a 37 minute period, the other 29 planes arriving in a 38 minute period.

4 The Genetic Algorithm

Note that we actually need to solve a sequence of optimization problems. Whenever planes land and
new planes enter the scheduling horizon we have a new optimization problem.

We have compared two genetic algorithms:

1. The standard binary genetic algorithm as described in [3] and implemented in the GAUCSD
package[4]. In this case each problem in the sequence requires a new chromosome encoding which
deletes planes that have landed and adds planes that have recently arrived. The new schedules are
built from ‘scratch’, that is from a random initial population as shown below:

Standard Algorithm

For each 3 min interval do

Randomly initialize population

While (time < 3 mins or not(convergence)) do
Select 2 parents
Apply crossover operation
Apply mutation operator
Insert new children into the population
Use elitist strategy where the best 10%from the
previous generation are copied to next generation

2. A ‘seeding’ modification. Rather than starting from scratch, we build, or seed, the new initial
population from the one left at the end of the last problem by deleting planes that have landed
and inserting newly arrived planes as shown below:

Seeding Approach

For each 3 min interval do

If first 3 min interval
then Randomly initialize population
else Seed from final population of previous 3 min

interval

While (time < 3 mins or not(convergence)) do
Select 2 parents
Apply crossover operation
Apply mutation operator
Insert new children into the population
Use elitist strategy where the best 10%from the
previous generation are copied to next generation

4.1 Encoding

Each gene on the chromosome consists of 8 bits and represents a landing time (7 bits) and a runway (1
bit) as shown in figure 1. A plane with a zero landing time will be the next one landing (T'ime = now).
A non zero landing time is the number of 30 second intervals from now. In our data there are two
runways so 1 bit is enough to encode the runway.

[Time | R || Time [R [Time [R [Time [R | . [|

Figure 1: Encoding of Chromosomes

Associated with with the chromosomes is a global table of planes as shown in figure 2.

1 P 3 4
oJof 6t ofo [- T

index | Id Size Opt0 | Optl
1 TXZ | Big 12:01 | 12:04
2 FDS | Small | 12:03 | 12:00
3 JKL | Big 12:01 | 12:05

Figure 2: Encoding of Chromosomes: Example

Static information about planes is kept in a global table as shown in figure 2. The ‘opt0’ column gives
the optimal landing time on runway 0 and the ‘optl’ column the optimal landing time on runway 1.
Assuming that now = 12 : 00, the encoding shown in figure 2 corresponds to a schedule where plane 1 is
to land at 12:00:00 on runway 0, plane 2 at 12:03:00 on runway 1 and plane 3 at 12:04:30 on runway 0.

A landing schedule as presented to the user is a table consisting of a time, a runway and the Id of the
plane scheduled to land. The schedule must be shown in order of increasing landing times. Producing
a landing schedule from any chromosome simply requires building an empty table of landing slots at 30
second intervals for each runway, walking down the chromosome and using the time and runway to index
and fill in this table. This is similar to the ‘schedule builder’ approach used in job shop scheduling [8].
Note that a considerable number of these 30 second landing slots will be empty.

The advantages of this encoding are that very fine time slices (30 seconds) can be represented and that
fast binary crossover and mutation operators can be used. A big disadvantage is that invalid schedules
are generated by crossover and mutation, for example two planes can be scheduled to land at the same
time on the same runway.

Note that while it may appear that the problem requires a variable length chromosome to deal with an
arbitrary number of planes waiting to land, this is in fact not the case since each 30 seconds any planes
that have landed in that time are removed from the static table and the chromosomes, and new planes
reaching the scheduling area added. This results in a sequence fixed length optimization problems.

The encoding described above was chosen after considerable analysis and experimentation with alterna-
tives. Originally we treated the problem as a rearrangement/permutation problem and used order and
position based operators[7]. A pair of genes on the chromosome corresponded to a 3 minute landing slot
on each of two runways. Each slot contained the Id of the plane scheduled to land at that time. This
encoding, while it is a relatively natural encoding of the problem had a number of disadvantages:

1. It resulted in illegal solutions since schedules were generated in which planes were listed to land
earlier than was physically possible. In some runs there was not a single valid schedule in the
population.

2. It required long chromosomes, which would need to be 6 times longer to deal with 30 second
landing slots.

3. The position based crossover and mutation operators executed very slowly.

4.2 Fitness Function

We have chosen to deal with invalid solutions by use of the fitness function. Thus the fitness function
must punish sub-optimal solutions and severely punish invalid ones. We have used the penalties shown
in figure 3.

The fitness function used is also shown in figure 3. The value of total_early is found by finding all planes
which are scheduled to arrive too early, for each such plane finding the amount of time by which it is

Fitness = INVALID_PENALTY (If Applicable)
+ CLASH_PENALTY (If Applicable)
+ No_planes_too_close * TOO_CLOSE_PENALTY
+ No_planes_adj_too_close ¥ ADJ_PENALTY
+ total_early * EARLY_PENALTY
+ total_delay * DELAY_PENALTY

Penalty Description Val

INVALID The schedule is invalid for any | 100
reason.

CLASH Two planes scheduled to land 10

at the same time.
TOO_CLOSE | Planes are scheduled to land on 10

the same runway without an

adequate time gap.
ADJ Planes are scheduled to land 10

on adjacent or crossed runways
without an adequate time gap

EARLY A plane scheduled to land too 3
early.

DELAY A plane is scheduled to land 1
too long after its optimal land-
ing time.

Figure 3: Fitness Function and Penalties

too early and computing the total for all early planes. Total_delay is the result of a similar calculation
for planes which are scheduled to land later than their optimal time.

The relative sizes of the penalties can be roughly determined from domain knowledge, for example an
invalid schedule must be heavily punished, while a plane landing after a small delay should only receive
a small penalty. Determining the actual sizes of the penalties was mostly an empirical exercise.

4.3 Genetic Operators

We have compared standard binary crossover and mutation operators and modified binary crossover and
mutation operators. The modifications are based on domain knowledge: Since we desire that the early
parts of schedules do not change very much (a domain requirement) we decrease the probability of a
mutation or crossover at the beginning of the chromosomes and increase it the end of the chromosome.
Note that, due to the encoding, recently arrived planes are represented toward the end of the chromosome.
Thus the operators tend to leave alone planes that have been in the system for some time and focus on
newer arrivals.

For our chosen encoding there are no straightforward ways of repairing invalid solutions or modifying
the crossover and mutation operators to ensure that illegal solutions cannot arise. We use the fitness
function to heavily penalize invalid solutions thus lowering the probability of their being selected for
reproduction.

5 Results

The runs were carried out using a modified version of GAUCSD[4] using the elitist (10%) strategy. All
runs up to 50,000 trials completed in less than 30 seconds on a SPARC workstation.

In a deployed scheduling system it is absolutely imperative for the system to deliver a valid schedule on
demand. The schedule should be optimal or very close to optimal. Thus in our experiments we have
focused on the number of valid schedules in the population, the fitness of the schedules, and how they
vary with genetic algorithm parameters. Ideally we would like to find the settings which give the best
possible results on both measures.

Special Operators Standard Operators

Trials Seeding No Seeding Seed No Seeding
500 53.17 47.67 56.94 47.20
1,000 53.96 46.55 55.65 49.48
2,000 65.75 48.97 58.95 45.47
5,000 48.10 50.20 55.94 50.12
10,000 62.81 51.61 65.63 55.49
50,000 58.00 44.76 56.79 49.07

Table 1: Percentage of Valid Solutions. Population = 50, Crossover rate = 0.1, Mutation rate = 0.01

We expected that the number of valid schedules would stay relatively constant and the fitness would
increase uniformly with the number of trials, but, as the tables below show, this turned out not to be
the case.

Tables 1 and 2 show the results of a number of runs whose goal was to determine whether the seeding
approach was better than starting from scratch. Table 1 shows the number of valid schedules in the
population as the number of trials increases. The results for seeding are clearly superior. We expected
that the runs where seeding was not used would start with a lower number of valid schedules but would
eventually reach the performance as when seeding was used. This turned out not to be the case. The
non seeding performance never ‘catches up’ to the seeding performance. The same result is evident in
the fitness of the best solutions as shown table 2.

Special Operators Standard Operators

Trials Seeding No Seeding Seeding No Seeding
500 289.46 348.37 228.06 370.74
1,000 268.58 368.12 233.59 312.12
2,000 159.57 327.60 183.34 335.16
5,000 297.42 327.71 243.49 313.44
10,000 166.74 261.28 167.84 206.54
50,000 278.19 373.07 238.42 321.81

Table 2: Best Fitness. Population = 50, Crossover rate = 0.1, Mutation rate = 0.01

Tables 1 and 2 also show comparisons of results with our special crossover and mutation operators and
the standard binary ones. Comparison of columns 2 and 4 and 3 and 5 of table 1, and 2 and 4 and 3
and 5 of table 2 reveals that there is no real difference.

Tables 3 and 4 were generated only for the seeding approach. They show how the number of valid
solutions changes with population size, mutation and crossover rates. Results for both the special and
standard crossover and mutation operators are shown.

The best results for both number of valid solutions and fitness were obtained for a high population size
(500), a high crossover rate (0.6) and a very low mutation rate (0.001) after 20,000 trials and using the
standard binary crossover and mutation operators. In general better results are associated with a high
population and a low mutation rate. There is no clear superiority of the special crossover and mutation
operators over the standard ones or vice versa.

As notes earlier we expected the fitness of the schedules to increase as the number of trials increased.
As can be seen from the results its behaviour was somewhat erratic. Further investigation is needed to
determine the reason for this.

Special xover and mutation
Run | Pop | Xover | Mut % Valid % Valid

Rate | Rate | 2,000 Trials | 20,000 Trials

1| 500 0.1 0.1 66.54 67.24

2| 500 0.6 0.001 64.82 63.11

3| 50 0.6 0.01 52.68 45.88

41 50 0.1 0.1 57.38 55.85

5| 50 0.1 0.01 65.75 50.51

Standard xover and mutation
Run | Pop | Xover | Mut % Valid % Valid

Rate | Rate | 2,000 Trials |20,000 Trials

1] 500 0.1 0.1 55.59 58.38

2 | 500 0.6 0.001 67.72 68.77

3 50 0.6 0.01 58.29 60.01

4 50 0.1 0.1 58.04 57.26

5 50 0.1 0.01 58.95 62.47

Table 3: Percent of valid solutions for different GA parameter values

6 Conclusions

The major goal of this work was to determine whether it was possible to develop an anytime algorithm
based on genetic algorithms for scheduling aircraft landing times. We have established that such an
algorithm can generate good schedules in the time available between landings. Thorough inspection
and validation of the generated schedules by domain experts has not yet been done, but preliminary
indications are that the schedules are of high quality and could be used at Sydney airport.

The application involves a sequence of scheduling problems since new schedules must be generated
when planes land and new planes enter the scheduling horizon. Seeding new optimization runs from
the chromosomes available at the end of the previous problem has turned out to be very satisfactory.
Seeding leads to improved the fitness and a higher number of valid solutions in the population.

Domain knowledge suggested that specialized crossover and mutation operators which favoured newly
arrived planes at the end of the chromosome might give improved performance. However they did not
result in any real improvement over the standard operators.

We have established that genetic algorithms can produce high quality schedules in real time. The next
stage in the development of a scheduling system based on genetic algorithms is to investigate whether
the air traffic controllers’ preferences, special requirements and exceptions can be adequately captured
in the fitness function.

Acknowledgements

We thank Rick Evertsz from the Australian Artificial Intelligence Institute for providing the the data for
the project and discussions related to the meaning of the data and general constraints and problems of
aircraft arrival scheduling. We thank Dr. Linda Stern from the University of Melbourne for providing us
with a position based crossover program for GAUCSD, and for key discussions on the encoding options.
We also thank Glen Stevens for the early work done on the permutation based approach to the problem.

References

[1] H. L. Fang, P. Ross, and D. Corne. A promising genetic algorithm approach to job-shop schedul-
ing, rescheduling, and open-shop scheduling problems. In Proceedings of the Fifth International

[2]

[10]

Special xover and mutation
Run | Pop | Xover | Mut % Valid % Valid
Rate | Rate | 2,000 Trials | 20,000 Trials
1| 500 0.1 0.1 162.33 157.85
2| 500 0.6 0.001 150.31 137.84
3| 50 0.6 0.01 284.19 310.44
41 50 0.1 0.1 271.24 250.81
5| 50 0.1 0.01 159.57 309.33

Standard xover and mutation
Run | Pop | Xover | Mut % Valid % Valid
Rate | Rate | 2,000 Trials |20,000 Trials
1] 500 0.1 0.1 212.27 177.97
2 | 500 0.6 0.001 147.49 132.97
3 50 0.6 0.01 269.96 267.65
4 50 0.1 0.1 222.00 223.09
5 50 0.1 0.01 183.34 280.12

Table 4: Fitness of best solution for different GA parameter values

Conference on Genetic Algorithms, pages 375-382, University of California, San Diego, 1993.

P. S. Gabbert, D. E. Brown, C. L. Huntley, B. P. Markowicz, and D. E. Sappington. A system for
learning routes and schedules with genetic algorithms. In Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 430-436, University of California, San Diego, 1991.

Goldberg. Genetic and evolutionary algorithms come of age. Communications of the CACM, 37,
1994.

J. J. Grefenstette and N. N. Schraudolph. A User’s Guide to GAUCSD 1.4. Computer Science &
Engineering Department, University of California, July 1992.

Z. Michalewicz. Genetic algorithms + data structures = evolution programs. Artificial Intelligence.
Springer-Verlag, New York, 1992.

S. J. Russell and S. Zilberstein. Composing real-time systems. In Proceedings of the Twelfth
International Conference on Artificial Intelligence, pages 212 217. Morgan Kaufman, 1991.

Glen Stevens. An Approach to Scheduling Aircraft Landing Times Using Genetic Algorithms. Hon-
ours thesis, RMIT, Department of Computer Science, November 1995.

G. Syswerda. Schedule optimization using genetic algorithms. In Lawrence Davis, editor, Handbook
of Genetic Algorithms. Van Nostrand Reingold, 1991.

G. Syswerda and J. Palmucci. The application of genetic algorithms to resource scheduling. In Pro-
ceedings of the Fourth International Conference on Genetic Algorithms, pages 502-508, University
of California, San Diego, 1991.

Serdar Uckun, Sugato Bagchi, Kazuhiko Kawamura, and Yutaka Miyabe. Managing genetic search
in job shop scheduling. IEEE Ezpert, 8(5):15-24, October 1993.

