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Abstract- We investigate the problem of schedul-
ing the move of a large amount of military equip-
ment from a fort or depot to a port. This prob-
lem differs from traditional distribution schedul-
ing problems in a number of ways including: (i)
the trucks need to be grouped into convoys, (ii)
there is a single source location and a single des-
tination, and (iii) there are potentially so many
trucks traveling the same set of roads that the
effects on other traffic must be considered. We
have divided the problem into two parts: (i) se-
lecting a fixed set of routes and (ii) forming the
trucks into convoys and selecting routes and de-
parture times for each convoy. We describe how
we have used genetic algorithms to solve each of
these problems. We emphasize how the ability to
incorportate domain knowledge into the genetic
algorithms has allowed us to easily create algo-
rithms well suited to the particular constraints
of the problems.

1 Introduction

1.1 The Military Land Move Problem

When deploying troops and equipment from the United
States to foreign soil, the longest portion of the journey
is either by sea or by air. However, before reaching the
ship or plane, there is usually a land move required to
reach the port. Similarly, after disembarking the ship
or plane, there is usually a land move required to reach
the theatre. These land moves have their own associated
scheduling problems separate from but intertwined with
the scheduling problems associated with the air and sea
legs. A detailed description of the military transporta-
tion problem including the land move component is given
in (Matthews & Holt, 1996). (For a description of our
work on a multi-agent society that fits all these differ-
ent scheduling problems into a coordinated scheduling
system, see (Montana et al., 1999).)

So far, we have concentrated our efforts on the first
of these land moves, from a fort or supply depot to a
seaport or airport. We assume that all small items are
packed into larger containers, so that all the items to
be moved are containers, vehicles (trucks, tanks, heli-

copters, etc.) and big items (e.g., expandable bridges).
There are three different modes of transportation: mil-
itary truck, commercial truck, and train. Some of the
military trucks and other light vehicles that are being
transported by ship are self-transportable, i.e. do not
need some other vehicle to carry them to the port.

As for most scheduling problems, there are a variety
of constraints of both the hard and soft variety. The
hard constraints specify what constitutes a legal sched-
ule, while the soft constraints specify preferences against
which to optimize. Some of the hard constraints are:
• The business rules constrain which items can go on

which mode of transportation. For example, a he-
licopter must go on a railcar due to its size, and
expandable bridges must go on commercial trucks.
• Military trucks must be formed into convoys, where

there are hard limits on the minimum and maxi-
mum number of vehicles in a convoy. The reason
for the minimum is that each convoy requires sup-
port vehicles, which are in short supply. The reason
for the maximum is that it becomes hard to keep
the convoy together as the numbers of vehicles in-
creases.
• Trucks have finite capacity and hence limitations on

the cumulative weight and area or volume (depend-
ing on whether or not the truck is a flatbed) of the
cargo.
• Each item has a time that it is scheduled to be

loaded onto the ship, and it cannot be scheduled
to arrive later than this time.
• There are only certain roads on which military traf-

fic can travel.
Some of the soft constraints are:
• The schedule should minimize the difference be-

tween the required loading time of an item and the
time that it arrives at the port. This minimizes
the costs associated with keeping items in a staging
area.
• There is a suggested maximum number of military

vehicles per hour on each particular piece of road
(i.e., link in the transportation graph) so as not to
block civilian traffic too much. We refer to this as
the link’s capacity.



• The routes traveled by the convoys should not have
too many turns, and convoys should not cross each
others’ paths. The reason is to avoid adding un-
necessary confusions that can lead to convoys being
broken.

The military land move problem differs sufficiently
from other standard ground transportation problems
that the techniques used to solve these other problems
generally do not apply. The differences between it and
other standard vehicle routing problems include:
• In the standard problems, there are usually either

multiple pickup locations or multiple dropoff loca-
tions, as opposed to moving everything between just
two points.

• In the standard problems, there are no constraints
involving grouping into convoys or overuse of roads.

The standard problems instead tend to have constraints
on the time each vehicle can take to traverse its route
(referred to as “time windows”) (Thangiah, 1995) or the
capacity of vehicles (Filipec, Skrlec & Krajcar, 1998).
The standard problems also have each truck traveling a
different route and attempt full coverage of a set of geo-
graphic locations. A fuller set of references to techniques
for solving the standard vehicle routing problems is given
in (Gendreau, Laporte & Potvin, 1997) and (Golden
& Assad, 1988). An example of another non-standard
ground transportation problem that requires different
techniques to solve because of its different constraints
is described in (Gabbert et al., 1991).

1.2 Our Approach

We have split the military land move problem into two
separate problems. The first problem is to find an opti-
mal set of routes for use by the convoys. The second
problem is to handle the remaining scheduling tasks:
packing up trucks, forming the trucks into convoys, se-
lecting departure times for convoys, assigning convoys to
one of the routes from the precomputed set of routes, and
scheduling trains and commercial trucks. Optimizing a
route specifically for each convoy while simultaneously
optimizing the other parts of the schedule is too com-
putationally complex without much payoff. Addition-
ally, to reduce confusion it can be better to have a small
number of fixed routes that are well marked and that ev-
eryone knows. The one disadvantage of splitting it into
two problems is that it makes it trickier in the future to
adaptively modify routes in response to changing traffic
conditions or, in the case of in-theatre land moves, intel-
ligence data on which roads are passable. However, our
multi-agent approach (Montana et al., 1999) provides a
solution for this.

In our solution of these two optimization problems,
we have combined heuristics of many varieties with ge-
netic algorithms, an approach that Davis (1991) refers

to as hybridization. Grefenstette (1987) gave the first
evidence that initializing the population of a genetic al-
gorithm with non-random individuals derived by heuris-
tics could greatly improve the genetic algorithm perfor-
mance. (Burke, Newall & Weare, 1998) documented
how heuristic initialization only improved performance
as long as diversity was maintained in the initial popula-
tion. Davis (1991) went beyond just advocating for the
use of heuristics for initialization but rather, where ap-
propriate, in all aspects of the genetic algorithm, includ-
ing domain-specific chromosomes and operators. The
military land move problem is a very large problem with
potentially thousands of tasks that needs to be solved
in minutes. A reasonably fast solution is more impor-
tant than global optimality, and we can sacrifice a small
amount of optimality for a fast solution. Starting from
scratch cannot achieve our speed objectives, and so we
must incorporate heuristics.

One final aspect of our approach worth mentioning is
our use of multi-objective evaluation functions. In both
subproblems, we have multiple criteria to optimize, and
we trade off between them by combining them into a
single evaluation function.

2 Route Optimizer

What makes our problem different from standard route
optimization problems is that we are looking for a set
of routes, rather than an individual route, that jointly
optimize an evaluation function. A set of multiple routes
can potentially handle more military vehicles per hour
than a single route without exceeding the soft quota on
military vehicles for a particular road. Since the joint
capacity of a set of routes can only be determined by
looking at the routes as a set rather than individually,
we must perform the optimization over the space of route
sets.

So, the problem is to find an optimal set of routes
from point A to point B traversing a given transporta-
tion network. In addition to the objectives of (i) optimiz-
ing joint vehicle capacity and (ii) achieving some sort of
balance between the routes in terms of capacity, we also
seek to (iii) minimize the travel time of the routes and
(iv) minimize the number of switches from one road to
another. This last objective is important because turn-
ing onto another road can make it difficult for the long
line of trucks all following one another.

The transportation network, provided by the Military
Traffic Management Command, contains the list of links
(i.e., sections of roads) allowed to be used by military
vehicles. For each link, we know not only its beginning
and ending node/location but also the constraints such
as capacity in military vehicles per hour and expected
speed for a convoy on this link.

Representation - Each chromosome is a list of



Figure 1: This figure illustrates the route crossover op-
erator taking the first route from the first parent and the
second route from the second parent to make a child with
two routes. The numbers in the routes are the identifiers
of the nodes in the transportation network.

Figure 2: This figure illustrates the “wrap” mutation
operator. The initial route from node 1 to node 3 is
(1,5,7,8,6,3), and then 6 is chosen as the start of the
mutation and 7 as the end. The dashed route shows the
result (1,4,7,8,6,2,3). The section between 6 and 3 has
been mutated to go through 2, and the section between
1 and 7 has been mutated to go through 4. The section
(7,8,6) remains unchanged.

routes, and each route is the list of nodes in the trans-
portation graph through which it passes. The number
of routes in each chromosome is a constant fixed at the
beginning of the run. Routes are of variable length.

Operators - There are three operators, a crossover
and two mutations. The crossover operator, pictured in
Figure 1, creates a child using the first k routes from the
first parent and the last N − k routes from the second
parent, where N is the total number of routes and k is
a randomly selected number.

There are two types of mutation operator: ”no-wrap”
and ”wrap”. The ”no-wrap” mutation operator selects
a route and chooses random start and end points within
the route, with the start point constrained to be before
the end point in the route. It then finds a new route be-
tween the two points using the same algorithm used by
the initialization procedure to generate random routes
(see below). In contrast, the ”wrap” mutation operator
does not constrain the start point to be before the end
point. The mutation can ”wrap around” the ends of the
route and mutate the route from the randomly chosen
start point to the ending destination of the route, and
then again from the start of the route to the other mu-
tation point (see Figure 2).

Evaluation Function - The evaluation function bal-
ances a number of competing concerns: (i) route travel
time, (ii) truck load, (iii) road switches, and (iv) bal-

anced load over all routes. The formula is given by

E = (1− Cbσc)
n∑
i=1

{[Cap(r1, ..., ri)−

Cap(r1, ..., ri−1)][e−T(ri)][1− CsS(ri)]}

where:
• ri is an individual route,
• σc is the standard deviation in the individual routes’

capacities,
• S(ri) is the number of road switches in the route ri

divided by the number of nodes in the route,
• T(ri) is the time to traverse route ri,
• Cap(routes) is the joint vehicle capacity of the

routes with an upper limit cutoff based on the ca-
pacity of the port to unload, and

• Cb, Cs and Ct are constants.

Initialization - The population is initialized with
chromosomes each consisting of a set of randomly gen-
erated routes. To generate a route that is random but
not just a random walk, we label all the nodes on the
relevant sections of the transportation graph based on
the shortest distance in terms of number of links to the
destination. We then generate the route one link at a
time, using an approach like simulated annealing where
the next step is most likely to move towards the desti-
nation, can stay the same distance, and is least likely to
move away. After generating the route, we remove any
loops.

3 Convoy Scheduler

The convoy scheduler uses the routes generated by the
route optimizer and performs all the scheduling required
to move the items from the fort or depot to the port.
While this move involves military trucks, commercial
trucks, and commercial rail, only the portion involving
military trucks is complex enough to warrant a genetic
algorithm, with the other two modes of transport solv-
able using simple heuristics. We therefore focus our dis-
cussion on scheduling military trucks. (A shorter discus-
sion of the convoy scheduler was presented in (Montana
et al., 1998).)

As stated above, the hard constraints include not only
weight and volume capacities for the trucks but also min-
imum and maximum sizes for the convoys. The time that
each item is scheduled by the port to be loaded onto
the ship is provided, and each item must be at the port
by that time. The goals, or soft constraints, are (i) to
minimize the amount of time that items sit at the port
waiting to be loaded (i.e., minimize staging) and (ii) to
minimize the disturbance to civilian traffic on the roads
by not sending too many military vehicles on a given
road within a given time span.



Figure 3: The chromosome pictured in this figure spec-
ifies two convoys. The first convoy has trucks 1-5 and
travels route 2, and the second convoy has trucks 6-9 and
travels route 4. The route for the third potential convoy
is ignored because only two convoys are created.

The four basic pieces of information we need to deter-
mine are: (i) how trucks are packed, (ii) how trucks are
formed into convoys, (iii) what time each convoy leaves
the fort, and (iv) what route each convoy travels. The
packing of the trucks is done by a heuristic that knows
that an item should be packed with other items that need
to arrive at around the same time. The departure time
of each convoy, once the convoy is formed, is determined
by a simple heuristic that selects the latest possible time
that still ensures that all items transported by the con-
voy arrive on time. Hence, only the grouping of trucks
into convoys and the selection of routes is done by the
genetic algorithm.

Convoy formation is a grouping problem since we need
to take the individual trucks and form them into groups.
Hence, Faulkenauer’s grouping genetic algorithm (1994)
might appear to be the right approach. However, we
want to take advantage of the fact that there is a natu-
ral time ordering of the trucks that affects the grouping
into convoys. This time ordering is based on the earliest
required arrival time of the items in that truck. Con-
voys should consist of trucks that are consecutive in this
ordering, with the key information being where to draw
the boundaries between convoys in this ordering. Faulke-
nauer’s approach does not exploit this information and
hence is much more inefficient than an approach that
does. We outline such an approach now.

Representation - We use a string-based chromo-
some consisting of two portions. The first part en-
codes the mapping of trucks to convoys and is of length
numtrucks. Each slot has an integer between 1 and
maxconvoys indicating in which convoy that truck is.
The second part encodes the mapping of convoys to
routes and is of length maxconvoys. Each slot has
a number between 1 and numroutes indicating which
route that convoy travels. Figure 3 shows a simple ex-
ample of this chromosome structure.

Operators - We use the following set of operators
which respect the structure of the chromosome:
• Convoy-Route Crossover (30%) takes the con-

voys from the first parent and the routes from the
second parent. This is shown in Figure 4.

• Convoy Mutation (30%) loops over the bound-
aries between convoys and with a certain mutation

Figure 4: This figure shows the convoy crossover opera-
tor.

Figure 5: This figure shows the convoy mutation oper-
ator reducing the staging cost for a pair of convoys by
regrouping the trucks.

probability moves the boundary a random amount
in one direction or the other. This is illustrated in
Figure 5.
• Route Mutation (20%): loops over the route as-

signments and with a certain mutation probability
chooses a new random route number.
• Combined Mutation (20%): performs both a

convoy mutation and a route mutation.

Evaluation Function - There are two criteria in our
evaluation function:
• Staging Cost is the sum over each item of the

square of how long before its loading time the item
arrives.

• Link Overuse Cost is the sum over each hour of
each link in the routes of the square of the excess
capacity utilized.

We combine them into a single evaluation function by
taking a weighted sum.

Initialization - The initialization procedure gener-
ates random legal chromosomes to fill the initial popu-
lation. It generates random convoys by starting at the
beginning of the time-ordered list of trucks and pick-
ing random sizes for the convoys somewhere between
the minimum and maximum size. It assigns convoys to
routes by random selection of a route number for each
convoy.

Extensions for Reuse of Trucks - The scheduling
algorithm outlined above only works if there are enough
trucks to complete the move with each truck making at
most a single trip. In our demonstration scenario, this
turned out not to be the case because there was such a
large number of items required to be moved in a short
time. Therefore, we have extended the algorithm to be
able to have trucks make more than one trip with cargo.



Figure 6: This figure illustrates how the problem is repli-
cated for each epoch in the case when trucks need to be
reused.

Our basic approach is to make multiple copies of the
problem. The first trip of each truck is the first problem,
the second trip of each truck is the second problem, etc.
However, we cannot consider these as separate problems
because a truck cannot start one trip until it has had
time to return from the previous trip and load its next
batch of cargo. We therefore jointly, rather than sepa-
rately, optimize the different problems corresponding to
the different trips. We also have to use a more compli-
cated heuristic to compute departure times for the earlier
trips to ensure that the trucks are back on time for the
later trips. Figure 6 shows the new chromosome.

4 Results and Future Work

The sample problem on which we have tested our ap-
proach is that of moving all the equipment of the 1st
brigade of the Army’s 3rd Infantry Division from its
home base of Fort Stewart to the port of Savannah. We
also planned the same movement to the alternate port of
Jacksonville, demonstrating our ability to reschedule in
the case when the primary port is disabled. There were
over 1500 large items to move, most of them either self-
transportable vehicles or containers that fit one or two
per truck. A port simulation application modeling the
port of Savannah generated realistic port arrival times
for the items. A transportation network for the south-
eastern United States was provided by the Military Traf-
fic Management Command, the agency that has the job
of controlling access to public roads by military vehicles.

The route optimization algorithm ran in under one
minute finding a set of two routes to the port of Sa-
vannah. It took two or three minutes to find a set of
two routes to the port of Jacksonville. The longer time
was due to the fact that Jacksonville is farther away from
Fort Stewart. Hence, the routes are longer, and there are
more possible routes to choose from. These tests were
performed on a Sun UltraSparc 1 computer. The convoy
scheduler required between five and twenty minutes to
reach a good solution.

This scheduling is currently done manually. Hence,
there is no other existing algorithm against which to
compare our results. Since we did not have time to cre-
ate other algorithms against which to test, our only al-
ternative was to have the human experts evaluate the

results. The human experts who viewed our results were
impressed with the quality of the schedules and the ease
with which they were found.

We have also incorporated our land move scheduling
algorithms into a multi-agent society aimed at demon-
strating the capability to automatically schedule all mil-
itary transportation (Montana et al., 1999). There was
a single agent running the route optimization algorithm,
finding the route sets for each fort that needed to sched-
ule a move to a particular port. The rationale for having
a single agent finding all the route sets is to eventually
allow it to ensure that no conflicts arise between different
forts and depots planning moves at the same time po-
tentially using the same roads. Each fort and depot had
its own agent executing a copy of the convoy formation
and scheduling algorithm. The test of this multi-agent
society was simultaneously scheduling movements for all
nine brigades of the 3rd Infantry Division, plus their sup-
port brigades, and all their spare parts and ammunition.

There are multiple directions in which we hope to
take this work in the future. First, we want to tran-
sition the work from a proof-of-concept demonstration
into an operational system. Second, we want to improve
the current capabilities to handle dynamic updates, i.e.
to modify the routes and schedule to reflect changes to
the real world. This is especially important for the in-
theatre land move scheduling problem, where the real
world is less predictable. Third, we want to work on do-
ing more about coordinating the moves of multiple forts
to multiple ports, particularly in terms of road usage.

5 Conclusion

While the military land move problem is different from
other standard transportation scheduling problems, us-
ing genetic algorithms has allowed us to easily devise an
efficient solution. We have divided the land move prob-
lem into two subproblems: route selection and convoy
formation and scheduling. For each of these subprob-
lems, we have incorporated domain knowledge into the
genetic algorithms to create algorithms well matched to
the subproblems.

Acknowledgements

We would like to thank Todd Carrico, Stu Draper, Steve
Milligan, and Sean Moore for their suggestions and guid-
ance. We would like to thank Andy Schultz and Oliver
Oberdorf for their help with software development.

References

Burke, E., Newall, J. & Weare, R. (1998). Initialisation
Strategies and Diversity in Evolutionary Timetabling.
Evolutionary Computation, 6(1), 81–102.



Davis, L. (1991). Handbook of Genetic Algorithms. New
York: Van Nostrand Reinhold.

Faulkenauer, E. (1994). A New Representation and Op-
erators for Genetic Algorithms Applied to Grouping
Problems. Evolutionary Computation, 2(2), 123–144.

Filipec, M., Skrlec, D. & Krajcar, S. (1998). An Effi-
cient Implementation of Genetic Algorithms for Con-
strained Vehicle Routing Problem. Proceedings of
the 1998 IEEE International Conference on Systems,
Man, and Cybernetics, 2231–2236.

Gabbert, P. et al. (1991). A System for Learning Routes
and Schedules with Genetic Algorithms. In R. Belew
& L. Booker (Eds.), Proceedings of the Fourth Inter-
national Conference on Genetic Algorithms, 430–436.
San Mateo, CA: Morgan Kaufmann.

Gendreau, M., Laporte, G. & Potvin, J. (1997). Ve-
hicle Routing: Modern Heuristics. In Aarts, E. &
Lenstra, J. (Eds.), Local Search in Combinatorial Op-
timization. Chichester: Wiley, 311–336.

Golden, B. & Assad, A. (1988). Vehicle Routing: Meth-
ods and Studies. Studies in Management Science and
Systems, 16, 7–45.

Grefenstette, J. (1987). Incorporating Problem Specific
Knowledge in Genetic Algorithms. In L. Davis (Ed.),
Genetic Algorithms and Simulated Annealing, 42–60.
Los Altos, CA: Morgan Kaufmann.

Matthews, J. & Holt, C. (1996). So Many, So Much,
So Far, So Fast. Washington, D.C.: United States
Transportation Command and Office of the Chairman
of the Joint Chiefs of Staff.

Montana, D., Brinn, M., Moore, S., & Bidwell, G.
(1998). Genetic Algorithms for Complex, Real-Time
Scheduling. Proceedings of the 1998 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics,
2213–2218.

Montana, D., Herrero, J., Bidwell, G. & Vidaver, G.
(1999). A Multi-Agent Society for Military Trans-
portation Scheduling. Submitted to Evolutionary
Computation.

Thangiah, S. (1995). An Adaptive Clustering Method
using a Geometric Shape for Vehicle Routing Prob-
lems with Time Windows. In L. Eshelman (Ed.), Pro-
ceedings of the Sixth International Conference on Ge-
netic Algorithms, 536–543. San Francisco: Morgan
Kaufmann.


