
Genetic Algorithms in Timetabling. A New Approach.

Sándor Gy̋ori Zoltán Petres Annaḿaria R. V́arkonyi-Kóczy
gyori@szit.bme.hu petres@szit.bme.hu koczy@mit.bme.hu

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Műegyetem rkp. 9., Budapest, Hungary, H-1521

Abstract — The timetabling problem comes up every
year in educational institutions, which has been solved
by leveraging human resource for a long time. The prob-
lem is a special version of the optimization problems, it
is computationally NP-hard. Although, there are some
attempts to apply computer based methods, their use
is limited by the problem’s complexity, therefore Ge-
netic Algorithms were applied, because they are robust
enough in such a huge problem space. In this paper a
new and more flexible timetable representation, the set
representation is introduced which meets the demands
better than former ones. The proposed method proved to
be efficient in real life application of a secondary school,
as well.

I. INTRODUCTION

The timetabling problem, which has an important role typ-
ically in education, is a special version of the optimization
problems found in real life situations.

The timetabling problem has always been solved by lever-
aging human resource in educational institutions. During
the process, numerous aspects have to be taken into consid-
eration. Almost a week of work of an experienced person
is needed to produce a timetable for an average institution
and the result is often not satisfactory; it does not meet all
the requirements. What is more, when the preconditions
change, the whole work becomes unusable, and has to be
restarted from scratch. The problem—as almost all opti-
mization problem—is computationally NP-hard. Therefore,
only the important conditions can be considered during the
manual arrangement process, but it is still extremely com-
plex to find the optimal solution of this reduced problem.

Thus, a good timetable generator software that would take
into consideration not only the essential conditions neces-
sary for a usable timetable, but also other important didactic
and organizational requirements would be very useful. This
became reality by the tremendous growth of computing ca-
pacity. In case of optimization problems [1, 2]—as the prob-
lem described in this paper—genetic algorithms (GA) [3, 4]
proved to be sufficient.

The paper is organized as follows: In Section II. the
timetabling problem including hard and soft constraints and
classical representations is discussed. Then the set represen-
tation is introduced in Section III. Genetic Algorithms are
presented as a solution for the problem in Section IV. and
various operators and improvement technics are analyzed in
Section V. Section VI. is devoted to experimental results.

II. THE TIMETABLING PROBLEM

The timetabling problem comes up every year in educational
institutions. Students, teachers, lessons and classrooms have

to be arranged optimally. It is very difficult to define how
good a potential timetable is, but much easier is to declare
when a timetable is unusable as it is always exact. By con-
sulting to a person experienced in timetabling problem, the
situations that should be avoided in order to get a nearly op-
timal result can easily be specified, namely the constraints
should be satisfied by the timetables. Hard and soft con-
straints should be distinguished.

A. Hard constraints

Hard constraints have to be taken into consideration very
strictly, because the timetables that violate just one of these
are unusable. The finite “resources” belong to this group.

The class clash situation is when a student of a class
should participate in more than one lesson at the same time.
Of course, the splitted lessons do not cause class clashes.

The teacher clash is similar to the class clash, but in this
case a teacher should give more than one lesson at the same
time. The lessons held for merged classes by the same
teacher do not cause teacher clashes.

Finite room capacity: It is not possible to give two or
more different lessons for two or more different classes at
the same room. It is expedient to divide the different rooms
into groups according to their similar functionality and to
use these groups during the optimization process.

Teacher’s (strict) availability: A teacher is not necessarily
available in the whole educational period, so it is important
to know when a teacher is available and arrange the lessons
according to this.

B. Soft constraints

The didactic and organizational constraints represent the
group of soft constraints. The timetable that violates these
constraints are still usable, the lessons can be held according
to it, but it is not convenient for either students or teachers,
and it also makes more difficult to understand the lessons.

Lessons held at early morning and long breaks between
two lessons are not acceptable at all in primary schools, and
hardly tolerable in secondary schools. In most cases these
problems can be avoided.

Multiple lessons: Because of didactic purposes, in case of
some subjects it can be useful to hold two, three, or maybe
more lessons consecutively. These subjects could be art,
physical education or in specialized classes mathematics,
history, etc. The fundamental unit of time in timetable rep-
resentations is one lesson, so it is always necessary to check
that the members of multiple lessons should be placed next
to each other.

The situation when same type of lessons spontaneously
come next to each other is called bunchyness in a day. It
is important to distinguish bunchyness from the multiple

Iñaki Inza
Nota
En la Facultad se han realizado varios PFCs sobre este tema: generación de horarios, reserva de aulas... observarás que en Internet hay una gran cantidad de artículos sobre este tema. Fíjate que los operadores de cruce y mutación son los mismos del problema del TSP (el agente viajero)



lessons’ situation as in the first case it is not accepted while
in the second case that is what we want.

Same type of lessons’ equal distribution in a week: Be-
cause of pedagogical reasons it is expedient to distribute the
lessons of the same kind equally in a week.

Equal number of lessons per day: The difference between
the maximum and the minimum value of the number of
lessons per day shows the equality. If the number of lessons
for a week is not dividable by the number of days±1 lessons
fluctuation is allowed.

Teacher’s soft availability: It is possible that a teacher ask
not to have lessons in some timeslots. This demand should
be satisfied just in case when the timetable does not violate
any other kind of hard or soft constraints including teacher’s
strict availability, too.

C. Classical representations

There are several ways how to represent a timetable. From
the aspect of a human observer the most important is to get
the answer as easily and as fast as possible for the occupa-
tions of classes, teachers or, maybe, rooms at a given time.
Another important question is that how efficient the repre-
sentation suitable for human usage is for computer process-
ing.

The traditional, two dimensional timetable representation,
usually used during the manual timetable arrangement pro-
cess, has the different classes on the horizontal axis, while
the time periods for the lessons on the vertical axis. In this
matrix the item(i, j) contains the teachers who give a lesson
for classi at time periodj.

There is another two dimensional representation which
has the time period on the horizontal axis and the teachers on
the vertical axis. The item(i, j) of the matrix contains those
classes which has lesson at time periodj held by teacheri.

The first representation is efficient in the class based
searches, while the second one in the teacher based searches,
so in practice, both representation is done.

Both representation have the advantage that they ensure
an implicit constraint: in the first case the class clash, while
in the second the teacher clash is obvious immediately.

Unfortunately, these two representations do not support
the splitted lessons, because they do not distinguish the con-
cept of teacher and subject at all. Thus, the situation, when a
class has a lesson held by two foreign language teachers, is
equivalent with another situation, when a class has a lesson
held by a mathematics and an art teacher, but while the first
case can be possible, the second definitely not.

The distinction between the concept of teacher and sub-
ject is usually solved by virtual teachers proposed in [5].
More virtual teachers can belong to a real one. A virtual
teacher is allowed to teach only one subject, so the prob-
lem is reduced to the main concept. The real teacher can
give just maximum one lesson at one time in this case, too.
With a real teacher–virtual teacher association, this can be
checked easily.

The distinction between teacher and subject is also in-
dispensable in the following case: a teacher gives several
lessons in different subjects to the same class and the equal
distribution of lessons are checked.

Unfortunately, the solutions proposed above do not sat-
isfy all the real life situations, as they do not allow the case

when more teachers give lessons to several classes at the
same time. This situation is very common e.g. in the for-
eign language education: five teachers give different kind
of language lessons to two classes (e.g. German beginner,
German advanced, Russian, Italian, Spanish). The follow-
ing cases have to be ensured: both classes have to have the
same foreign language classes at the same times, and the five
teachers have to be available for education at the times when
the classes have the foreign language lessons.

D. Methods

Because of the problem’s complexity, the classical algo-
rithms are less or not efficient at all, despite that there are
some initiations based on known algorithms as heuristic
search [6] or modified back-track. The Slovakian aSc group
[7] offers a usable timetable arrangement software which
uses direct search algorithm. During the timetable arrange-
ment process, if numerous requirements are taken into con-
sideration the problem’s complexity can easily grow out of
the manageable domain, and then direct search algorithm
does not provide satisfactory results within reasonable time.
Simulated annealing (SA) algorithm is used for timetabling
problem by A. Abramson in [8]. Tabu search (TS) is in-
troduced for a possible solution for timetabling problem by
Hertz [9] and de Werra [10]. Unfortunately, they are not ef-
fective enough in such a big problem space and they work
on just one timetable. Simulated annealing and tabu search
are examined for timetable problem by Colorni, Dorigo and
Maniezzo in [11]. The efficiency and the convergence speed
of these algorithms are compared to the similar values of
genetic algorithm (GA) and the result was that the values of
genetic algorithm and a specialized version of tabu search
are almost the same while the ones of simulated annealing
much worse than the other two.

III. “SET” REPRESENTATION FOR TIMETABLING

In order to improve the above mentioned imperfections of
the known representation methods in this section a new rep-
resentation, the “set” representation is introduced. The set
representation tries to solve the above mentioned problems
and it allows the biggest freedom in class merging and split-
ting and in teacher–subject association.

The smallest data unit is the set. This structure can consist
of any number of classes, teachers and rooms. These sets are
indivisible during the optimization process, they are moved
together in the different timeslots. Its meaning is the follow-
ing: the teachers given in the set hold lessons to the classes
in the given rooms in one same timeslot. The main concept
does not define which teacher gives lessons to which classes

Day 1 Day 2 · · ·
Lesson 1 Lesson 2 · · · · · · · · · · · · · · ·

Set1:
classc1,1 , classc1,2 , . . .

teachert1,1 , teachert1,2 , . . .
roomr1,1 , roomr1,2 , . . .

SetN+1

Set2 SetN+2

...
...

...
SetN Set2N

Fig. 1: Set representation



and where the lessons are held. This method allows to solve
such problematic situations as class merging and splitting in
a very flexible way. For example, if two classes have PE les-
son in the same time and they are divided into two groups
according to their sex, then we simply add the two classes,
the two teachers and the necessary rooms to a set, thus defin-
ing the required constraint.

This timetable representation has only one dimension, the
time. The sets have to be placed in the different timeslots—
which indicate the possible time periods for classes—in the
time line (see Fig. 1). Withci, j , ti, j , r i, j values the serial num-
bers of classes, teachers and room groups that consist of seti
are indicated. The values are chosen from the corresponding
serial number sets. All the timeslots have fixed (N) number
of sets, which is very important in the adaptation of the ge-
netic algorithm (see later). A set can be empty, as well (it
is similar to the case when a cell of the matrix in the clas-
sical, two dimensional representation is empty). Thus, the
number of sets that have real information is not constant any
more. In this representation the class and the teacher clash is
not as obvious as in the classical representations so in every
timeslot the sets should be checked whether they consist of
the same classes or teachers.

This representation is very convenient for computer pro-
cessing, but for a human reader it is hard to understand. So,
it is expedient (typically at the end of the optimization pro-
cess) to map the sets placed in different timeslots to one of
the classical representations. In order to make a one-to-one
mapping, it has to be exactly known that which teacher gives
lessons in what subject to which class, thus the sets have
to be completed with additional information as the subjects
and also as the associations between the classes and teacher,
subject, room group triplets.

IV. THE GENETIC ALGORITHM

Genetic algorithms (GA), which simulate the inheritance of
living beings, is a widely used method for solving optimiza-
tion problems. [4]

GA performs a multi-point search in the problem space.
On one hand it ensures the robustness as if one searching
track sticks in a local minimum it does not mean that the
whole algorithm fails, while on the other it may give not
just one, but more nearly optimal solutions for the problem
from which the user can select. The algorithm during the
optimization process uses deterministic and stochastic meth-
ods, and thank to this, it can also solve those problems, such
as the timetabling problem, which seems to be too hard, too
complex for any other kind of optimization methods. Its two
main operations are the crossover and the mutation.

In case of the timetabling problem the consistence of the
individuals’ genes is extremely important. The consistence
means that each type of information have to be presented
just once in the genotype, so, instead of using destructive
operators, just the mixing operators are usable. In the na-
ture, this is realized in such a way that the information takes
place in predefined locations in the chromosomes and dur-
ing the crossover just these chromosome parts can change.
The system is redundant enough to tolerate if some parts are
duplicated or missing and the mapping between the genes
and the properties is not mutual, as well. Despite this the
consistence is corrupted sometimes in the nature, too, but

it can not be allowed in our case. This could be best illus-
trated by considering, e.g. that the number of history lessons
cannot be increased at the expense of physics lessons.

A. Linearization

Our genetic algorithm does not care for the internal struc-
ture of the individuals and for the meaning of data on which
it executes the operators. Moreover, it is expressly disad-
vantageous if an individual—because of its complex internal
structure—cannot be divided at any wanted point and then
paste together with another piece. To avoid these problems
the timetable has to be coded and on this coded form is the
algorithm used.

In the set representation of timetabling the order of the
sets in a timeslot is optional, the only important thing is that
in which timeslot a set can be found. The conversions done
on the introduced representation which make a linear struc-
ture from a two dimensional one by keeping the time dimen-
sion is suitable for our problem.

Vertical linearization: A simple, linear structure is got by
taking the sets from the time axis beginning with the first set
of the first timeslot, then the second set of the first timeslot,
and so on until the last set of the last timeslot. For the one-to-
one mapping it is necessary that each timeslot has constant
number of sets. Using “empty sets” is a possible solution
for this problem. If the class merging is not allowed and
all the classes have lessons in all the timeslots, the number
of sets in each timeslot is equal with the number of classes.
If a class has not got a lesson in a timeslot an empty set
can be added to maintain the needed number of sets. With
empty sets the class merging situation can be solved, too. Of
course, if several samples of a set are used the same number
of empty sets have to be added to maintain the structure.

Horizontal linearization: There is another possible way to
get the linear structure of the sets: firstly the first sets of each
timeslot is taken, then the second sets of each timeslot, and
so on (see Fig. 2).

The vertical linearization emphasizes the relatedness of
the sets of the same timeslot, as during a crossover the com-
position of the first or the second part of the timeslots of
an individual remains (with great probability it transmits the
clashes to the next generations). While the horizontal lin-
earization emphasizes the connection of the individual sets
to a timeslot, as during a crossover the places of the first
or the second part of the sets of an individual remain (with
great probability it transmits the teacher’s strict availabilities

Timeslot 1 Timeslot 2 · · · Timeslotk

Set1 SetN+1 Set(k−1)N+1

Set2 SetN+2 Set(k−1)N+2

...
SetN Set2N SetkN

⇓

Vertical:

Set1 Set2 · · · SetN SetN+1 · · · SetkN

Horizontal:

Set1 SetN+1 · · · Set(k−1)N+1 Set2 · · · SetkN

Fig. 2: Vertical and horizontal linearization



to the next generations). Despite of the important difference
the efficiency of the algorithm does not significantly depend
on the chosen linearization method.

B. The Fitness function and selection

The viability of the individuals can be calculated from its
penalty values. The mapping is done by the fitness function
(FF). The efficiency of the genetic algorithm mainly depends
on the used coding method (in this case it is the set represen-
tation for timetabling) and on the fitness function [12, 13].

The best results can be obtained by the usage of recipro-
cal functions which is confirmed by our experiences and by
several papers (e.g. [14]). Our examinations were made with
the following functions: 1

1+x,
1

1+x2 ,
1

1+
√

x,
1

1+lnx. Accord-
ing to the test results—corresponding with the works of [14]
and [12]—the fitness function1

1+x2 ensures the best conver-
gence. An explanation for it can be that at the beginning
when the penalty values are high the differences between the
fitness values are not sufficiently significant to make distinc-
tion between the competing individuals, while getting closer
to the optimum the penalty values become much lower, the
fitness function discriminates more sharply, thus it empha-
sizes the more viable individuals. In this way the chromo-
somes containing excellent parts also get some chance to
transmit their genetic substrate in spite of the fact that other
parts are worse than the average.

The individuals have to be selected from the previous gen-
eration according to their weighted probability of viability.
The roulette wheel selection is a possible method for this.
With the tournament selection which is an improved version
of the roulette wheel selection the convergence speed can be
increased by approximately four times.

V. GENETIC OPERATORS

Crossover is one of the most essential genetic operators. Its
task is the realization of the deterministic search, it tries to
advance in the problem space by applying the extant knowl-
edge. From two initial individuals it generates a new one
which genetic substrate is the combination of the genes from
the initial individuals. In practice from the two initial in-
dividuals four new individuals are generated, and, on the
whole, the genetic substrate of the four children covers the
genetic substrate of the parents. Thus, the probability to get
a better individual is favorable.

The simplest, one-point, consistence preserver crossover
operator is the following: call the initial individualsA1,A2

and the four children generated from themB1,B2,B3,B4.
Select a crossover point randomly (the same in both initial

A1 : 9 8 6 5 4 7 2 3 1

A2 : 8 7 1 2 3 9 5 4 6

⇓

B1 : 9 8 6 5 7 1 2 3 4

B2 : 8 9 5 6 4 7 2 3 1

B3 : 8 7 1 2 9 6 5 4 3

B4 : 8 7 2 1 3 9 5 4 6

Fig. 3: One-point consistence preserver crossover

individuals) and then copy the first part ofA1 to B1. Next,
choose those items fromA2 which are not present in the first
part ofA1 and fill the end ofB1 with them. To generateB2,
copy the second part ofA1 to the end ofB2, then choose
those items fromA2 which are missing at the end ofA1 and
put them one after the other at the beginning ofB2. By swap-
ping the role ofA1 andA2 the childrenB3 andB4 can be
generated (see Fig. 3). In order to preserve consistence the
internal structure ofA2 can be hardly transmitted intoB1 and
B2. Namely, when those items are chosen fromA2 which
are not present in the first part ofA1, a “spongy”, ragged
structure is got that has to be compressed by neglecting the
empty places in order to put it at the end ofB1. During this
procedure, such items may get next to each other that were
not in neighborhood originally. The two-point crossover is
a similar operator, at the beginning two crossover points are
selected, then the same procedure is used as in the case of
the one-point crossover.

Much more complicated methods are used in the opera-
tors worked out for permutations which are developed by
David E. Goldberg et al. [3]. Important that these oper-
ators can be used just for permutations, i.e. for those ge-
netic substrates whose items are individuals and free of same
items. To use these operators in the set representation of
timetabling subserial numbers have to be introduced, so in
this new numbering the same type of sets has individual se-
rial numbers.

For the order crossover (OX) two crossover points are se-
lected randomly. By using the previously introduced nota-
tion, the genetic substrate ofA2 is copied toB1, then the
items found in the middle part ofA1 are removed fromB1.
Next, the holes which come off are moved to the middle
part, among the two crossover points. To manage this, ex-
pect that the ends of the item are connected and start to push
the items to the left from the second crossover point until
the item which was originally before the second crossover
point does not arrive to the position located before the first
crossover point. Now, the middle part ofA1 can be copied
to the realized free place at the middle ofB1. B2 can be
generated by the same process (see Fig. 4).

The cycle crossover (CX) does not use crossover points.
Firstly, it copies the first item ofA1 to B1, then it looks for
the the first item ofA2 and searches it inA1. It copies it to
B1. Next, it looks for the item at the same position inA2,
and it searches it again, and so on. It continues the process
as long as it does not find an already copied item. By this
time, it finished the cycle started from the first item ofA1.
The remained empty fields ofB1 are filled with the items of
A2 from the same position (see Fig. 5).

From the classical one- and two-point crossovers the two-
point crossover proved to be less efficient. Between the op-

A1 : 9 8 6 5 4 7 2 3 1

A2 : 8 7 1 2 3 9 5 4 6

⇓

B1 : 2 3 9 5 4 7 6 8 1

B2 : 5 4 7 2 3 9 1 8 6

Fig. 4: Order Crossover (OX)



A1 : 9 8 6 5 4 7 2 3 1

A2 : 8 7 1 2 3 9 5 4 6

⇓

B1 : 9 8 1 2 3 7 5 4 6

B2 : 8 7 6 5 4 9 2 3 1

Fig. 5: Cycle Crossover (CX)

erators developed for permutations, OX and CX, the sec-
ond one performed better in this problem, moreover the im-
plementation of OX is much slower because of the lots of
pushes, and at any chosen generation number the result of
OX is worse either. In contrast with one-point crossover
the CX was even faster. Concerning the convergence speed
and the generation number, CX approximated the one-point
crossover, what is more, in some cases CX overcame it. If
not just the final result is watched, an interesting behavior
of CX can be observed: at the beginning it ensures a much
faster convergence speed than the one-point crossover, but
later, CX’s speed slows down, so the one-point crossover
can make up its leeway (in generation number).

The role of the mutation in the GA is the assurance of the
heuristic search, it tries to get to the individuals found in the,
up to now, undiscovered part of the problem space.

The basic case of the consistence preserver mutation is the
following: choose two points and a length in an individual,
then swap the section of the randomized length from the first
drawn point with the section of the same length starting from
the second drawn point.

A more efficient solution is when not sections of a chosen
length but sections with one item are swapped and it is re-
peated many times. According to our tests the second case
gave much better convergence performance. A possible rea-
son, which can confirm our result, is that this operator im-
itates mostly the attempts of a human timetable preparator.
The timetable preparator also tries to swap some lessons on
the chance of the elimination of a hard or a soft constraint.

The inversion, which is similar to mutation, was proved to
be not an efficient operator in our case (accordant with the
literatures of [4, 14, 3]).

A. The penalty values

The penalties indicate that in which rate the existence of a
problem can make a timetable unusable. The unit of the
uselessness is optional, so not really the penalty values itself,
rather the ratio between the different aspects are important.

The biggest problems are caused by the class and the
teacher clashes, and the finite room capacity, so these had
the biggest penalty, uniformly 1000 points. The penalty
for the violation of the teacher’s strict availability was 500
points. Then the nonexistence of the multiple lessons and
the existence of long breaks between two lessons come next
in the importance order. A long break can be realized be-
tween two lessons or as the first lesson of a day. The sec-
ond case in some situations does not always cause problems.
During our test all the three problems got a penalty of 100
points.

Finally, the least penalized situations were the same type
of sets’ inequable distribution in a week, the high fluctua-
tion of the lessons per day and the violation of teacher’s soft
availability.

The values of the penalties, and its ratios concerning to
each other have less effect on the convergence speed. In ac-
cordance with its explanation they influence just the priority
of the algorithm for which cases it optimizes more and for
which cases less.

B. Elitism

The origination of a new generation from the actual genera-
tion is called a (bigger) step of the GA. The usage of over-
lapping population imitates mostly the inheritance found in
the nature. In this case not the whole population is replaced
by new individuals, but the parents and children live together
in the next generation.

By using non-overlapping populations the old population
is replaced completely with a new one. Generally, the non-
overlapping populations give better results in the optimiza-
tion problems, because it can check more new individuals,
so it provides a better convergence speed. The marginal case
of the overlapping and the non-overlapping population is the
elitism. By using the elitism, the whole population is re-
placed with new individuals except the most viable, namely
the elitist individual of the old population as it is kept in the
new generation, too. The maintenance of the elite individual
improves efficiently the deterministic search. Although [14]
also declares that elitism improves the convergence speed,
in our case it provided an unexpected growth in efficiency.

C. The relation between the population size and the gen-
eration number

The execution time of the algorithm is roughly proportional
with the product of the population size and the generation
number, but the convergence speed quite depends on the se-
lection of the ratio between these. The small population can
be processed during lot of generations, while on big popula-
tions just a few generation step can be made. In the big pop-
ulation case the selection and the crossover operators have
great combinational possibilities to generate a new individ-
ual, while the small population size promotes the wandering
of some promising ways of the problem space to find the
details more deeply.

Our test runs showed that the optimal population size is
approximately 20 individuals. If the population is smaller
then the number of possible combinations is not big enough,
but it is not worth of increasing the population size either as
it is just a waste of time.

VI. EXPERIMENTAL RESULTS

Our tests were done on the real life data of a secondary
school located in Budapest, Hungary, where the number of
classes is 18 and the number of teachers is 67. There are 5
working days in a week, and on each day there are 7 lessons
in average. Our genetic algorithm was optimized to these
values, and finally our software produced at least compara-
ble timetables to the used ones. The penalty values of the
best individuals in the first generation were between 150000
and 200000, and after running of one million generations
the values of the best individuals decreased below 2500.
Furthermore, in the fittest timetable there was not any hard
constraint violation. There were only some problems with



teacher’s soft availability, with the bunchyness and with the
equal distribution.

A. Fine tuning of the probabilities of the mutation and of
the crossover

The mutation and the crossover probabilities control the
stochastic and deterministic habits of the algorithm. Of
course, these two things are not independent.

It is not expedient to choose extreme probability values.
The probability value of mutation close to 0 makes our al-
gorithm too sensible, it can easily stick in a local minimum.
If it is close to 1 it overemphasizes the stochastic charac-
teristic, it constantly goes away from the hardly approached
vicinity of the minima, our algorithm transforms to random
search. If the probability of the crossover is kept in a very
low level, it oppresses the deterministic steps, and thus, it
causes a slower convergence speed. Its high value does not
allow the success for those advantageous gene parts which
can show their advantages just in an individual come into
being later.

The probability values of the crossover and of the muta-
tion can also be changed during the optimization process.
With the growth of the generation number the crossover
probability is progressively decreased, while the mutation
probability is increased [14]. Namely, at the beginning with
the help of both, the crossover and the mutation operators,
the problem space is mapped, the crossover operator can
combine efficiently the optimal parts of the individuals’ ge-
netic substrate. However, after a while, our algorithm sticks
in a local minimum and individuals with low penalty values
coming from the environment of this minimum will domi-
nate the population, the crossover operator will work on very
similar individuals, instead of discovering new parts with
lower penalty values. The progressive increment of the mu-
tation probability tries to solve this problem with the decre-
ment of the crossover probability at the same time. If the
actual local minimum is the same as the global minimum,
then the high value of the mutation probability is not conve-
nient for us as it can damage our solution. With the elitism
this can be avoided easily.

According to our tests, this general idea was usable in the
timetabling problem, but it did not increase tremendously
the convergence speed, however, if the penalty values are
well tuned it decreased a bit the time needed for the opti-
mization process.

Conforming to our test results, the optimal probability for
the classical mutation was around 0.5, while for the one item
mutation it was between 0.2 and 0.3, and the optimal number
of items swapped at one time was between 3 and 5. These
mutation probability values are much higher (especially in
the first case) then in general, but it can be regarded as nor-
mal in this and in similar kind of problems [1]. A possible
reason can be the tremendous problem space, as for the ac-
celeration of the convergence speed the stochastic steps, the
experiments have to be allowed to be effective. On the other
hand the crossover cannot be implemented as freely as in
the nature because of consistence preservation, in practice
just half of the internal structure of a chromosome can be
preserved.

The optimal value for the crossover probability was
around 0.7. If the probability values change during the opti-

mization process it is convenient to increase the mutation
probability from 0.3 to 0.5 and to decrease the crossover
probability from 0.7 to 0.5.

VII. CONCLUSIONS

A new representation, the set representation is introduced
in this paper with which the real life situations of the ed-
ucational institutions can be satisfied much better. Genetic
Algorithms are used as an optimization method for our com-
putationally NP-hard problem. For measuring how bad a
timetable is several hard and soft constraints are defined.
Different fitness functions and consistence preserver genetic
operators are also tried. During our tests which are based on
a secondary school’s real life data different penalty values
assigned to the different constraints, the population size and
the generation number are optimized.

REFERENCES

[1] A. Álmos. Scheduling algorithms for a video-dubbing
studio. INTCOM ’98, Miskolc, Hungary, November
21-27, 1998.

[2] A. Álmos and A. R. V́arkonyi-Kóczy. Genetic methods
for point labeling on maps. In J. Vascak P. Sincak, ed-
itor, Quo Vadis Computational Intelligence? (Studies
in Fuzzyness and Soft Computing), Heidelberg, 2000.
Physica-Verlag.

[3] D.L. Goldberg. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Addison–Wesley,
1989.

[4] J.H. Holland.Adaptation in Natural and Artificial Sys-
tems. The University of Michigan Press, 1975.

[5] Faraǵo A. and Fecher G. Genetic algorithms based
timetabling for primary and secondary schools. Tech-
nical report, Technical University of Budapest, 1999.

[6] W. Junginger. Timetabling in germany – a survey.In-
terfaces, 16:66–74, 1986.

[7] aSc Applied Software Consultants.aSc Timetables
Version 2000, 2.2000.0.76. http://www.asc.sk/rozvrhy.

[8] A. Abramson. Constructing schoool timetables us-
ing simulated annealing: sequential and parallel algo-
rithms. Management Science, 37:98–113, 1991.

[9] A. Hertz. Tabu search for large scale timetabling prob-
lems. European Journal of Operational Research,
54:39–47, 1992.

[10] D. de Werra. An introduction to timetabling.European
Journal of Operational Research, 19:151–162, 1985.

[11] A. Colorni, M. Dorigo, and V. Maniezzo. Metaheuris-
tics for high-school timetabling.Computational Opti-
mization and Applications Journal, 1997.

[12] D. Beasley, D.R. Bull, and R.R. Martin. An
overview of genetic algorithms.University Comput-
ing, 15(2):58–69, 1993.

[13] J.J. Grefenstette. Optimization of control parameters
for genetic algorithms.IEEE Trans SMC, 16:122–128,
1986.

[14] H-L. Fang. Investigating genetic algorithms for
scheduling. Technical report, MSc Dissertation, De-
partment of Artificial Intelligence, University of Edin-
burgh, 1992.


