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Abstract

In most learning systems examples are represented
as fixed-length “feature vectors”, the components
of which are either real numbers or nominal val-
ues. We propose an extension of the feature-
vector representation that allows the value of a
feature to be a set of strings; for instance, to
represent a small white and black dog with the
nominal features size and species and the set-
valued feature color, one might use a feature vec-
tor with size=small, species=canis-familiaris and
color={white,black}. Since we make no assumptions
about the number of possible set elements, this exten-
sion of the traditional feature-vector representation is
closely connected to Blum’s “infinite attribute” rep-
resentation. We argue that many decision tree and
rule learning algorithms can be easily extended to set-
valued features. We also show by example that many
real-world learning problems can be efficiently and nat-
urally represented with set-valued features; in particu-
lar, text categorization problems and problems that
arise in propositionalizing first-order representations
lend themselves to set-valued features.

Introduction

The way in which training examples are represented is
of critical importance to a concept learning system. In
most implemented concept learning systems an exam-
ple is represented by a fixed-length vector, the compo-
nents of which are called attributes or features. Typi-
cally, each feature is either a real number or a member
of a pre-enumerated set; the latter is sometimes called
a nomunal feature.

Clearly, fixed-length feature vectors are of limited
expressive power. Because of this, numerous previ-
ous researchers have proposed learning methods that
employ more expressive representations for examples.
For instance, many “inductive logic programming” sys-
tems (Quinlan 1990b; Muggleton 1992) can be viewed
as learning from examples that are represented as
saturated Horn clauses (Buntine 1988); in a similar
vein, KL-one type languages (Cohen and Hirsh 1994,
Morik 1989) and conceptual dependency structures
(Pazzani 1990) have also been used in learning.

While some successes have been recorded, these al-
ternative representations have seen quite limited use.
In light of this, it i1s perhaps worthwhile to review

some of the practical advantages of the traditional
feature-vector representation over more expressive rep-
resentations. One advantage is efficiency. The rapid
training time of many feature vector systems greatly
facilitates systematic and extensive experimentation;
feature-vector learners also have been used on very large
sets of training examples (Catlett 1991; Cohen 1995a).
A second important advantage is simplicity. The sim-
plicity of the representation makes it easier to imple-
ment learning algorithms, and hence to refine and im-
prove them. A simple representation also makes it eas-
ier for non-experts to prepare a set of training exam-
ples; for instance, a dataset can be prepared by someone
with no background in logic programming or knowl-
edge representation. The efficiency and simplicity of
the feature-vector representation have doubtless con-
tributed to the steady improvement in learning algo-
rithms and methodology that has taken place over the
last several years.

In this paper, we propose an alternative ap-
proach to generalizing the feature vector representa-
tion that largely preserves these practically impor-
tant advantages. We propose that the feature-vector
representation be extended to allow set-valued fea-
tures, in addition to the usual nominal and con-
tinuous features. A set-valued feature is simply a
feature whose value is a set of strings. For in-
stance, to represent a small white and black dog
with the nominal features size and species and
the set-valued feature color, one might use a vec-
tor with size=small, species=canis-familiaris and
color={white,black}.

Importantly, we will not assume that set elements
(the colors in the example above) are taken from some
small, pre-enumerated set, as is typically the case with
nominal values. We will show that a connection can be
established between set-valued features in this setting
and the “infinite attribute model” (Blum 1992).

In the remainder of the paper, we first define set-
valued features precisely. We then argue that many
decision tree and rule learning algorithms can be easily
extended to set-valued features, and that including set-
valued features should not greatly increase the number
of examples required to learn accurate concepts, rel-
ative to the traditional feature-vector representation.



We next present some examples of problems that nat-
urally lend themselves to a set-valued representation,
and argue further that for some of these problems, the
use of set-valued representations is essential for reasons
of efficiency. Finally we summarize our results and con-
clude.

Set-valued features

In the interests of clarity we will now define our pro-
posed extension of the feature vector representation
more precisely. A domain D = <n,t_: i, V,Y) con-
sists of a dimension n, a type vector { = (t1, ..y tn),
a name vector @ = (ui,...,up), a value vector vV =
(Vi,..., V), and a class set Y = {y1,...,yx}. Each
component ¢; of the type vector ¢ must be one of the
symbols continuous, nominal, or set. Each compo-
nent u; of the name vector 4 must be a string over the
alphabet X. (Here ¥ is a fixed alphabet, such as {0, 1}
or {a,...,z}.) The class set Y and the components V;
of the value vector V are sets of strings over X. Intu-
itively, a “domain” formalizes the sort of information
about a learning problem that is recorded by typical
feature-vector learners such as C4.5 (Quinlan 1994)—
with the addition of the new feature type set.

Using domains we can define the notion of a “le-
gal example”. A legal example of the domain D =
('n,t_‘7 4,¥,Y) is a pair (Z,y) where & is a legal instance
and y € Y. A legal instance of the domain D is a vec-
tor ¥ = (x1,...,x,) where for each component z; of Z,
(a) if t; = continuous then z; is a real number; (b) if
t; = nominal then z; € V; (otherwise, if ¢; # nominal,
the value of V; is irrelevant); (d) if ¢; = set then z; is
a set of strings over X, i.e., ; = {s1,..., 8w}

Finally, we will define certain primitive tests on these
instances. If u; is a component of the name vector ,
r is a real number and s is a string, then the following
are all primitive tests for the domain D: u; = s and
u; # s for a nominal feature u;; u; < r and u; > r for
a continuous feature u;; and s € u; and s ¢ u; for a
set-valued feature u;. The semantics of these primitive
tests are all defined in the obvious way—for instance,
if ug = color, then “puce € color” denotes the set of
legal instances # = (1, ..., z,) such that puce € z3.

Boolean combinations of primitive tests are also de-
fined in the obvious way. We can now speak precisely of
representations such as DNF, decision trees, or decision
lists over set-valued representations.

Implementing Set-Valued Features

Let us now consider the problem of learning decision
trees for the representation described above—that is,
for feature vector examples that contain a mix of set-
valued, nominal and continuous features. As a concrete
case, we will consider how the ID3 algorithm (Quinlan

function MaxGainTest(.S, )

1 Visited := 0;

2 TotalCount[+]:=0; TotalCount[—]:=0;

3 for each example (Z,y) in the sample S do

4 for each string s € z; do

5 Visited := Visited U{s};

6 ElemCount[s, y] := ElemCount([s, y]+1;
7 endfor

8 TotalCount[y] := TotalCount[y]+1;

9 endfor

10 BestEntropy = —1;
11 for each s € Visited do

12 p := ElemCount[s,+]; n := ElemCount[s,—];
13 if (Entropy(p, n) > BestEntropy) then
14 BestTest := “s € u;”;

15 BestEntropy := Entropy(p, n);

16 endif

17 p' := TotalCount[+] — ElemCount[s,+];
18 n' := TotalCount[—] — ElemCount[s,—];
19 if (Entropy(p’,n’) > BestEntropy) then
20 BestTest := “s & u;”;

21 BestEntropy := Entropy(p’, n');

22 endif

23 ElemCount[s,+] := 0;

24 ElemCount[s,—] := 0

25 endfor

26 return BestTest
Figure 1: Finding the best element-of test

1990a) can be extended to allow internal nodes to be
labeled with element-of tests of the form s € u; and
s & u; on set-valued features w;, in addition to the
usual tests on continuous or nominal features.

To implement this extension of ID3, it is clearly nec-
essary and sufficient to be able to find, for a given set-
valued feature u; and a given set of examples S, the
element-of test s € u; or s € u; that maximizes entropy
on S. Figure 1 presents a function MaxGainTest that
finds such a maximizing test. For simplicity, we have
assumed that there are only two classes.

Lines 1-9 of the function loop over the examples in
the sample, and record, for each string s that appears
as an element of the i-th feature of an example, the
number of times that s appears in a positive example,
and the number of times that s appears in a negative
example. These counts are stored in ElemCount[s, +]
and ElemCount[s, —]. (These counters are assumed to
be initialized to zero before the routine is called; they
are reset to zero at line 20.) Additionally, a set Visited
of all the elements s that appear in feature i of the
sample is maintained, and the total number of positive
and negative examples is recorded in TotalCount [+]
and TotalCount[—].

Lines 10-25 make use of these counts to find the best
test. For a given set element s, the number of ex-
amples of class y covered by the test s € wu; is sim-
ply ElemCountl[s,y]; similarly the number of exam-
ples of class y covered by the test s & w; is given



by TotalCount [y]-ElemCount [s, y]. The maximal en-
tropy test can thus be found by looping over the ele-
ments s in the set Visited, and computing the entropy
of each test based on these formulae.
A few points regarding this procedure bear mention.
Efficiency. Defining the size of a sample in the nat-
ural way, it is straightforward to argue that if access-
ing ElemCount and the Visited set requires constant
time,! then invoking MaxGainTest for all set-valued
features of a sample only requires time linear in the to-
tal size of the sample.? Hence finding maximal-entropy
element-of tests can be done extremely efficiently. No-
tice that this time bound is independent of the number
of different strings appearing as set elements.
“Monotone” element-of tests. One could restrict this
procedure to generate only set-valued tests of the form
“s € u;” by simply removing lines 15-19. Henceforth,
we will refer to these tests as monotone element-of tests.
Theory, as well as experience on practical problems,
indicates that this restriction may be useful.
Generality. This routine can be easily adapted to
maximize a metric other than entropy, such as the GINI
criteria (Brieman et al. 1984), information gain (Quin-
lan 1990b), predictive value (Apté et al. 1994), Bayes-
Laplace corrected error (Clark and Niblett 1989), or
LS-content (Ali and Pazzani 1993). In fact, any metric
that depends only on the empirical performance of a
condition on a sample can be used. Hence it is possible
to extend to set-valued features virtually any top-down
algorithm for building decision trees, decision lists, or
rule sets.

A Theory Of Set-Valued Features

Given that it is possible to extend a learning system to
set-valued features, the question remains, is it useful?
It might be that few real-world problems can be natu-
rally expressed with set-valued features. More subtly,
it might be that learning systems that use set-valued
features tend to produce hypotheses that generalize rel-
atively poorly.

'In a batch setting, when all the string constants are
known in advance, is it trivial to implement constant-time
access procedures for ElemCount and Vigited. One simple
technique is to replace every occurrence of a string s in the
dataset with a unique small integer, called the index of s.
Then ElemCount can be a r x k matrix of integers, where r is
the largest index and & is the number of classes. Similarly,
Visited can be a single length-r array of flags (to record
what has been previously stored in Visited) and another
length-r array of indices.

2A brief argument: any invocation of MaxGainTest, the
number of times line 5 is repeated is bounded by the total
size of the i-th features of examples in the sample, and the
number of iterations of the for loop at lines 10-21 is bounded
by the size of Vigsited, which in turn is bounded by the
number of repetitions of line 5.

The former question will be addressed later. In this
section we will present some formal results that suggest
that extending a boolean hypothesis space to include
element-of tests on set-valued features should not sub-
stantially increase the number of examples needed to
learn accurate concepts. In particular, we will relate
the set-valued attribute model to Blum’s (1992) “infi-
nite attribute space” model, thus obtaining bounds on
the sample complexity required to learn certain boolean
combinations of element-of tests.

In the infinite attribute space model of learning, an
large (possibly infinite) space of boolean attributes A is
assumed. This means that an instance can no longer be
represented as a vector of assignments to the attributes;
instead, an instance is represented by a list of all the
attributes in A that are true for that instance. The size
of an instance is defined to be the number of attributes
in this list.

One can represent an instance [ in the infi-
nite attribute model with a single set-valued feature
true_attribs, whose value is the set of attributes true
for I. If I’ is the set-valued representation of I, then
the element-of test “a; € true_attribs” succeeds for
I' exactly when the boolean attribute a; is true for I,
and the test “a; ¢ true_attribs” succeeds for I’ ex-
actly when a; is false for 7.

Conversely, given an instance I represented by the n
set-valued features uq, ..., u,, one can easily construct
an equivalent instance in the infinite attribute model:
for each set-valued feature w; and each possible string
¢ € X, let the attribute s_in_u; be true precisely when
the element-of test “s € u;” would succeed. This leads
to the following observation.

Observation 1 Let D = <n,t_:ﬁ,17,Y = {+,-}) be
a domain containing only nominal and set-valued fea-
tures, and let L be any language of boolean combinations
of primitive tests on the features in 4.

Then there exists a boolean language L' in the infi-
nite attribute model, a one-to-one mapping fr from le-
gal instances of D to instances in the infinite attribute
model, and a one-to-one mapping fc from concepts in
L to concepts in L' such that

YO eL, (I€C)e (fill) € fe(0))

In other words, if one assumes there are only two
classes and no continuous features, then every set-
valued feature domain D and set-valued feature lan-
guage £ has an isomorphic formulation in the infinite
attribute model.

This observation allows one to immediately map over
results from the theory of infinite attributes, such as the
following:

Corollary 2 Let D be a two-class domain containing
only set-valued features, but containing any number of



these. Let m be an upper bound on the size of legal
winstances of D. Let Ly, be the language of conjunctions
of at most k element-of tests, let My, be the language
of conjunctions of at most k monotone element-of tests,
and let VCdim(x) denote the Vapnik-Chervonenkis (V-
C} dimension of a language. Then

o VCdim(Ly) < (n+1)(k+1);
o VCdim(My) < n+ 1, irrespective of k.

Proof: Immediate consequence of the relationships be-
tween mistake bounds and VC-dimension established
by Littlestone (1988) and Theorems 1 and 2 of Blum
(1992). ]

Together with the known relationship between VC-
dimension and sample complexity, these results give
some insight into how many examples should be needed
to learn using set-valued features. In the monotone
case, conjunctions of set-valued element-of tests for in-
stances of size n have the same VC-dimension as ordi-
nary boolean conjunctions for instances of size n. In
the non-monotone case, set-valued features are some-
what more expressive than non-monotone boolean fea-
tures. This suggests that negative element-of tests
should probably be used with some care; although they
are computationally no harder to find than monotone
element-of tests, they are an intrinsically more expres-
sive representation (at least when large conjunctions are
possible), and hence they may require more examples
to learn accurately.

Using Corollary 2 and other general results, bounds
on the V-C dimension of related languages can also eas-
ily be established. For example, it is known that if £
is a language with V-C dimension d, then the language
of ¢-fold unions of concepts in £ has V-C dimension of
at most 2¢d log (ef) (Kearns and Vazarani 1994, p. 65).
Applying this result to £ immediately yields a poly-
nomial upper bound on DNF over set-valued features,
which includes as a subset decision trees over set-valued
features.

Alternatives to set-valued features

In the preceding section we showed that if continuous
attributes are disallowed then the set-valued feature
model 1s equivalent to the infinite attribute model. An-
other consequence of this observation is that in a batch
setting, in which all examples are known in advance,
set-valued features can be replaced by ordinary boolean
features: one simply constructs a boolean feature of the
form s_in_u; for every string s and every set-valued fea-
ture u; such that s appears in the i-th component of
some example. Henceforth, we will call this the charac-
teristic vector representation of a set-valued instance.

One drawback of the characteristic vector represen-
tation is that if there are m examples, and d is a bound
on the total size of each set-valued instance, then the
construction can generate md boolean features. This
means that the size of the representation can grow in
the worst case from O(md) to O(m?d)—i.e., quadrati-
cally in the number of examples m.

We will see later that some natural applications do
indeed show this quadratic growth. For even moder-
ately large problems of this sort, it is impractical to use
the characteristic vector representation if vectors are
implemented naively (i.e., as arrays of length n, where
n < md is the number of features). However, it may
still be possible to use the characteristic vector repre-
sentation in a learning system that implements vectors
in some other fashion, perhaps by using a “sparse ma-
trix” to encode a set of example vectors.

Hence, it is clear that there are (at least) two other
ways in which we could have described the technical
contributions of this paper: as a scheme for extending
top-down decision trees and rule learning algorithms
to the infinite attribute model; or as a specific data
structure for top-down decision tree and rule learning
algorithms to to be used in domainsin which the feature
vectors are sparse.

We elected to present our technical results in the
model of set-valued features because this model en-
joys, in our view, a number of conceptual and peda-
gogical advantages over the other models. Relative to
the infinite-attribute model, set-valued features have an
advantage in that they are a strict generalization of the
traditional feature-vector representation; in particular,
they allow ordinary continuous and nominal features
to co-exist with “Infinite attributes” in a natural way.
Additionally, the nature of the generalization (adding a
new kind of feature) makes it relatively easy to extend
existing learning algorithms to set-valued features. We
note that to our knowledge, the infinite attribute model
has seldom been used in practice.

There are also certain conceptual advantages of the
set-valued feature model over using a sparse implemen-
tation of the characteristic vector representation. For
instance, the set-valued feature model lends itself nat-
urally to cases in which some features require dense en-
coding and others require a sparse encoding. Also, the
same learning system also be used without significant
overhead on problems with either sparse or non-sparse
feature vectors.

A more subtle advantage is that for set-valued fea-
tures, the representation as perceived by the users and
designers of a learning system closely parallels the ac-
tual implementation. This has certain advantages when
selecting, designing, and implementing learning algo-
rithms. For example, set-valued features share with
traditional (non-sparse) feature vectors the property



that the size of an example is closely related to the
V-C dimension of the learning problem. This is not the
case for a sparse feature vector, where the number of
components in the vector that represents an example
depends both on the example’s size and on the size of
a dataset. One can easily imagine a user naively asso-
ciating the length of a feature vector with the difficulty
of a learning problem—even though long feature vectors
may be caused by either large amounts of data (which
is of course helpful in learning) or by long documents
(which is presumably not helpful in learning.)

Applications

In this section we will present some results obtained by
using set-valued features to represent real-world prob-
lems. The learning system used in each case is a set-
valued extension of the rule learning system RIPPER
(Cohen 1995a), extended as suggested above.

To date we have discovered two broad classes of prob-
lems which appear to benefit from using a set-valued
representation. The first class is learning problems
derived by propositionalizing first-order learning prob-
lems. The second is the class of text categorization
problems, i.e., learning problems in which the instances
to be classified are English documents.

First-order learning

A number of theoretical results have been presented
which show that certain first-order languages can be
converted to propositional form (Lavra¢ and DZeroski
1992; Dzeroski et al. 1992; Cohen 1994). Further, at
least one practical learning system (LINUS) has been
built which learns first-order concepts by proposition-
alizing the examples, invoking a propositional learning
system on the converted examples, and then translating
the resulting propositional hypothesis back to a first-
order form (Lavra¢ and DZeroski 1994).

There are several reasons why a LINUS-like system
might be preferred to one that learns first-order con-
cepts in a more direct fashion. One advantage is that
it allows one to immediately make use of advances
in propositional learning methods, without having to
design and implement first-order versions of the new
propositional algorithms. Another potential advantage
1s improved efficiency, since the possibly expensive pro-
cess of first-order theorem-proving is used only in trans-
lation.

A disadvantage of LINUS-like learning systems is
that some first-order languages, when propositional-
ized, generate an impractically large number of fea-
tures. However, often only a few of these features are
relevant to any particular example. In this case, using
set-valued features to encode propositions can dramat-
ically reduce storage space and CPU time.

Bias m RIPPER Grendel2
Time Error(%) | Time Error(%)
Ylocal 100 | 04 23] 103 2.8
500 2.0 0.0 41.0 0.0
4-local 100 1.9 3.5 88.8 2.7
500 9.1 0.0 | 376.0 0.0

Table 1: k-local bias: direct ws. set-valued feature
implementations on Pazzani and Brunk’s student loan
prediction. The column labeled m lists the number of
training examples. CPU times are on a Sun Sparcsta-
tion 20/60 with 96Mb of memory.

We will illustrate this with the problem of predicting
when payment on a student loan is due (Pazzani and
Brunk 1991). In Pazzani and Brunk’s formulation of
this problem, the examples are 1000 labeled facts of the
form no_payment_due(p), where p is a constant sym-
bol denoting a student. A set of background predicates
such as disabled(p) and enrolled(p, school, units)
are also provided. The goal of learning is to find a
logic program using these background predicates that
is true only for the instances labeled “4”.

Previous experiments (Cohen 1993) have shown that
a first-order learning system that hypothesizes “k-
local” programs performs quite well on this dataset.
It is also a fact that any non-recursive logic pro-
gram that is “k-local” can be emulated by a mono-
tone DNF over a certain set of propositions (Cohen
1994). The set of propositions is typically large but
polynomial in many parameters of the problem, in-
cluding the number of background predicates and the
number of examples.? For the student loan prob-
lem with & = 2, for instance, some examples of the
propositions generated would be piza(A) = true iff
JB :enlist(A,B) A peacecorps(B) and psg(A) =
true iff 3B : longest_absence_from_school(4,B)A
1t(B,4). Often, however, relatively few of these propo-
sitions are true for any given example. This suggests
giving using a set-valued feature to encode, for a given
example, the set of all true constructed propositions
which are true of that example.

We propositionalized the student loan data in this
way—using set-valued features to encode the proposi-
tions generated by the k-local conversion process—for
various values of k. Propositions were limited to those
that satisfied plausible typing and mode constraints.
We then ran the set-valued version of RIPPER on this
data, and compared to Grendel2 (Cohen 1993) config-
ured so as to directly implement the k-local bias. Since
there is no noise in the data, RIPPER’s pruning al-
gorithm was disabled; hence the learning system be-

®It is exponential only in k (the “locality” of clauses) and
the arity of the background predicates.



ing investigated here is really a set-valued extension
of propositional FOIL. Also, only monotone set-valued
tests were allowed, since monotone DNF is enough to
emulate the k-local bias. For each number of training
examples m given, we report the average of 20 trials.
(In each trial a randomly selected m examples were used
for training, and the remainder were used for testing.)

The results are shown in Table 1. None of the dif-
ferences in error rates are statistically significant; this
is expected, since the learning algorithms are virtually
identical. However, the set-valued RIPPER is substan-
tially faster than the first-order system Grendel2. The
speedup in learning time would more than justify the
cost of converting to propositional form, if any moder-
ately substantial cross-validation experiment were to be
carried out;* for the larger problems even a single learn-
ing run is enough to justify the use of set-valued RIP-
PER. (Additionally, one would expect that RIPPER
would show an improvement in error rate on a noisy
dataset, since Grendel2 does not include any pruning
mechanisms.)

In this case the number of propositional features
can be bounded independently of the number of ex-
amples. However, other first-order learning systems
such as FOIL (Quinlan 1990b) and Progol (Muggle-
ton 1995) allow constant values to appear in learned
clauses, where the constant values are derived from the
actual training data. If such a first-order language were
propositionalized, then this would certainly lead to a
number of features linear in the number of examples,
causing quadratic growth in the size of the proposition-
alized dataset.

Text categorization

Many tasks, such as e-mail filtering and document rout-
ing, require the ability to classify text into predefined
categories. Because of this, learning how to classify
documents is an important problem.

In most text categorization methods used in the in-
formation retrieval community, a document is treated
as an unordered “bag of words”; typically a special-
purpose representation is adopted to make this efficient.
For shorter documents a “set of words” is a good ap-
proximation of this representation. This suggests rep-
resenting documents with a single set-valued feature,
the value of which is the set of all words appearing in
the document.

Traditional feature-vector based symbolic learning
methods such as decision tree and rule induction
can be and have been applied to text categorization
(Lewis and Ringuette 1994; Lewis and Catlett 1994;

*The time required to convert to propositional form is
35 seconds for k = 2 and 231 seconds for £ = 4. A total of
139 propositions are generated for & = 2 and 880 for k = 4.

Apté et al. 1994; Cohen 1995b). A number of repre-
sentations for symbolic learning methods have been ex-
plored, but generally speaking, features correspond to
words or phrases. Since the number of distinct words
that appear in a natural corpus is usually large, it is
usually necessary for efficiency reasons to select a rela-
tively small set of words to use in learning.

An advantage of the set-valued representation is that
it allows learning methods to be applied without worry-
ing about feature selection (at least for relatively short
documents). We note that the feature selection process
can be complex; for instance one set of authors (Apté
et al. 1994) devoted four pages of a paper to explaining
the feature selection process, as compared to five pages
to explaining their rule induction program. It is also
sometimes the case that the number of features must
be limited for efficiency reasons to fewer than would
be optimal. For instance, Lewis and Ringuette (1994)
report a case in which the performance of a decision
tree learning method continued to improve as the num-
ber of features was increased from 1 to 90; presumably
on this problem still more features would lead to still
better performance.

The following section describes an evaluation of the
set-valued version of RIPPER on text categorization
problems.

The text categorization problems The bench-
mark we will use is a corpus of AP newswire head-
lines, tagged as being relevant or irrelevant to topics
like “federal budget” and “Neilsens ratings” (Lewis and
Gale 1994; Lewis and Catlett 1994). The corpus con-
tains 319,463 documents in the training set and 51,991
documents in the test set. The headlines are an av-
erage of nine words long, with a total vocabulary is
67,331 words. No preprocessing of the text was done,
other than to convert all words to lower case and re-
move punctuation.

In applying symbolic learning system to this problem,
it is natural to adopt a characteristic vector version of
the set-of-words representation—i.e., to construct for
each word w one boolean feature which is true for a
document d iff w appears in d. This representation
is not practical, however, because of the size of the
dataset: Lewis and Catlett (1994) estimated that stor-
ing all 319,463 training instances and all 67,331 possible
word-features would require 40 gigabytes of storage.

However, the set-valued extension of RIPPER can
be easily run on samples of this size. Table 2 sum-
marizes monotone RIPPER’s performance, averaged
across nine of the ten categories, and compares this to a
learning algorithm that uses a representation optimized
for text—Rocchio’s algorithm, which represents a docu-
ment with term frequency /inverse document frequency
weights (TF-IDF). The implementation used here fol-



Rocchio RIPPER
Domain #errors recall  precis | #errors recall precis time
bonds 31.00 50.00 96.77 34.00 46.67 93.33 1582
boxoffice 26.00 52.38 78.57 20.00 64.29 84.38 2249
budget 170.00 35.53 61.95 159.00  32.99 70.65 2491
burma 46.00 55.91 91.23 33.00 69.89 92.86 2177
dukakis 107.00 0.00 100.00 112.00 17.76 44.19 3593
hostages 212.00 37.72 55.13 206.00 44.30 56.11 4795
ireland 106.00  32.48 58.46 97.00 27.35 72.73 1820
nielsens 49.00 52.87 85.19 35.00 72.41 85.14 10513
quayle 73.00 81.20 69.23 65.00 87.22 70.73 2416
average 91.11 44.23 77.39 84.56  51.43 74.46  3652.50

Table 2: RIPPER and Rocchio’s algorithm on AP titles with full sample

Learner f#terrors recall precision  Fls—
Rocchio 91.11  44.23 77.39 0.52
Prob. class. 0.41
RIPPER
w/ negation 86.00 60.12 72.26 0.64
RIPPER
all words 84.56 51.43 74.46 0.59
10,000 words 85.11 51.61 73.62 0.59
5,000 words 85.22  50.95 73.84 0.59
1,000 words 85.56  49.64 74.17 0.58
500 words 86.67  50.72 72.51 0.58
10 words 87.78  52.80 72.07 0.59
50 words 91.78  44.39 73.17 0.52
10 words 98.56  35.12 72.06 0.41
5 words 109.33 17.94 85.61 0.23
1 word 118.22 0 100.00 0.00

Table 3: Effect of entropy-driven feature selection.

lows Tttner et al. (1995).° Although both algorithms
are attempting to minimize errors on the test set, we
also record the widely used measurements of recall and
precision.® RIPPER achieves fewer errors than Roc-
chio on 7 of the 9 categories, and requires a reasonable
amount of time (given the size of the training set.)
Table 3 gives some additional points of reference
on this benchmark. All entries in the table are av-

5Very briefly, each document is represented as a (sparse)
vector, the components of which correspond to the words
that appear in the training corpus. For a document d, the
value of the component for the word w; depends on the
frequency of w; in d, the inverse frequency of w; in the
corpus, and the length of d. Learning is done by adding
up the vectors corresponding to the positive examples of a
class C' and subtracting the vectors corresponding to the
negative examples of C, yielding a “prototypical vector” for
class C. Document vectors can then be ranked according
to their distance to the prototype. A novel document will
be classified as positive if this distance is less than some
threshold ¢¢. In the experiments, tc was chosen to minimize
error on the training set.

6 Recall is the fraction of the time that an actual positive
example is predicted to be positive by the classifier, and pre-
ciston is the fraction of the time that an example predicted
to be positive is actually positive. We define the precision
a classifier that never predicts positive to be 100%.

erages over all nine problems (equally weighted). So
that we can compare earlier work, we also record the
value of the F-measure (Van Rijsbergen 1979, pages
168-176) at 4 = 1. The F-measure is defined as

Fo = (82 +1) precision-recall
8 = B2 precision+recall
tance given to precision relative to recall. A value of

# = 1 corresponds to equal weighting of precision and
recall, with higher scores indicating better performance.
The first few rows of the table show the average per-
formance of Rocchio’s algorithm, a probabilistic classi-
fier used by Lewis and Gale (1994), and non-monotone
RIPPER (i.e., RIPPER when tests of the form e & S

are allowed.)

where (3 controls the impor-

So far, we have demonstrated that good performance
can be obtained without using feature selection by us-
ing set-valued features. We will now make a stronger
claim: that feature selection is actually harmful in this
domain. The final rows of Table 3 show the perfor-
mance of monotone RIPPER when feature selection is
applied. We used the strategy employed by Lewis and
Ringuette (1994) and also Apte et al. (1994) in a similar
context: in each learning problem the mutual informa-
tion of each word and the class was computed, and the
k words that scored highest were retained as features.
In our experiments, we implemented this by removing
the low-information words from the sets that represent
examples. Aside from efficiency issues, this is equiva-
lent to using the k retained words as binary features;
however, by using set-valued features we were able to
explore a much wider range of values of k£ than would
be otherwise be possible.

To summarize the results, although around 100 fea-
tures does give reasonably good performance, more fea-
tures always lead to better average performance (as
measured by error rate). This result might be un-
expected if one were to think in terms of the 66197-
component characteristic vector that i1s used for these
problems—one would think that feature selection would
surely be beneficial in such a situation. However, the
result is unsurprising in light of the formal results. Be-
cause the documents to be classified are short (aver-



aging only nine words long) the VC-dimension of the
hypothesis space is already quite small. Put another
way, a powerful type of “feature selection” has already
been performed, simply by restricting the classification
problem from complete documents to the much shorter
headlines of documents—as a headline is by design a
concise and informative description of the contents of
the document.

Other results Although space limitations preclude
a detailed discussion, experiments have also been per-
formed (Cohen and Singer 1996) with another widely-
used benchmark, the Reuters-22173 dataset (Lewis
1992). Compared to the AP titles corpus, this corpus
has fewer examples, more categories, and longer docu-
ments. The stories in the Reuters-22173 corpus aver-
age some 78 words in length, not including stopwords.
The vocabulary size is roughly comparable, with 28,559
words appearing in the training corpus. Although the
longer documents have a larger effective dimensional-
ity, set-valued RIPPER, without feature selection also
seems to achieve good performance on this dataset.
For instance, following the methodology of Apte et
al., RIPPER’s “micro-averaged breakeven point” for
this benchmark is 80.9%, slightly better than the best
reported value of 80.5% for SWAP-1; following the
methodology of Lewis and Ringuette (1994), a micro-
averaged breakeven point of 71.9% was obtained, again
bettering the best previously reported value of 67%.
Set-valued RIPPER averages a little over 5 minutes of
CPU time to learn from the 15,674-example training
sets used by Lewis.

Conclusions

The feature vector representation traditionally used by
machine learning systems enjoys the practically impor-
tant advantages of efficiency and simplicity. In this pa-
per we have explored several properties of set-valued
features, an extension to the feature-vector representa-
tion that largely preserves these two advantages.

We showed that virtually all top-down algorithms for
learning decision trees and rules can be easily extended
to set-valued features. We also showed that set-valued
features are closely related to a formal model that al-
lows an unbounded number of boolean attributes. Us-
ing this connection and existing formal results, we ar-
gued that the sample complexity of set-valued feature
learners should be comparable to that of traditional
learners with comparably sized examples.

Finally, we demonstrated that two important classes
of problems lend themselves naturally to set-valued
features: problems derived by propositionalizing first-
order representations, and text categorization prob-
lems. In each case the use of set-valued features leads
to a reduction in memory usage that can be as great as

quadratic. This dramatic reduction in memory makes it
possible to apply set-valued symbolic learners to large
datasets—ones that would require tens of thousands
of features if traditional representations were used—
without having to perform feature selection.
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