RIPPER(1) RIPPER(1)

NAME
ripper — learns a rule set fromamples

SYNOPSIS
ripper [options] filestem

DESCRIPTION
Ripperis a program for inducing classification rules from a set of preclassmudpdes; as such it is
broadly similar to learning methods such as neural nets, nearest neatbdecision tree induction sys-
tems such as CAR C4.5 and ID3. The user prioles a set of>amples, each of which has been labeled
with the appropriatelass. Ripper will then look at thexamples and find a set of rules that will predict the
class of laterxamples.

Ripper has seral adwantages er other learning techniqued=irst, rippers hypothesis is xpressed as a
set of if-then rules.These rules are reladly easy for people to understand; if the ultimate goal isatn g
insight into the data, then ripper is probably a better choice than a neuratlnkt®rning method, oven

a decision tree induction system déilCART. Second, ripper is asymptoticallpgter than other competiti
rule learning algorithms; this means that it will be mua$tdr on lage datasetsThird, ripper allovs the
user to specify constraints on the format of the learned if-then rules. If there is some wiedgeabout
the concept to be learned, then these constraints can often lead to more agpothesés. Gurth, ripper
allows attributes to be either nominal, continuous, or "sdtied". Thevalue of a set-alued attrilite is a
set of atoms: for>@ample, a setalued attrilite could be used to encode the set ofds that appeared in
the body of a documenRecent ersions of Ripper also support bagjued attrilntes.

OPTIONS TO RIPPER
The sole agument to ripper is filestemthat determines the name of ripgariput files. (The input files for
ripper are described belg The options to ripper e te folloving meanings.

—-C Expect noise-free data.
-n Expect noisy data (the drfit.)

—knum Estimate error rates with k-fold crosahdation. Thetraining is split into k disjoint partitions,
and the learning algorithm is trained orery collection of k-1, and then tested in the remain-
ing partition.

- Estimate error rate with lee-one-out crossalidation (ie, N-fold crossaflidation where N is
size of training set.)

-viev Set the trace &l ("verbosity") tolev, which must be either 0, 1, 2, or 3he defult is 0.

—aordering
Before learning, ripper first heuristically orders the classes; by one of theifglonethods:
+freq, order by increasining frequen¢the deéult); -freq, order by decreasing frequgnc
given, order classes as in the names file; mdl, use heuristics to guess an optimal ordering;
unordered (see beld.

After arranging theclasses ripper finds rules to separate class1 from classes class2, ... classn, then rules to
separate class2 from classes class3, ... classn, and Stherfinal class classn will become the adgf

class. The end result is that rules for a single class widlysl be grouped togethdwt rules for classi are
possibly simplified, because thean assume that the class of tixample is one of classi, ... classifi.an

example is cuered by rules from tew or more classes, then this conflict is resolin fivar of the class that

comes first in the ordering.

With the ’-aunordered’ option, ripper will separate each class from the remaining classes, thus ending up
with rules for @ery class. Conflicts are resokd by deciding indvar of the rule with lavest training-set
error

-s Read the training data from standard input, rather than from filestem.data.

RIPPER(1) RIPPER(1)

—gfilename
Use grammar file filename.gram.

—f filename
Use names file filename.names.

-On Control optimization of rulesRipper malks n optimization passesep the rules it learnsThe
default is n=2.

-Mn Use statistics collected on a class-stratified subsamplexamples (instead of the entire dataset)
to male certain frequently repeated decisiori®r very lage datasets, RIPPER using subsamples
of a fav hundred or a fe& thousand will typically produce a slightly inferior rulesetweaer, it
will run much more quickly than RIPPER without subsampling.

=In Discretize continuous attuibes inton equal-frequeng segments. (Ifnumis zero, discretize into
the maximal possible number ofgseents.) Dedult is to not discretize continuoualues. Dis-
cretization usually speeds up ripper oméadatasets with mgmontinuous alues, it may cost in
accurag.

-G Print the grammar andi. This is sometimes useful when oneuld like to make a ciange to the
default grammar

-N Print a names file andieé. This is sometimes useful when oneuld like to generate a names file
for use by C4.5(Ripper can usually infer the types of an atitébfrom a dataset, so a names file
for Ripper is optional.)

-R Randomize operation. (By arflt, a fied random seed is used.)

—Istring
Allow or disallov negdive tests in rules.If the string contains a "s", thengative tests of the
form "attribute I” \alue" for set- and bag-alued attrilntes will be allaved in rules.(The symbol
"I™ stands for "does not contain".) If the string contains an "n", thgatine tests of the form
"attribute !=\alue" for nominal attribtes will be allaved in rules.

-Dn Change the maximum "decompression".
-Sn Simplify the typothesis more (n>1) or less (n<1).

-Ln Change the "loss" ratio, ie the ratio of the cost @lsef ngative © the cost of adlse positie. A
vaue of n>1 will usually impree recall of the minority classes, and alue of n<1 will usually
improve grecision.

-A Add redundant tests to rule$his sometimes impkes precision and readabilityrinciply for set-
or bag-walued attrilntes that contain sets of Englisiongs.

-Fn Force each rule to e@r at leastn examples.

INPUT FILES
The files read and written by ripper are of the fditestem.gt wherefilestemis the first and only gument
to ripper All of ripper input files are free format (i.e. white space is not importanijhig following a
percent sign characteuton the same line is a comment.

Ripper &pects to find four files: data file calledfilestem.datacontaining some preclassifiedagnples, a
test file calledfilestem.testhat contains some additional preclassifigdneples to be used as test cases, a
names filecalledfilestem.namedefining the names of the classes and atie®used in the data file, and a
grammar file calledfilestem.gamdefining the rules that are alled to be used in aypothesis. Excegdbr

the grammar file, the format for these files is roughly the same as used by C4.5. Thevidtrbat
described in more detail b&lo The last three files are optional. If there is no test file ripper will either not
test its learned rule set, or (if directed by the user to do so througk trey options) ripper will use
cross-@lidation to test its learned rule séftthere is no names file, ripper will assign arbitrary names to the
attributes and classes, and will try to figure out the types of theua#isitirom the datalf there is no gram-
mar file, ripper will use the dafilt grammar described baio

RIPPER(1) RIPPER(1)

Ripper also creates a filikestem.hyontaining the ruleset or rulesets it found, in a format that is intended
to be computereadable.

An example for ripper is described by adtk set ofattributes. These attribtes can be either continuous,
nominal, set-alued, or bag-alued. Continuouattributes hae real-number &lues. Thevalue of a nominal
attribute is one of a fied set of symbolicalues, for gample "on, df' or "low, medium, high". The \alue
of a set- or bagalued attrilte is a set of atoms (rather than a single symbaligev) Thesattributes, as
well as the classes that are to be predicted, are definednarties file

The names file contains first, a comma-separated list of atoms representing the classes, terminated by a
period. (Anatom contains only letters, digits, and the underscore charaoigmust bgin with a letter
Alternatively, an aom is ary sequence of characters enclosed in single quotEse) list of classes is fol-

lowed by a list ofattribute definitions.Each attrilnte definition consists of the name of the atiigh e.g.

"height" or "s&"; a colon; and either the atocontinuoudf the attribute is continuous, the atosetif the

attribute is set-alued, the atorbag if the attritute is bag-alued, the atorsymbolicif the attritute can ta&

on ary symbolic value, or a comma-separated list of atoms representing possible synaboadis of the

attribute, if the attrilnte is nominal.Finally, every attribute definition must be terminated by a period.

Ripper also supportignored and suppessedattributes. Ignoredattributes are completely ignored by the
learning systemTo define an ignored attrilte, use a declaration of the foatiribute _name: igna. Sup-
pressed attrilites are similamexcept that while thgare not used in Rippex’hypotheses, the number adlv
ues of the attribite does déct MDL-based pruningHence, suppressing an attrib that vas not used in a
hypothesis should not change Ripgegeerformance in anway. An dtribute is "suppressed"” by inserting
the lkeyword suppessedafter the colon in the atrnibe’s definition.

Thedata filecontains a set of classifiedamnples. Eaclkexample is a comma-separated list of attrdonal-

ues, follaved by an atom indicating the class of tixaraple, follaved by a period.(It is usually con-
venient to hae me example per line, ot this is not required.) Attride \alues are gien in the same order

that attritutes are defined in the names file; most of the usual gmfaxnumbers are supporteSet- and
bag-walued attrilntes are specified by simply enumerating the elements of the set, separated with whites-
pace. Unknan attritutes are indicated with a question marketok

Examples can also bevgn a weight, by insertingw between the class name and the terminating period
(wherew is a real numbethe deéult value for which is one).

Thetest fileis formatted in the sameay as the data file.

Finally, the grammar filecontains a description of a coxtdree grammarroughly in BNF notation.The
grammar file is optional for rippeand most users will be probably noamt to change the dailt gram-

mar; havever we will describe it here for completenesthe terminal symbols of the grammar are tests on

the \alues of attrintes defined in the names file; each sentence generated by the grammar is thus a
sequence of attriie-\alue tests.Ripper will read in this grammar and constrain its learning component so
that every rule generated by ripper will ha & an antecedent a sequence of atitd\alue tests that is a
sentence of the grammarFhe grammar thus is aay for the user to guide rippsrthoice of rules.

More specificallythe grammar file contains a seriesgogmmar rules.Each grammar rule consists of an
atomicleft-hand siddollowed by the to&n "-->" followed by a comma-separated listgphmmar symbols
followed by a period.A grammar symbois either a nonterminal symbol (which is simply an atom that
appears on the left-hand side of some grammar rule)t@manal symbol.A terminal symbol is of the
form attribute op valuavhereattributeis the name of an attule (e.g. "height”) andalue is a alid value

for that attrilute. Anoperatorop must be one of the teks "=", "I=", ">=", "<=" "™ or "I"". Terminal
symbols of the formattribute op *are also alleed, in which case grpossible alue is allaved.

The conditiorattribute ~ symbois used for set- and bagdued attrilites. Theconditionattribute ™ symbol
is true of an eample ifattributeis set-alued andsymbolis contained in the sefThe conditiomattribute I
symbolis true if symbolis not present in the seEor bags, the conditiomttribute ™ symbol__ ks true if
attribute contains at leadt instances oSymbol. The conditionattribute I" symbol__ks treated analo-
gously

Often one will hae ®veaal grammar rules with the same left-hand sidg,different right-hand sidesin

RIPPER(1) RIPPER(1)

this case one may use the syntax

LHS --> RHS1 | RHS2 | ... | RHSk
rather than the ardier

LHS --> RHS1

LHS --> RHSk
Finally, prefixing a grammar rule with arxgamation point indicates to ripper that sentences generated
using that grammar rule Y@ a bwer priority; if possible, ripper will bild a hypothesis without using Vo
priority sentencesEven laver priorities can be assigned by prefixing grammar rules with a stringpaf tw
more eclamation points.

THE DEFAULT G RAMMAR

FILES

When learning rules to predict the class "class", ripper wket to find some left-hand side of the form
"body_class" to use as the start symbol of the grammar; if this is not present, ripper will use the atom
"body" as the start symbolf this is not present, ripper will construct the feliag default grammar:

body --> body_conds.

body conds -->.

body_conds --> cond,body_conds.
cond --> attrl_cond.

cond --> attrk_cond.

whereattrl, ..., attrkare the names of the atiiles defined in the names fil#.discretization is used, then
for each continuous attuie cattr, the defult grammar also contains the rules

cattr_cond --> cattr>=t1.
cattr_cond --> cattr<=t1.

cattr_cond --> cattr>=tn.
cattr_cond --> cattr<=tn.

wheretl, ..., tnare ripper$ dscretization of the training dataOtherwise, the grammar will contain the
rules

cattr_cond --> cattr>="*',
cattr_cond --> cattr<="*',

For a rominal attrilute nattr the defult grammar contains the rule
nattr_cond --> nattr = '*",
For a st- or bag-alued attrilnte sattr the deult grammar contains the rules

sattr_cond --> sattr ~ ¥,
sattr_cond --> sattr I '*",

If the grammar file is missing or empthen the defult grammar will be usedlf the grammar contains
definitions of some Ut not all of the nonterminal symbols used in theaditfgrammarthey will override
the de&ult definitions.

ripper

filestem.data (data file)
filestem.names (names file)
filestem.gram (grammar file)
filestem.test (unseen data)
filestem.lyp (learned rules)

Some sample input files are als@ilable from wcohen@research.

RIPPER(1) RIPPER(1)

SEE ALSO

The man page foripperaux contains brief descriptions of some additional useful programs ddking
with ripper rulesets and/or datasets.

Rippers input files are more-dess compatible with Quinla&ilC4.5tree-learning system.

The papers "&st eficient rule learning" (Cohen, ML95) and "Learning trees and rules withadate fea-
tures" (Cohen, AAAI96) describe the algorithms used in Ripper in more detail.

USING RIPPER TO CLASSIFY TEXT

BUGS

| am frequently ask&d about tools to preprocesgttso that it can be easily digested by Ripdeton't have

ary tools to distrilute, lagely because | think it @uld be hard to hee ay tool that is sufciently general
to handle all the necessary cases, dtill substantially simpler than a general-purposeé fgeocessing lan-
guage lile Ferl.

My current recommendation in feeding Ripper is to use somethiadpdilt (or whatger suits you) to con-

vert punctuation to white space, and coenegryghing to laver case, and then feed the result into Ripper as

a dngle set (or perhaps baglf you use sets, it is not necessary to reenduplicate tolens. Becareful to
remove the punctuation symbols percent sign (%), comma (,), colon (:), single quote ('), and period (.), all
of which hae gecial meaning to Rippeif you want a non-defult tokenization, then you must surround
each tokn with single quotes. Stemming doésgem to mak a hg difference on the benchmarksd’

tried. Coerciorto lower case also means that you can safely ugeigpercase or migd-case symbol as

an attrilute or class name.

Attribute names, attrilie \alues, grammar symbols, and class names are all put in the same name space, so
you cant use the same symbol fogay, a dass name and a possible satue. Thisis avkward when
you're using set- or bagalued attrilbites to handle .

Ripper doest’actually check the range of symbolic attribs for consisteyowith declaration in the names
file.

The response of ripper to the -S and -L options is sometimes rather abrupt---i.e. small changes can some-
times hae dastic consequences.

