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Abstract

Many existing rule learning systems are
computationally expensive on large noisy
datasets. In this paper we evaluate the
recently-proposed rule learning algorithm
IREP on a large and diverse collection of
benchmark problems. We show that while
IREP is extremely efficient, it frequently
gives error rates higher than those of C4.5
and C4.5rules. We then propose a num-
ber of modifications resulting in an algo-
rithm RIPPERE that is very competitive
with C4.5rules with respect to error rates,
but much more efficient on large samples.
RIPPERE obtains error rates lower than or
equivalent to C4.5rules on 22 of 37 bench-
mark problems, scales nearly linearly with
the number of training examples, and can
efficiently process noisy datasets containing
hundreds of thousands of examples.

1 INTRODUCTION

Systems that learn sets of rules have a number of de-
sirable properties. Rule sets are relatively easy for
people to understand [Catlett, 1991], and rule learn-
ing systems outperform decision tree learners on many
problems [Pagallo and Haussler, 1990; Quinlan, 1987;
Weiss and Indurkhya, 1991]. Rule sets have a nat-
ural and familiar first order version, namely Prolog
predicates, and techniques for learning propositional
rule sets can often be extended to the first-order case
[Quinlan, 1990; Quinlan and Cameron-Jones, 1993].
Certain types of prior knowledge can also be easily
communicated to rule learning systems [Cohen, 1994;
Pazzani and Kibler, 1992].

One weakness with rule learning systems is that they
often scale relatively poorly with the sample size, par-
ticularly on noisy data [Cohen, 1993]. Given the preva-
lence of large noisy datasets in real-world applications,

this problem is of critical importance. The goal of this
paper is to develop propositional rule learning algo-
rithms that perform efficiently on large noisy datasets,
that extend naturally to first-order representations,
and that are competitive in generalization performance
with more mature symbolic learning methods, such
as decision trees. The end product of this effort is
the algorithm RIPPERE, which is competitive with
C4.5rules with respect to error rates, scales nearly lin-
early with the number of training examples, and can
efficiently process noisy datasets containing hundreds
of thousands of examples.

2 PREVIOUS WORK

2.1 COMPLEXITY OF RULE PRUNING

Many of the techniques used in modern rule learn-
ers have been adapted from decision tree learning.
Most widely-used decision tree learning systems use an
overfit-and-simplify learning strategy to handle noisy
data: a hypothesis is formed by first growing a com-
plex tree which “overfits” the data, and then sim-
plifying or pruning the complex tree [Quinlan, 1987;
Mingers, 1989]. Usually (but not always) such pruning
strategies improve error rates on unseen data when the
training data is noisy [Quinlan, 1987; Mingers, 1989;
Schaffer, 1992]. A variety of methods have been
proposed to prune trees, but one effective technique
is reduced error pruning (REP). REP can be easily
adapted to rule learning systems [Pagallo and Haus-
sler, 1990; Brunk and Pazzani, 1991].

In REP for rules, the training data is split into a grow-
ing set and a pruning set. First, an initial rule set
is formed that overfits the growing set, using some
heuristic method. This overlarge rule set is then re-
peatedly simplified by applying one of a set of pruning
operators; typical pruning operators would be to delete
any single condition or any single rule. At each stage
of simplification, the pruning operator chosen is the
one that yields the greatest reduction of error on the



pruning set. Simplification ends when applying any
pruning operator would increase error on the pruning
set.

REP for rules usually does improve generalization per-
formance on noisy data [Pagallo and Haussler, 1990;
Brunk and Pazzani, 1991; Weiss and Indurkhya, 1991;
Cohen, 1993; Fiirnkranz and Widmer, 1994]; however,
it is computationally expensive for large datasets. In
previous work [Cohen, 1993] we showed that REP re-
quires O(n*) time, given sufficiently noisy data; in fact,
even the initial phase of overfitting the training data
requires O(n?) time. We then proposed an alterna-
tive overfit-and-simplify method called Grow that is
competitive with REP with respect to error rates, and
was an order of magnitude faster on a set of benchmark
problems.

We also showed that Grow was asymptotically faster
than REP on random data—if one assumes that
Grow’s hypothesis i1s approximately the same size as
the target concept. However, Cameron-Jones [1994]
later showed that Grow systematically overfits the tar-
get concept on noisy data. This has an adverse effect
on Grow’s time complexity and as a result Grow also
requires O(n*) time asymptotically.

In another response to the inefficiency of REP,
Fiirnkranz and Widmer [1994] proposed a novel learn-
ing algorithm called incremental reduced error pruning
(IREP). IREP was shown experimentally to be com-
petitive with both REP and Grow with respect to error
rates, and much faster than either; in fact, on 18 of 20
benchmark problems, IREP was faster than the initial
step of overfitting the data.

In this paper, we will take as our point of departure
the promising results obtained by Furnkranz and Wid-
mer with the TREP algorithm. Our initial goal was
simply to replicate their results, to evaluate IREP on
a broader set of benchmarks, and to compare IREP
to more mature tree and rule induction methods. In
the course of doing this, we discovered that IREP’s
generalization performance could be considerably im-
proved, without greatly affecting its computational ef-
ficiency. In the remainder of the paper we will describe
our implementation of the original IREP algorithm,
and give evidence that it affords room for improve-
ment. We will then outline three modifications: a new
metric for guiding its pruning phase, a new stopping
condition, and a technique for “optimizing” the rules
learned by IREP. Taken together these modifications
give generalization performance that is comparable to
C4.5 and C4.5rules [Quinlan, 1994] on a large set of di-
verse benchmarks. The modified learning algorithm,
however, still scales well with the number of training

procedure TREP(Pos,Neg)
begin
Ruleset := 0
while Pos# (§ do
/* grow and prune a new rule */
split (Pos,Neg) into (GrowPos,GrowNeg)
and (PrunePos,PruneNeg)
Rule := GrowRule(GrowPos,GrowNeg)
Rule := PruneRule(Rule,PrunePos,PruneNeg)
if the error rate of Rule on
(PrunePos,PruneNeg) exceeds 50% then
return Ruleset
else
add Rule to Ruleset
remove examples covered by Rule
from (Pos,Neg)
endif
endwhile
return Ruleset
end

Figure 1: The TREP algorithm

examples. The current implementation can efficiently
handle training sets of several hundred thousand ex-
amples.

2.2 INCREMENTAL REDUCED ERROR
PRUNING

The TREP rule-learning algorithm is described in de-
tail by Fiirnkranz and Widmer [1994], but we will sum-
marize it below. IREP tightly integrates reduced error
pruning with a separate-and-conquer rule learning al-
gorithm. Figure 1 presents a two-class version of this
algorithm. (In the two-class Boolean case a “rule” is
simply a conjunction of features, and a “rule set” is a
DNF formula.) Like a standard separate-and-conquer
algorithm, IREP builds up a rule set in a greedy fash-
ion, one rule at a time. After a rule is found, all exam-
ples covered by the rule (both positive and negative)
are deleted. This process is repeated until there are
no positive examples, or until the rule found by IREP
has an unacceptably large error rate.

In order to build a rule, IREP uses the following strat-
egy. First, the uncovered examples are randomly par-
titioned into two subsets, a growing set and a pruning
set. In our implementation, the growing set contains
2/3 of the examples.

Next, a rule is “grown”. Our implementation of
GrowRule is a propositional version of FOIL [Quinlan,



1990; Quinlan and Cameron-Jones, 1993]. It begins
with an empty conjunction of conditions, and consid-
ers adding to this any condition of the form A, = v,
A, < 8, or A. > 0, where A, is a nominal attribute
and v is a legal value for A, , or A, is a continuous
variable and 6 is some value for A, that occurs in the
training data. GrowRule repeatedly adds the condi-
tion that maximizes FOIL’s information gain criterion
until the rule covers no negative examples from the
growing dataset.

After growing a rule, the rule is immediately pruned.
To prune a rule, our implementation considers deleting
any final sequence of conditions from the rule, and
chooses the deletion that maximizes the function

p+ (N —n)

v(Rule, PrunePos, PruneNeg) = PN (1)

where P (respectively N) is the total number of exam-
ples in PrunePos (PruneNeg) and p (n) is the number
of examples in PrunePos (PruneNeg) covered by Rule.
This process is repeated until no deletion improves the
value of v.

The TREP algorithm described above is for two-class
learning problems. Our implementation handles mul-
tiple classes as follows. First, the classes are ordered.
In the experiments described below the ordering is al-
ways 1n increasing order of prevalence—i.e., the order-
ing is C4, ..., Cg where C is the least prevalent class
and C} i1s the most prevalent. Then, IREP is used to
find a rule set that separates C; from the remaining
classes; this is done with a single call to IREP where
PosData contains the examples labeled €7 and Neg-
Data contains the examples labeled Cs, C5, ..., or
Cy. Next, all instances covered by the learned rule set
are removed from the dataset, and IREP is used to
separate Cy from classes C3,...,C%. This process is
repeated until a single class C remains; this class will
be used as the default class.

We also extended the rule learning algorithm to handle
missing attributes as follows: all tests involving the
attribute A are defined to fail on instances for which
the value of A is missing. This encourages the learner
to separate out the positive examples using tests that
are known to succeed.

2.3 DIFFERENCES FROM FURNKRANZ
AND WIDMER’S IREP

This implementation differs from Furnkranz and Wid-
mer’s in several details. In pruning rules, our imple-
mentation allows deletions of any final sequence of con-
ditions, whereas Furnkranz and Widmer’s implemen-
tation allows only deletions of a single final condition.

Our implementation also stops adding rules to a rule
set when a rule is learned that has error rate greater
than 50%, whereas Firnkranz and Widmer’s imple-
mentation stops when the accuracy of the rule is less
than the accuracy of the empty rule.!

More importantly, our implementation supports miss-
ing attributes, numerical variables and multiple
classes. This makes it applicable to a wider range of
benchmark problems.

3 EXPERIMENTS WITH IREP

Experiments with IREP showed that it is indeed fast.
Results for one representative artificial problem? are
summarized in the first graph in Figure 2; the CPU
time needed by C4.5rules is also shown.? The results
are shown on a log-log scale; recall that polynomials
appear as lines on such a plot, with the slope of the line
indicating its degree. C4.5rules scales roughly as the
cube of the number of examples, whereas IREP scales
almost linearly. Extrapolating the curves suggests that
it would require about 79 CPU years for C4.5rules to
process the 500,000 example dataset, which IREP han-
dles in around seven CPU minutes.

Although we have used an artificial concept with an ex-
tremely large number of training examples to demon-
strate these issues, similar performance issues also
arise on natural datasets, as the two smaller graphs
of Figure 2 demonstrate.

For reference, the first graph in Figure 2 also shows
the curves kz® and y = kx log? z. Fiirnkranz and Wid-
mer’s formal analysis of IREP predicts a running time
of O(m log2 m), where m is the number of examples, on

! Actually, Fiirnkranz and Widmer described two prun-
ing algorithms. The first, which they called IREP, prunes
according to Equation 1, and stops when p/(p+n) <
N/(P 4+ N). The second, which they called IREP2, prunes
according to the metric v(Rule, PrunePos, PruneNeg) =
# and stops when p/(p+n) < 1/2. Our experiments
confirmed the conclusion of Furnkranz and Widmer that
IREP generally outperforms IREP2; however, we also dis-
covered that TREP’s performance was noticibly improved
by adopting IREP2’s stopping condition.

2The concept ab V bed V defg with 12 irrelevant bi-
nary attributes, 20% classification noise, and uniformly
distributed examples. CPU time was measured on a MIPS
Irix 5, configured with 8 150 MHz R4400 processors and
1Gb of memory. Since IREP is a randomized algorithm
(because of its random partitioning of the examples) the
curve for IREP is the average of 10 trials.

The time for C4.5rules ignores the time needed to
run C4.5. However, C4.5 is generally much faster than
C4.5rules; on this problem, C4.5 requires less than 400
CPU seconds to handle the 500,000 example dataset. The
run-time of C4.5 is generally comparable to that of IREP.
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Figure 2: CPU times for C4.5rules, IREP, and RIPPER2

any dataset that contains a fixed percentage of classi-
fication noise. Qur results are consistent with this pre-
diction. Analysis similar to Furnkranz and Widmer’s
also predicts the cubic behavior shown by C4.5rules.

Although TREP is efficient, experiments on real-world
datasets showed that the generalization performance
of IREP offered substantial room for improvement. We
compared IREP to C4.5 and C4.5rules on a diverse
set of benchmark problems, summarized in Table 1.
Where a test set associated with the benchmark is indi-
cated, we ran C4.5 and C4.5rules once, and ran IREP
10 times and averaged. Where no test set is indicated,
we ran 10 different 10-fold cross-validations for all the
algorithms and averaged the results. Due to space con-
siderations we will focus on comparisons to C4.5rules,
since it also learns rule sets; however, the performance
of C4.5 and C4.5rules on these datasets was similar.

We used C4.5 Release 6 [Quinlan, 1994], and the most
recent version of C4.5rules [Quinlan, 1995].

The left-hand graph of Figure 3 contains one point for
each benchmark problem, positioned so that IREP’s
error rate is the z-axis position and C4.5rules’ error
rate is the y-axis position. Thus for points below the
line y = x IREP’s performance is inferior to C4.5rules,
and for points above the line IREP’s performance is
better. From the graph one can readily see that IREP
does worse than C4.5rules more often than i1t does bet-
ter; specifically, IREP’s error rate is higher 23 times,
lower 11 times, and the same 3 times.

Of course, it may be that IREP is in fact as likely
to outperform C4.5rules as the converse on problems
from this test suite, and that the won-lost-tie ratio of
11-23-3 is due to random variation in the error esti-



Table 1: The 37 benchmark problems used in the experiments, with size of training and testing sets; number of
classes; number of nominal (n) and continuous (¢) attributes; and a brief description. Starred problems are from
the UC/Irvine Repository.

Name Train Test | Classes Attributes Description

AP1-10 999 — 2 | 85-130n text categorization (10 problems)
audiology * 226 — 24 60n medical diagnosis

bridges1-5x 106 — 2-6 6n  lc | mech. engineering (5 problems)
iris* 150 — 3 4c | flower classification

laborx 57 — 2 8n  8c | labor negotiations

promoters* 106 — 2 5Tn DNA promoter sequences

sonars 208 — 2 60c | sonar signal classification
ticket1-3 556 — 2 78n text categorization (3 problems)
ul 373 — 18 10n text-to-speech subproblem
codingl* 5000 | 15000 2 15n DNA coding sequences

fire 3225 608 8 11c | risk of forest fires

market 3181 1616 2 3n  Tc | market analysis

mushroomx* | 3988 | 4136 2 22n random split of mushroom data
netwk1 2500 1077 2 30c | predict equipment failure

netwk?2 2600 1226 2 3bc | predict equipment failure

ocr 1318 1370 2 576n image classification

segment 1133 1177 7 19n image analysis

splicex 1614 1561 3 60n split of DNA splice-junction data
thyroidx 2514 | 1258 5 22n  7c | medical diagnosis

vidgame 1484 | 1546 2 10n decide if game moves are random
voting# 300 135 2 16n congressional voting records
weather 1000 | 4597 2 3bc | weather prediction

the mushroom dataset—on this benchmark C4.5rules
obtains an error of 0.2% to TREP’s 3.1%.)

mates. Using a nonparametric sign test [Mendenhall
et al., 1981, page 578], one can determine that the
probability of observing a ratio this one-sided would
be just under 0.05 if IREP had a 50/50 chance of bet-
tering C4.5rules on problems in this test suite. We
can thus conclude with 95% confidence that C4.5rules
outperforms IREP on this test suite.*

As an additional point of reference, we also ran propo-
sitional FOIL without any pruning mechanism. The
ratio of the error rate of the hypothesis obtained by
“overfitting” the data with propositional FOIL to the
error rate of C4.5rules is 1.17 excluding the mush-

It is also evident from the graph that IREP seldom
does much better than C4.5rules, and not infrequently
does much worse. It is not obvious how to best aggre-
gate measurements across learning problems, but one
method is to consider the average value of the ratio

error rate of IREP

error rate of C4.5rules

For this set of problems the average of this ratio is
1.13, if one discounts a single extreme outlier; thus on
average IREP’s error rates are about 13% higher than
those of C4.5rules. (This average is 1.52 if one includes

*More precisely, we can conclude that C4.5rules outper-
forms IREP in this sense: if a problem is drawn at random
from this test suite and its error rate is measured as de-
scribed above, then with probability greater than 0.5, the
measured error rate of C4.5rules will be lower than that of

IREP.

room dataset, and 1.14 overall. Finally, we ran IREP2
(also described by Fiirnkranz and Widmer [1994]) and
IREP with Furnkranz and Widmer’s stopping condi-
tion. The average ratio for IREP2 was 1.15 with-
out the mushroom dataset, and 1.14 overall. For
IREP with the more restrictive Furnkranz and Wid-
mer stopping condition, the average ratio was 1.71
without mushroom and 2.08 overall. The best won-
loss-tied record of any of these three systems relative to
C4.5rules was 17-20-0, achieved by propositional FOIL
without pruning. To summarize, on average, all of
the IREP variants performed substantially worse than
C4.5rules, and none of the IREP variants performed
substantially better than simply overfitting the data.

There is also evidence that TREP fails to converge
on some natural datasets. One example is the well-
known KRK-illegal problem [Muggleton et al., 1989;
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Figure 3: Comparison of generalization performances: C4.5rules vs. IREP and RIPPER2.

Quinlan, 1990]. We encoded a propositional version
of this problem, and implemented a data generator.®
Without noise, IREP reliably learns an approximate
theory with an error rate of 0.6% from as few as 100
examples; however, IREP does not improve this error
rate even if as many as 100,000 examples are given.
In contrast C4.5rules reliably produces a perfect the-
ory from only 5000 examples. Artificial examples can
also be constructed which show non-convergence to a
greater extent; for example, IREP obtains an error of
9.5% given anywhere between 100 and 100,000 noise-
free examples of the concept abVacV ade. This is wor-
risome behavior for an algorithm whose main strength
is that it efficiently handles very large numbers of ex-
amples.

4 IMPROVEMENTS TO IREP

Based on our experiments with IREP, we implemented
three modifications to the algorithm: an alternative
metric for assessing the value of rules in the pruning
phase of IREP; a new heuristic for determining when
to stop adding rules to a rule set; and a postpass that
“optimizes” a rule set in an attempt to more closely
approximate conventional (z.e., non-incremental) re-
duced error pruning.

4.1 THE RULE-VALUE METRIC

The occasional failure of IREP to converge as the num-
ber of examples increases can be readily traced to the
metric used to guide pruning (given above in Equa-

50ur propositional encoding is the one that would be
constructed by LINUS [D#eroski and Lavrac, 1991], and
we used a uniform distribution to generate KRK positions.

tion 1). The preferences encoded in this metric are
sometimes highly unintuitive; for instance (assuming
that P and N are fixed) the metric prefers a rule Ry
that covers p; = 2000 positive examples and n; = 1000
negative examples to a rule Ry that covers p; = 1000
examples and n; = 1 negative example; note, however,
that Ry is highly predictive and R; is not. We thus
replaced IREP’s metric with

p—n
p+n

v* (Rule, PrunePos, PruneNeg) =

which seems to have more intuitively satisfying behav-
ior.

4.2 THE STOPPING CONDITION

Our implementation of IREP stops greedily adding
rules to a rule set when the last rule constructed has an
error exceeding 50% on the pruning data. This heuris-
tic often stops too soon given moderate-sized samples;
this is especially true when learning a concept con-
taining many low-coverage rules. Our assessment of
the problem is that for low-coverage rules, the esti-
mate of error afforded by the pruning data has high
variance; thus in learning a series of small rules, there
is a good chance that one of the rules in the series will
have its error rate incorrectly assessed at more than
50%, causing IREP to stop prematurely. Put another
way, IREP seemed to be unduly sensitive to the “small
disjunct problem” [Holte et al., 1989].

Our solution to this problem is the following. After
each rule i1s added, the total description length of the
rule set and the examples i1s computed. The new ver-
sion of IREP stops adding rules when this description
length is more than d bits larger than the smallest de-



scription length obtained so far, or when there are no
more positive examples. In the experiments of this
paper we used d = 64. The rule set is then simplified
by examining each rule in turn (starting with the last
rule added) and deleting rules so as to reduce total
description length.®

Together, the revised rule-value metric and stopping
heuristic substantially improve IREP’s generalization
performance. Unlike the original IREP, the modified
version of IREP (henceforth TREP*) converges KRK-
llegal and the artificial concept abVacV ade. IREP%’s
won-lost-tied record against IREP is 28-8-1; thus with
high confidence (p > 0.992) one can state that IREPx
outperforms IREP on problems from this test suite.
The error ratio to C4.5rules is also reduced from 1.13
(or 1.52, including mushroom) to 1.06 (or 1.04, includ-
ing mushroom.) IREP*’s won-lost-tied record against

C4.5rules 1s 16-21-0.

4.3 RULE OPTIMIZATION

The repeated grow-and-simplify approach used in
IREP can produce results quite different from con-
ventional (non-incremental) reduced error pruning.
One way to possibly improve IREP*’s incremental ap-
proach is to postprocess the rules produced by IREP*
so as to more closely approximate the effect of conven-
tional reduced error pruning. For instance, one could
re-prune each rule so as to minimize the error of the
complete rule set.

After some experimentation we developed the follow-
ing method for “optimizing” a rule set Ri,..., Rk.
Each rule is considered in turn: first Ry, then R,
etc, in the order in which they were learned. For each
rule R;, two alternative rules are constructed. The re-
placement for R; is formed by growing and then prun-
ing a rule R}, where pruning is guided so as to mini-

5To briefly summarize our MDL encoding scheme: the
method used for encoding a set of examples given a theory
is the same as that used in the latest version of C4.5rules
[Quinlan, 1995]. One part of this encoding scheme allows
one to identify a subset of k elements of a known set of n
elements using

. 1 1
S(n,k,p) =kl — — k)l —
(n7 7p) Og2 p + (Tl ) Og2 1 _p

bits, where p is known by the recipient of the message.
Thus we allow ||k|| + S(n, k, k/n) bits to send a rule with
k conditions, where n is the number of possible conditions
that could appear in a rule and ||k|| is the number of bits
needed to send the integer k. As in C4.5rules [Quinlan,
1994, page 53] the estimated number of bits required to
send the theory is multiplied by 0.5 to adjust for possible
redundancy in the attributes.

Table 2: Summary of generalization results

won-loss-tied error ratio

vs C4.5rules to C4.5rules®
IREP? 9-28-0 2.08 1.71 1.93
IREP2 11-25-1 1.15 1.15 1.22
IREP® 11-23-3 1.51 1.13 1.20
IREP* 16-21-0 1.04 1.06 1.09
RIPPER 20-15-2 0.98 1.01 1.03
RIPPER2 21-15-1 0.97 0.99 1.01

“Format: all datasets; all datasets except mushroom; all
datasesets except mushroom and weighting similar datasets
together.

*Using Fiirnkranz and Widmer’s stopping criterion.

©As described in Section 2.3.

mize error of the entire rule set Ry,...,R},..., Ry on

the pruning data. The revision of R; i1s formed anal-
ogously, except that the revision is grown by greedily
adding conditions to R;, rather than the empty rule.
Finally a decision is made as to whether the final the-
ory should include the revised rule, the replacement
rule, or the original rule. This decision is made us-
ing the MDL heuristic.” Optimization is integrated
with IREPx as follows. First, IREPx* is used to ob-
tain an initial rule set. This rule set is next optimized
as described above. Finally rules are added to cover
any remaining positive examples using IREP*. Be-
low, we will call this algorithm RIPPER (for Repeated
Incremental Pruning to Produce Error Reduction.).

Optimization can also be iterated by optimizing the
rule set output by RIPPER and then adding addi-
tional rules using IREPx*; we will call this algorithm
RIPPER2, and in general use RIPPERE for the algo-

rithm that repeatedly optimizes & times.

4.4 GENERALIZATION PERFORMANCE

RIPPER noticibly improves generalization perfor-
mance over IREPx*. Its won-lost-tied record against
TREP* is 28-7-2, a significant improvement (p >
0.9986). The error ratio to C4.5rules is also reduced:
excluding mushroom, the error ratio is 1.06 for IREPx
and 1.01 for RIPPER, and including mushroom, the
error ratio is 1.04 for IREPx and 0.982 for RIPPER.
RIPPER’s won-lost-tied record against C4.5rules is 20-
15-2.

One additional stage of optimization gives some fur-

"More precisely, a variant of R; is evaluated by inserting
it into the rule set and then deleting rules that increase the
total description length of the rules and examples. The
total description length of the examples and the simplified
rule set is then used to compare variants of R;.



ther benefit. RIPPER2 reduces the error ratio to
C4.5rules to 0.995 excluding mushroom, or 0.968
including mushroom, and RIPPER2’s won-lost-tied
against C4.5rules is improved to 21-15-1. RIPPER2
is not statistically significantly better than C4.5rules;
however, RIPPER2 is certainly quite competitive on
the problems in this test suite. To make this concrete,
let ¢ be the probability that RIPPER2’s measured er-
ror rate will be less than or equal to that of C4.5rules
on a problem taken at random from the test suite. The
won-lost-tied record of 21-15-2 means we can be 93%
confident that ¢ is at least 0.5, 95% confident that q
is at least 0.488, and 99% confident that ¢ is at least
0.431.

The right-hand graph in Figure 3 gives a more de-
tailed comparison of the error rates of RIPPER2 and
(C4.5rules, and Table 2 summarizes some of the gener-
alization results given in this section.

One problem with averaging error ratios is that when
the actual error rates are very small, ratios tend to
have extreme values. (This is the reason why we have
reported all averages with and without the mushroom
dataset: for this dataset the actual error rates range
from 0.0% to 3.1% and the ratios range from 0.0 to
17.5.) The following remarks may help reassure read-
ers of the stability of our comparison:

o If groups of similar datasets are weighted
together,® then the average ratio of RIPPER2 to
C4.5rules is 0.957. If mushroom is excluded, then
the weighted average ratio is 1.005.

e If the two largest and the two smallest ratios are
excluded, then the average ratio of RIPPER2 to
C4.5rules is 0.986. (The ratio for mushroom is one
of the four extreme values.)

e The average difference between RIPPER2’s error
rate and C4.5rules’ error rate is -0.1%.

e The won-loss-tied record of RIPPER2 to the C4.5
decision tree learner (with pruning) is 23-12-2.
The average ratio of RIPPER2 to C4.5 with prun-
ing i1s 0.964 with mushroom, and 0.991 without.

4.5 EFFICIENCY OF RIPPERE

Importantly, none of the modifications we have de-
scribed have a major effect on computational effi-
ciency. Figure 2 also shows how RIPPER?2 scales with

8 “Weighting similar datasets together” means that the
ratios for the ten A P datasets, the five bridges datasets, the
three ticket datasets and the two network datasets are each
averaged together before being averaged with the ratios for
the remaining seventeed datasets.

the number of examples on three concepts: one artifi-
cial concept, and two of the larger and noisier natural
datasets in our test suite. The fact that the lines for
RIPPER2 and IREP are parallel shows that the mod-
ifications we have introduced affect only the constant
factors, and not the asymptotic complexity of the al-
gorithm. The constant factors for RIPPER2 are also
still reasonably low: RIPPER2 requires only 61 CPU
minutes to process 500,000 examples of the artificial
concept of Figure 2. RIPPERE is also quite space effi-
cient, as it requires no data structures larger than the
dataset.

In previous work [Cohen, 1993] we sought formal ex-
planations for the efficiency or inefficiencies of REP
and other rule-pruning algorithms. While space does
not permit such an analysis here, we would like to
present some of the intuitions as to why RIPPERE is
so much faster on large noisy datasets.

The basic strategy used by RIPPERE to find a rule-
set that models the data is to first use IREP* to find
an initial model, and then to iteratively improve that
model, using the “optimization” procedure described
in 4.3. This process is efficient because building the
initial model is efficient, because the initial model does
not tend to be large relative to the target concept, and
because the optimization steps only require time linear
in the number of examples and the size of the initial
model.

C4.5rules also constructs an initial model and then
iteratively improves it. However, for C4.5rules, the
initial model is a subset of rules extracted from a un-
pruned decision tree, and the improvement process
greedily deletes or adds single rules in an effort to re-
duce description length. C4.5rules repeats this process
for several different-sized subsets of the total pool of
extracted rules and uses the best ruleset found as its
hypothesis; the subsets it uses are the empty ruleset,
the complete ruleset, and randomly-chosen subsets of

10%, 20%, ..., and 90% of the rules.

Unfortunately, for noisy datasets, the number of rules
extracted from the unpruned decision tree grows as m,
the number of examples. This means that each initial
model (save the empty model) will also be of size pro-
portional to m, and hence if m is sufficiently large,
all of the initial models will be much larger than the
target hypothesis. This means that to build a theory
about the same size as the target concept always re-
quires many (on the order of m) changes to the initial
model, and at each step in the optimization, many (on
the order of m) changes are possible. The improve-
ment process is thus expensive; since it is a greedy
search, it 1s also potentially quite likely to miss finding



the best ruleset.’

In summary, both RIPPERL and C4.5rules start with
an initial model and iteratively improve it using heuris-
tic techniques. However, for large noisy datasets,
RIPPERE generally seems to start with an initial
model that is about the right size, while C4.5rules
starts with an over-large initial model. This means
that RIPPERKE’s search is more efficient. We conjec-
ture also that RIPPERK’s search is also more effective
on large noisy datasets. (RIPPER2 generally seems
to do better compared to C4.5rules on larger datasets;
in particular for datasets with no more than 150 ex-
amples, the average ratio of RIPPER2 to C4.5rules is
1.051, and for datasets with more than 150 examples,
the average ratio of RIPPER2 to C4.5rules is 0.944.)

5 CONCLUSIONS

Incremental reduced error pruning (IREP) is a recent
rule learning algorithm that can efficiently handle large
noisy datasets. In this paper we have presented some
experiments on a large collection of benchmark prob-
lems with an extended implementation of IREP which
allows continuous variables and multiple classes. We
showed that TREP does not perform as well as the
more mature (but also more expensive) rule learning
algorithm C4.5rules.

We also proposed a series of improvements to IREP
that make it extremely competitive with C4.5rules,
without seriously affecting its efficiency. TREPx* in-
corporates a new metric to guide rule pruning and an
MDL-based heuristic for determining how many rules
should be learned. RIPPERE adds to this k iterations
of an optimization step that more closely mimics the
effect of non-incremental reduced error pruning.

IREPx and RIPPERE were shown statistically to be
clear improvements over IREP on problems from our
test suite. RIPPER2 is also extremely competitive
with C4.5rules; in fact on 22 of 37 problems in the
test suite RIPPER2 achieves error rates lower than or
equivalent to those of C4.5rules.

However, on noisy datasets, RIPPERk is much more
efficient than C4.5rules. It scales nearly linearly with
the number of examples in a dataset; in contrast
C4.5rules scales as the cube of the number of examples.
This asymptotic improvement translates to speedups
of several orders of magnitude on problems of modest

°This situation should be contrasted to decision tree
pruning, in which even a large tree can be pruned efficiently
and, in certain senses, optimally; for instance, the pruned
tree with the lowest error on a pruning set can be found in
linear time.

size (up to a few thousand examples), and the ability
to effectively process datasets containing several hun-
dreds of thousands of noisy examples.
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