
RIPPER(1) RIPPER(1)

NAME
ripper − learns a rule set from examples

SYNOPSIS
ripper [options] filestem

DESCRIPTION
Ripper is a program for inducing classification rules from a set of preclassified examples; as such it is
broadly similar to learning methods such as neural nets, nearest neighbor, and decision tree induction sys-
tems such as CART, C4.5 and ID3. The user provides a set of examples, each of which has been labeled
with the appropriateclass. Ripper will then look at the examples and find a set of rules that will predict the
class of later examples.

Ripper has several advantages over other learning techniques.First, ripper’s hypothesis is expressed as a
set of if-then rules.These rules are relatively easy for people to understand; if the ultimate goal is to gain
insight into the data, then ripper is probably a better choice than a neural network learning method, or even
a decision tree induction system like CART. Second, ripper is asymptotically faster than other competitive
rule learning algorithms; this means that it will be much faster on large datasets.Third, ripper allows the
user to specify constraints on the format of the learned if-then rules. If there is some prior knowledge about
the concept to be learned, then these constraints can often lead to more accurate hypotheses. Fourth, ripper
allows attributes to be either nominal, continuous, or "set-valued". Thevalue of a set-valued attribute is a
set of atoms: for example, a set-valued attribute could be used to encode the set of words that appeared in
the body of a document.Recent versions of Ripper also support bag-valued attributes.

OPTIONS TO RIPPER
The sole argument to ripper is afilestemthat determines the name of ripper’s input files. (The input files for
ripper are described below.) The options to ripper have the following meanings.

−c Expect noise-free data.

−n Expect noisy data (the default.)

−knum Estimate error rates with k-fold cross-validation. Thetraining is split into k disjoint partitions,
and the learning algorithm is trained on every collection of k-1, and then tested in the remain-
ing partition.

−l Estimate error rate with leave-one-out cross-validation (ie, N-fold cross-validation where N is
size of training set.)

−vlev Set the trace level ("verbosity") tolev, which must be either 0, 1, 2, or 3.The default is 0.

−aordering
Before learning, ripper first heuristically orders the classes; by one of the following methods:
+freq, order by increasining frequency (the default); -freq, order by decreasing frequency;
given, order classes as in the names file; mdl, use heuristics to guess an optimal ordering;
unordered (see below).

After arranging theclasses ripper finds rules to separate class1 from classes class2, ... classn, then rules to
separate class2 from classes class3, ... classn, and so on.The final class classn will become the default
class. The end result is that rules for a single class will always be grouped together, but rules for classi are
possibly simplified, because they can assume that the class of the example is one of classi, ... classn.If an
example is covered by rules from two or more classes, then this conflict is resolved in favor of the class that
comes first in the ordering.

With the ’-aunordered’ option, ripper will separate each class from the remaining classes, thus ending up
with rules for every class. Conflicts are resolved by deciding in favor of the rule with lowest training-set
error.

−s Read the training data from standard input, rather than from filestem.data.

1

RIPPER(1) RIPPER(1)

−gfilename
Use grammar file filename.gram.

−f filename
Use names file filename.names.

−On Control optimization of rules.Ripper makes n optimization passes over the rules it learns.The
default is n=2.

−Mn Use statistics collected on a class-stratified subsample ofn examples (instead of the entire dataset)
to make certain frequently repeated decisions.For very large datasets, RIPPER using subsamples
of a few hundred or a few thousand will typically produce a slightly inferior ruleset; however, it
will run much more quickly than RIPPER without subsampling.

−In Discretize continuous attributes inton equal-frequency segments. (Ifnum is zero, discretize into
the maximal possible number of segments.) Default is to not discretize continuous values. Dis-
cretization usually speeds up ripper on large datasets with many continuous values, but may cost in
accuracy.

−G Print the grammar and exit. This is sometimes useful when one would like to make a change to the
default grammar.

−N Print a names file and exit. This is sometimes useful when one would like to generate a names file
for use by C4.5.(Ripper can usually infer the types of an attribute from a dataset, so a names file
for Ripper is optional.)

−R Randomize operation. (By default, a fixed random seed is used.)

−!string
Allow or disallow neg ative tests in rules.If the string contains a "s", then negative tests of the
form "attribute !˜ value" for set- and bag- valued attributes will be allowed in rules.(The symbol
"!˜" stands for "does not contain".) If the string contains an "n", then negative tests of the form
"attribute != value" for nominal attributes will be allowed in rules.

−Dn Change the maximum "decompression".

−Sn Simplify the hypothesis more (n>1) or less (n<1).

−L n Change the "loss" ratio, ie the ratio of the cost of a false negative to the cost of a false positive. A
value of n>1 will usually improve recall of the minority classes, and a value of n<1 will usually
improve precision.

−A Add redundant tests to rules.This sometimes improves precision and readability, principly for set-
or bag-valued attributes that contain sets of English words.

−Fn Force each rule to cover at leastn examples.

INPUT FILES
The files read and written by ripper are of the formfilestem.ext wherefilestemis the first and only argument
to ripper. All of ripper input files are free format (i.e. white space is not important.) Anything following a
percent sign character but on the same line is a comment.

Ripper expects to find four files: adata file calledfilestem.datacontaining some preclassified examples, a
test file calledfilestem.testthat contains some additional preclassified examples to be used as test cases, a
names filecalledfilestem.namesdefining the names of the classes and attributes used in the data file, and a
grammar file calledfilestem.gramdefining the rules that are allowed to be used in a hypothesis. Exceptfor
the grammar file, the format for these files is roughly the same as used by C4.5. The formatwill be
described in more detail below. The last three files are optional. If there is no test file ripper will either not
test its learned rule set, or (if directed by the user to do so through the-k or -y options) ripper will use
cross-validation to test its learned rule set.If there is no names file, ripper will assign arbitrary names to the
attributes and classes, and will try to figure out the types of the attributes from the data.If there is no gram-
mar file, ripper will use the default grammar described below.

2

RIPPER(1) RIPPER(1)

Ripper also creates a filefilestem.hypcontaining the ruleset or rulesets it found, in a format that is intended
to be computer-readable.

An example for ripper is described by a fixed set ofattributes. These attributes can be either continuous,
nominal, set-valued, or bag-valued. Continuousattributes have real-number values. Thevalue of a nominal
attribute is one of a fixed set of symbolic values, for example "on, off" or "low, medium, high". The value
of a set- or bag-valued attribute is a set of atoms (rather than a single symbolic value.) Theseattributes, as
well as the classes that are to be predicted, are defined in thenames file.

The names file contains first, a comma-separated list of atoms representing the classes, terminated by a
period. (Anatomcontains only letters, digits, and the underscore character, and must begin with a letter.
Alternatively, an atom is any sequence of characters enclosed in single quotes.)The list of classes is fol-
lowed by a list ofattribute definitions.Each attribute definition consists of the name of the attribute, e.g.
"height" or "sex"; a colon; and either the atomcontinuousif the attribute is continuous, the atomset if the
attribute is set-valued, the atombag if the attribute is bag-valued, the atomsymbolicif the attribute can take
on any symbolic value, or a comma-separated list of atoms representing possible symbolic values of the
attribute, if the attribute is nominal.Finally, every attribute definition must be terminated by a period.

Ripper also supportsignored andsuppressedattributes. Ignoredattributes are completely ignored by the
learning system.To define an ignored attribute, use a declaration of the formattribute_name: ignore. Sup-
pressed attributes are similar, except that while they are not used in Ripper’s hypotheses, the number of val-
ues of the attribute does effect MDL-based pruning.Hence, suppressing an attribute that was not used in a
hypothesis should not change Ripper’s performance in any way. An attribute is "suppressed" by inserting
the keyword suppressedafter the colon in the atrribute’s definition.

Thedata filecontains a set of classified examples. Eachexample is a comma-separated list of attribute val-
ues, followed by an atom indicating the class of the example, followed by a period.(It is usually con-
venient to have one example per line, but this is not required.) Attribute values are given in the same order
that attributes are defined in the names file; most of the usual syntaxes for numbers are supported.Set- and
bag-valued attributes are specified by simply enumerating the elements of the set, separated with whites-
pace. Unknown attributes are indicated with a question mark token.

Examples can also be given a weight, by inserting:w between the class name and the terminating period
(wherew is a real number, the default value for which is one).

Thetest fileis formatted in the same way as the data file.

Finally, the grammar filecontains a description of a context-free grammar, roughly in BNF notation.The
grammar file is optional for ripper, and most users will be probably not want to change the default gram-
mar; however we will describe it here for completeness.The terminal symbols of the grammar are tests on
the values of attributes defined in the names file; each sentence generated by the grammar is thus a
sequence of attribute-value tests.Ripper will read in this grammar and constrain its learning component so
that every rule generated by ripper will have as an antecedent a sequence of attribute-value tests that is a
sentence of the grammar. The grammar thus is a way for the user to guide ripper’s choice of rules.

More specifically, the grammar file contains a series ofgrammar rules.Each grammar rule consists of an
atomicleft-hand sidefollowed by the token "-->" followed by a comma-separated list ofgrammar symbols
followed by a period.A grammar symbolis either a nonterminal symbol (which is simply an atom that
appears on the left-hand side of some grammar rule) or aterminal symbol.A terminal symbol is of the
form attribute op valuewhereattribute is the name of an attribute (e.g. "height") and value is a valid value
for that attribute. Anoperatorop must be one of the tokens "=", "!=", ">=", "<=", "˜" or "!˜". Terminal
symbols of the formattribute op *are also allowed, in which case any possible value is allowed.

The conditionattribute ˜ symbolis used for set- and bag-valued attributes. Theconditionattribute ˜ symbol
is true of an example ifattribute is set-valued andsymbolis contained in the set.The conditionattribute !˜
symbolis true if symbolis not present in the set.For bags, the conditionattribute ˜ symbol__kis true if
attribute contains at leastk instances ofsymbol. The conditionattribute !˜ symbol__kis treated analo-
gously.

Often one will have sev eral grammar rules with the same left-hand side, but different right-hand sides.In

3

RIPPER(1) RIPPER(1)

this case one may use the syntax
LHS --> RHS1 | RHS2 | ... | RHSk

rather than the wordier
LHS --> RHS1
...
LHS --> RHSk

Finally, prefixing a grammar rule with an exclamation point indicates to ripper that sentences generated
using that grammar rule have a lower priority; if possible, ripper will build a hypothesis without using low-
priority sentences.Even lower priorities can be assigned by prefixing grammar rules with a string of two or
more exclamation points.

THE DEFAULT G RAMMAR
When learning rules to predict the class "class", ripper will expect to find some left-hand side of the form
"body_class" to use as the start symbol of the grammar; if this is not present, ripper will use the atom
"body" as the start symbol.If this is not present, ripper will construct the following default grammar:

body --> body_conds.
body_conds --> .
body_conds --> cond,body_conds.
cond --> attr1_cond.
...
cond --> attrk_cond.

whereattr1, ..., attrkare the names of the attributes defined in the names file.If discretization is used, then
for each continuous attributecattr, the default grammar also contains the rules

cattr_cond --> cattr>=t1.
cattr_cond --> cattr<=t1.
...
cattr_cond --> cattr>=tn.
cattr_cond --> cattr<=tn.

where t1, ..., tnare ripper’s discretization of the training data.Otherwise, the grammar will contain the
rules

cattr_cond --> cattr>= ’*’.
cattr_cond --> cattr<= ’*’.

For a nominal attributenattr the default grammar contains the rule

nattr_cond --> nattr = ’*’.

For a set- or bag-valued attributesattr the default grammar contains the rules

sattr_cond --> sattr ˜ ’*’.
sattr_cond --> sattr !˜ ’*’.

If the grammar file is missing or empty, then the default grammar will be used.If the grammar contains
definitions of some but not all of the nonterminal symbols used in the default grammar, they will override
the default definitions.

FILES
ripper
filestem.data (data file)
filestem.names (names file)
filestem.gram (grammar file)
filestem.test (unseen data)
filestem.hyp (learned rules)

Some sample input files are also available from wcohen@research.

4

RIPPER(1) RIPPER(1)

SEE ALSO
The man page forripperaux contains brief descriptions of some additional useful programs for working
with ripper rulesets and/or datasets.

Ripper’s input files are more-or-less compatible with Quinlan’s C4.5tree-learning system.

The papers "Fast efficient rule learning" (Cohen, ML95) and "Learning trees and rules with set-valued fea-
tures" (Cohen, AAAI96) describe the algorithms used in Ripper in more detail.

USING RIPPER TO CLASSIFY TEXT
I am frequently asked about tools to preprocess text so that it can be easily digested by Ripper. I don’t hav e
any tools to distribute, largely because I think it would be hard to have any tool that is sufficiently general
to handle all the necessary cases, but still substantially simpler than a general-purpose text processing lan-
guage like Perl.

My current recommendation in feeding Ripper is to use something like Perl (or whatever suits you) to con-
vert punctuation to white space, and coerce everything to lower case, and then feed the result into Ripper as
a single set (or perhaps bag).If you use sets, it is not necessary to remove duplicate tokens. Becareful to
remove the punctuation symbols percent sign (%), comma (,), colon (:), single quote (’), and period (.), all
of which have special meaning to Ripper. If you want a non-default tokenization, then you must surround
each token with single quotes. Stemming doesn’t seem to make a big difference on the benchmarks I’ve
tried. Coercionto lower case also means that you can safely use any upper-case or mixed-case symbol as
an attribute or class name.

BUGS
Attribute names, attribute values, grammar symbols, and class names are all put in the same name space, so
you can’t use the same symbol for, say, a class name and a possible set value. Thisis awkward when
you’re using set- or bag-valued attributes to handle text.

Ripper doesn’t actually check the range of symbolic attributes for consistency with declaration in the names
file.

The response of ripper to the -S and -L options is sometimes rather abrupt---i.e. small changes can some-
times have drastic consequences.

5

