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Context




Context

Which is the sense of landscape rotation to generate
Dynamic Permutation Problems?



Permutation problems

* Problems whose solutions are represented as permutations.
o:{1,2..n} 2 {1,2...n}
* e: identity permutation



Permutation problems
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* Search space =2 n! permutations.
 Many of them are considered NP-Hard @2
optimisation problem.
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DOPs — Definitions

* Sequence of static problems (instances) linked up by a dynamic rule.

* Problems with a time dependent parameter in the mathematical
expression.

* Time-dependent problems that are solved online, by an algorithm, in
a dynamic way as time goes by.



e
DOPs - Benchmarks

e Continuous domain:

* Moving Peaks
* GDBG

e Combinatorial domain:
e XOR
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XOR

* It generates dynamic problems from any static binary problem.
* Applying an exclusive-or operator modifies the problem.
* [t does not alter the search space =2 it just rotates the fitness landscape.



Benchmark generator - Rotation

* Adapted from the one proposed in

“A Benchmark Generator for Dynamic Permutation-Encoded Problems” (2012). M. Mavrovouniotis.

* Modify the encoding of the problem = modify the location of the solution on
the fitness landscape.
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Benchmark generator - Rotation

* Modify the encoding of the problem using permutation distance
metrics:
e Cayley: minimum number of swaps to convert o into 7.
 Maximum distance: n — 1.
* Kendall’s-t: minimum number of pairwise disagreement between o and .
* Maximum distance:(g).

* Ulam: minimum number of insert operations to transform o into e.
 Maximum distance: n — 1.



Benchmark generator - Rotation

o=3421 e=1234

e Kendall’s-t distance between cand e =5
01=4312 2 4132 > 1432 - 1423 = 1243 > 1234 =¢
* Cayley distance between o and e = 3:
0=3421 > 1423 > 1243 > 1234 =¢
* Ulam distance between o and e = 2:
0=3421 > 1342 > 1234 =e¢



Benchmark generator - Pattern

1. Generate a permutation u.a.r. at given distance and metric (rt,).

2. Compose with the previous permutation.

fleoa) = f(0)S f(m; 0 0)



Benchmark generator - Pattern

1. Generate a permutation u.a.r. at given distance and metric (rt,).

2. Compose with the previous permutation.

fleoo) = f(0) = f(my00) > f(my 0 1y © 0)



Benchmark generator - Pattern

1. Generate a permutation u.a.r. at given distance and metric (rt,).

2. Compose with the previous permutation.

f(e°0)=f(0)c_1>f(ﬂ1°0)c—2>f(ﬂz°7T1°U)”'2§f(ﬂk°”'°”1°0)



Alm

* Limited applicability: quick and straightforward, but not realistic.

Ratify the applicability of the landscape rotation to generate
Dynamic Permutation Problem:s.
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e
Case study

* A dynamic version of the PFSP.
* RKEDA: state-of-the-art on static PFSP.



Flow Shop Scheduling Problem

* A set of n jobs have to be scheduled on m machines.
* Goal: minimise the idle and waiting time.

f(o) = z Co(i)m

e

o = 15324 f(o) = 22




Flow Shop Scheduling Problem
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RKEDA

-----
Evaluate and sort 0.33 0.41 0.58 0.66
‘ Learn/model

Sample model

Random solutions Normalised Respective
Population population J
y
(0.75,0,0.25,0.5,1) 41235
(0.63,0.21,0.34,0.6,0.89) New samples
(0.25,1,0.75,0.5,0) 25431
(0.3,0.57,0.45,0.43,0.14) (0.63,0.21,0.34,0.6,0.89)
(0,0.5,0.25,0.75,1) 13245
(0.07,0.48,0.2,0.83,0.96) B (0.29,0.44,0.39,0.55,0.65)

(0,0.75,1,0.5,0.25) 14532
(0.26,0.38,0.44,0.34,0.27) (0.26,0.45,0.46,0.43,0.51)
(0.69,0.12,0.87,0.5,0.76) (0.5,0,1,0.25,0.75) 31524
\ (0.36,0.67,0.32,0.74,0.76)
Normalise (0.43,0.74,0.42,0.61,0.93)

Normalise -
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RKEDA

Change of the
landscape?

-----
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RKEDA

aRKEDA

New samples

(0.36,0.67,0.32,0.74,0.76)

(0.26,0.45,0.46,0.43,0.51)
(0.43,0.74,0.42,0.61,0.93)
(0.36,0.53,0.43,0.60,0.77)

(0.29,0.44,0.39,0.55,0.65)

Reuse

Change of the
landscape?

New samples

(0.36,0.67,0.32,0.74,0.76)
(0.26,0.45,0.46,0.43,0.51)
(0.43,0.74,0.42,0.61,0.93)
(0.36,0.53,0.43,0.60,0.77)

(0.29,0.44,0.39,0.55,0.65)

Restart

rRKEDA

Random solutions

(0.12,0.88,0.5,0.9,0.56)
(0.56,0.72,0.62,0.82,0.69)
(0.11,0.04,0.02,0.12,0.09)
(0.23,0.98,0.12,0.22,0.85)

(0.72,0.24,0.58,0.03,0.49)
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Experimental setup

Parameters Taillard’s instances*

Benchmarks

Population size: 10n

Truncation size: n 20x5, 20x10 & 20x20:; Number of changes (k): 10
Elitism criteria is used. 50x5, 50x10 & 50x20; Periodically distributed.
Number of samples: 10n 100x5, 100x10 & 100x20. 30 DOPs per instance/metric.
Max. generations: 100nk Limitations:

e Cayley & Ulam: all distances.
* Kendall’s-t:
* n=20 -2 all distances.

Performance measure

Algorithms
8 4 _ 1T fi(best) — Best known * n=50 - from 1 to 150.
aRKEDA & rRKEDA. RPD = Ez Best known - * n=100 - from 1 to 50.
Initial variance: 0.15 i€EG

*Taillard, E. (1993). Benchmarks for basic scheduling problems. European
journal of operational research, 64(2), 278-285.
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Experimental setup

Performance measure

1 .(best) — Best k
ARPDzazfl( est) es nown.

, Best known
LEG

Definition: elusiveness.

Being P a series of static problems, A an algorithm and A" the

restarting version of the algorithm. Then, we say that P is elusive iff
E[m(A4",P) —m(4,P)] <.
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tai50_5_0 - Cayley

tai50_5_0 - Ulam
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Results

Jobs Cayley Kendall’s-t Ulam
20 2 1 2 2 3 3 0 0
50 7 7 12 14 7/ 8 2 1
100 19 15 20 16 19 26 - -
Machines 5 10 20 5 10 20 10 20

Number of times in which aRKEDA outperformed rRKEDA.
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Results

Jobs Cayley Kendall’s-t Ulam
20| 10% 5% 10% 1.05% 1.58% 1.58% 0% 0% 0%
50| 14% 14% 24% 1.14% 0.57% 0.65% 0% 4% 2%
100 | 19% 15% 20% 0.32% 0.38% 0.52% - - -
Machines 5 10 20 5 10 20 5 10 20

Percentage in which the generated problem should be considered DOP.
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Discussion

* Restarting the algorithm best option almost always.
 Surprisingly, only in few cases is beneficial reusing previous knowledge.

Jobs Cayley Kendall’s-t Ulam
20| 10% 5% 10% 1.05% 1.58% 1.58% 0% 0% 0%
50| 14% 14% 24% 1.14% 0.57% 0.65% 0% 4% 2%
100 | 19% 15% 20% 0.32% 0.38% 0.52% - - -
Machines 5 10 20 5 10 20 5 10 20




Discussion

* The increase of the problem size extends the preference of using the

aRKEDA for slightly changing problem.
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Discussion

* The increase of the machines produces a chaotic behaviour of
aRKEDA.

* Kendall’s-t and Ulam metrics = arc shape on 20x20.
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O
Discussion

4%

Ulam metric has aggressive behaviour for rotation. Why?
0=3421 > 1342 > 1234 =¢



O
Discussion

4%

Ulam metric has aggressive behaviour for rotation. Why?
0=3421-> 1342 — 1234 =¢



Conclusions

The definition of Dynamic Permutation Problems should be extended,
specially concerning the severity of the change and the algorithm.



Conclusions

Which is the sense of landscape rotation to generate
Dynamic Permutation Problems?
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Conclusions

Rotation of the landscape’is nhot an accurate method to
simulate Dynamic Permutation Problems.
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