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Permutation problems

• Problems whose solutions are represented as permutations.

σ: {1,2…n}  {1,2…n}

• e: identity permutation
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Permutation problems

• Search space  n! permutations.
• Many of them are considered NP-Hard 

optimisation problem.

https://upload.wikimedia.org/wikipedia/commons/3/3e/Permutohedron.svg

3



DOPs – Definitions

• Sequence of static problems (instances) linked up by a dynamic rule.

• Problems with a time dependent parameter in the mathematical 
expression.

• Time-dependent problems that are solved online, by an algorithm, in 
a dynamic way as time goes by.
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DOPs - Benchmarks

• Continuous domain:
• Moving Peaks

• GDBG

• Combinatorial domain:
• XOR
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XOR

• It generates dynamic problems from any static binary problem.

• Applying an exclusive-or operator modifies the problem.

• It does not alter the search space  it just rotates the fitness landscape.
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Benchmark generator - Rotation

• Adapted from the one proposed in
“A Benchmark Generator for Dynamic Permutation-Encoded Problems” (2012). M. Mavrovouniotis.

• Modify the encoding of the problem modify the location of the solution on 
the fitness landscape.

https://upload.wikimedia.org/wikipedia/commons/3/3e/Permutohedron.svg
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Benchmark generator - Rotation

• Modify the encoding of the problem using permutation distance 
metrics:
• Cayley: minimum number of swaps to convert σ into π.

• Maximum distance: n – 1.

• Kendall’s-τ: minimum number of pairwise disagreement between σ and π.
• Maximum distance: 𝑛

2
.

• Ulam: minimum number of insert operations to transform σ into e.
• Maximum distance: n – 1.



Benchmark generator - Rotation

σ = 3421 e = 1234

• Kendall’s-τ distance between σ and e = 5

σ-1 = 4312  4132  1432 1423  1243  1234 = e

• Cayley distance between σ and e = 3: 

σ = 3421 1423  1243 1234 = e

• Ulam distance between σ and e = 2:

σ = 3421 1342  1234 = e



Benchmark generator - Pattern

1. Generate a permutation u.a.r. at given distance and metric (πi).

2. Compose with the previous permutation.

𝑓 𝑒 ∘ 𝜎 = 𝑓 𝜎  
𝑐1
𝑓 𝜋1 ∘ 𝜎
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Benchmark generator - Pattern

1. Generate a permutation u.a.r. at given distance and metric (πi).

2. Compose with the previous permutation.

𝑓 𝑒 ∘ 𝜎 = 𝑓 𝜎  
𝑐1
𝑓 𝜋1 ∘ 𝜎  

𝑐2
𝑓 𝜋2 ∘ 𝜋1 ∘ 𝜎 ⋯ 

𝑐𝑘
𝑓 𝜋𝑘 ∘ ⋯ ∘ 𝜋1 ∘ 𝜎
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Aim

• Limited applicability: quick and straightforward, but not realistic.

Ratify the applicability of the landscape rotation to generate 

Dynamic Permutation Problems.
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Case study

• A dynamic version of the PFSP.

• RKEDA: state-of-the-art on static PFSP.
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Flow Shop Scheduling Problem

• A set of n jobs have to be scheduled on m machines. 
• Goal: minimise the idle and waiting time. 

𝑓 𝜎 = 

𝑖∈𝑛

𝐶𝜎 𝑖 ,𝑚

𝐉𝟏 𝐉𝟐 𝐉𝟑 𝐉𝟒 𝐉𝟓 𝜎 = 15324 𝑓(𝜎) = 22

M1

M2

M3
10 200
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Flow Shop Scheduling Problem

Cayley = 1
𝐉𝟏 𝐉𝟐 𝐉𝟑 𝐉𝟒 𝐉𝟓 𝜎 = 15324 𝑓(𝜎) = 𝟐𝟑

M1

M2

M3

10 200 18

𝐉𝟏 𝐉𝟐 𝐉𝟑 𝐉𝟒 𝐉𝟓 𝜎 = 15324 𝑓(𝜎) = 22

M1

M2

M3
10 200



RKEDA

1 2 3 4 5

0.33 0.5 0.41 0.58 0.66

New samples

(0.63,0.21,0.34,0.6,0.89)

(0.29,0.44,0.39,0.55,0.65)

(0.26,0.45,0.46,0.43,0.51)

(0.36,0.67,0.32,0.74,0.76)

(0.43,0.74,0.42,0.61,0.93)

Random solutions

(0.63,0.21,0.34,0.6,0.89)

(0.3,0.57,0.45,0.43,0.14)

(0.07,0.48,0.2,0.83,0.96)

(0.26,0.38,0.44,0.34,0.27)

(0.69,0.12,0.87,0.5,0.76)

Learn model

Evaluate and sort

Sample model

Normalise

Normalised
Population

Respective 
population

(0.75,0,0.25,0.5,1) 41235

(0.25,1,0.75,0.5,0) 25431

(0,0.5,0.25,0.75,1) 13245

(0,0.75,1,0.5,0.25) 14532

(0.5,0,1,0.25,0.75) 31524

Normalise
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RKEDA

aRKEDA rRKEDA

New samples

(0.36,0.67,0.32,0.74,0.76)

(0.26,0.45,0.46,0.43,0.51)

(0.43,0.74,0.42,0.61,0.93)

(0.36,0.53,0.43,0.60,0.77)

(0.29,0.44,0.39,0.55,0.65)

Random solutions

(0.12,0.88,0.5,0.9,0.56)

(0.56,0.72,0.62,0.82,0.69)

(0.11,0.04,0.02,0.12,0.09)

(0.23,0.98,0.12,0.22,0.85)

(0.72,0.24,0.58,0.03,0.49)

New samples

(0.36,0.67,0.32,0.74,0.76)

(0.26,0.45,0.46,0.43,0.51)

(0.43,0.74,0.42,0.61,0.93)

(0.36,0.53,0.43,0.60,0.77)

(0.29,0.44,0.39,0.55,0.65)

Change of the 
landscape?

Reuse Restart
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Experimental setup

Parameters

Population size: 10n
Truncation size: n
Elitism criteria is used.
Number of samples: 10n
Max. generations: 100nk

Algorithms

aRKEDA & rRKEDA.
Initial variance: 0.15

Taillard’s instances*

20x5, 20x10 & 20x20;
50x5, 50x10 & 50x20;

100x5, 100x10 & 100x20.

Performance measure

𝐴𝑅𝑃𝐷 =
1

𝐺
 

𝑖∈𝐺

𝑓𝑖 𝑏𝑒𝑠𝑡 − 𝐵𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛

𝐵𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛
.

Benchmarks

Number of changes (k): 10
Periodically distributed.
30 DOPs per instance/metric.
Limitations:
• Cayley & Ulam: all distances.
• Kendall’s-τ:

• n=20 all distances.
• n=50 from 1 to 150.
• n=100 from 1 to 50.

*Taillard, E. (1993). Benchmarks for basic scheduling problems. European 

journal of operational research, 64(2), 278-285.
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Definition: elusiveness.

Being P a series of static problems, A an algorithm and Ar the 
restarting version of the algorithm. Then, we say that P is elusive iff

𝑬 𝒎 𝑨𝒓, 𝑷 −𝒎 𝑨,𝑷 ≤ 𝝉.
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Results

Jobs Cayley Kendall’s-τ Ulam

20 2 1 2 2 3 3 0 0 0

50 7 7 12 14 7 8 0 2 1

100 19 15 20 16 19 26 - - -

Machines 5 10 20 5 10 20 5 10 20

Number of times in which aRKEDA outperformed rRKEDA.
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Results

Jobs Cayley Kendall’s-τ Ulam

20 10% 5% 10% 1.05% 1.58% 1.58% 0% 0% 0%

50 14% 14% 24% 1.14% 0.57% 0.65% 0% 4% 2%

100 19% 15% 20% 0.32% 0.38% 0.52% - - -

Machines 5 10 20 5 10 20 5 10 20

Percentage in which the generated problem should be considered DOP.
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Discussion

• Restarting the algorithm best option almost always.
• Surprisingly, only in few cases is beneficial reusing previous knowledge.

Jobs Cayley Kendall’s-τ Ulam

20 10% 5% 10% 1.05% 1.58% 1.58% 0% 0% 0%

50 14% 14% 24% 1.14% 0.57% 0.65% 0% 4% 2%

100 19% 15% 20% 0.32% 0.38% 0.52% - - -

Machines 5 10 20 5 10 20 5 10 20
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Discussion

• The increase of the problem size extends the preference of using the 
aRKEDA for slightly changing problem.
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Discussion

• The increase of the machines produces a chaotic behaviour of 
aRKEDA.
• Kendall’s-τ and Ulam metrics  arc shape on 20x20.
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Discussion

Ulam metric has aggressive behaviour for rotation. Why?

σ = 3421 1342  1234 = e

Jobs Ulam

20 0% 0% 0%

50 0% 4% 2%

100 - - -

Machines 5 10 20
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Conclusions

The definition of Dynamic Permutation Problems should be extended, 
specially concerning the severity of the change and the algorithm.
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Rotation of the landscape is not an accurate method to
simulate Dynamic Permutation Problems.
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Permutohedron

https://en.wikipedia.org/wiki/Permutohedron#/media/File:Omnitruncated_5Cell
_as_Permutohedron.svg

https://commons.wikimedia.org/wiki/File:Permutohedron_order_3.svg



Kendall’s-τ

Pairs Disagreements

1 ≺ 2 X

1 ≺ 3 X

1 ≺ 4 X

2 ≺ 3 X

2 ≺ 4 X

3 ≺ 4

σ = 3421 e = 1234

5

𝜎−1 = 4312 
1
4132 

2
1432 

3
1423 

4
1243 

5
1234 = e


