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Introduction



Knowledge-based metaheuristics

An ongoing project ”Models and methods for utilizing domain

knowledge in metaheuristic methods for real-life optimization

problems”

• Funded by the Polish National Science Centre

We are interested in:

• Incorporating practitioner’s knowledge, know-how, good practices in

metaheuristics.

• Extracting useful information from solutions found by metaheuristics.

• Solving multiple instances of optimization problems transferring

information from one to another (a.k.a. Knowledge Transfer)

• Combining machine learning with optimization.
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The Inventory Routing Problem (IRP)

The Inventory Routing Problem (IRP)

• An extension of the Vehicle Routing Problem (VRP)

• Routing optimization is performed jointly with inventory manage-

ment optimization.

• A solution of the IRP is a schedule for a planning horizon of T

days for a distribution of a single product provided by a single

supplier to a number of retailers along with a list of routes used to

deliver the product on consecutive days.

• The VRP, as a generalization of the TSP, is an NP-hard problem,

and, naturally, so is the IRP.
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Problem Definition



Problem Definition

• Delivering a single product from a supplier facility S to a given

number n of retailer facilities R1,R2, . . . ,Rn by a fleet of v vehicles

of a fixed capacity C .

• The supplier S produces p0 items of the product each day. Each

retailer Ri , for i = 1, 2, . . . , n, sells pi items of the product each day.

• The supplier has a local inventory, where the product may be stored,

with an initial level of l
(init)
0 items at the date t = 0 and with lower

and upper limits for the inventory level equal to l
(min)
0 and l

(max)
0 ,

respectively.

• Storing the product in the supplier inventory is charged with an

inventory cost c0 per item per day.

• Similarly, each retailer Ri , for i = 1, 2, . . . , n, has a local inventory, ...
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Problem Definition

The IRP aims at determining the plan of supplying the retailers

minimizing the total cost, i.e. for a given planning horizon T , for each

date t = 1, 2, . . . ,T :

• the retailers to supply at the date t must be chosen,

• an amount of the product to deliver to each of these retailers must

be determined,

• the route of each supplying vehicle must be defined.
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Problem Definition

The solution is a pair (R,Q), where:

• R = (r1, r2, . . . , rT ) is a list of routes in the successive dates

t = 1, 2, . . . ,T (each route is a permutation of a certain subset of

retailers),

• Q ∈ Rn×T is a matrix of column vectors q1,q2, . . . ,qT defining the

quantities to deliver to each retailer in the successive dates

t = 1, 2, . . . ,T (if a retailer is not included in the route at the date

t, the corresponding quantity encoded in the vector rt equals 0).
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Problem Definition

The cost of the solution is the sum of the inventory costs and the

transportation costs, i.e.

cost(solution) =
T+1∑
t=1

(l t0 · c0 +
n∑

i=1

l ti · ci ) +
T∑
t=1

transportation-costt , (1)

where

• l t0 denotes the inventory level of the supplier S at the date t,

• l ti denotes the inventory level of the retailer Ri at the date t,

• transportation-costt denotes the transportation costs for the

supplying vehicle at the date t. These costs are determined by the

route of the vehicle and a given distance matrix defining the

transportation costs between each two facilities.
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IRP - Example

An example of a definition of an IRP instance - levels of inventories

S R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
min inv. level 0 0 0 0 0 0 0 0 0 0 0

max inv. level - 174 28 258 150 126 138 237 129 154 189

inv. cost 0.03 0.02 0.03 0.03 0.02 0.02 0.03 0.04 0.04 0.02 0.04

production 635 - - - - - - - - - -

consumption - 87 14 86 75 42 69 79 43 77 63

... and a part of the solution: delivery schedule Q ∈ Rn×T

S R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
inv. at t = 0 1583 87 14 172 75 84 69 158 86 77 126

inv. at t = 1 2003 0 0 86 75 42 0 79 43 77 126

inv. at t = 2 1721 87 14 172 0 84 69 158 86 77 63

inv. at t = 3 2206 0 0 86 75 42 0 79 43 0 0

S - the supplier

Ri - retailers
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IRP - Example

Another part of the solution is the list of the routes R = (r1, r2, . . . , rT ).
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Knowledge reuse in the IRP

Solving the IRP involves solving multiple instances of the TSP (one for

each day within the planning horizon T ).

The TSP instances for different days are related, even though they

may include different retailers.

Question:

Is it possible to transfer knowledge from the TSP for all retailers to

these subproblems?

An idea pursued in this paper:

Store information in the form of a Local Optima Network (LON) for

the TSP for all retailers.

Use this LON when solving the subproblems.
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Local Optima Networks



The Lin-Kernighan (LK) heuristic

The Lin-Kernighan (LK) heuristic is a local search algorithm based on

k-exchange moves.

• Starts with an initial route p.

• Removes k different, randomly chosen, segments from the route

• Reconnects the broken route so that it is valid again (this is the

k-exchange move)

• It repeats the procedure a given number of iterations

• A candidate solution p is k-opt if there are no k-exchange moves

that improve it.

Figure 2: A 2-exchange move
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The Chained Lin-Kernighan (CLK) local search

The Chained Lin-Kernighan (CLK) is an iterative local search algorithm

based on LK.

• Starts with an initial candidate solution p

• Improves p using the LK heuristic producing a base candidate

solution p̂ = LK(p)

• Randomly mutates the base candidate solution p̂ with a type of

4-exchange perturbation (a.k.a. a double-bridge), creating

a candidate solution q.

• Improves q using the LK heuristic producing a new candidate

solution q̂ = LK(q).

• It applies the procedure again to the new candidate solution q̂ as the

base candidate solution if it outperforms the old base candidate

solution p̂, or to the old base candidate solution p̂ otherwise.

• It stops after a given number of iterations.
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Local Optima Networks

In general:

• Local Optima Network (LON) is a graph L = (V ,E ), where each

node v ∈ V is a local optimum, and each edge e ∈ E represents

a possibility of passing from one local optimum to another.

In this paper:

• Local optima (LON nodes) are determined by applying the

Lin-Kernighan (LK) heuristic.

• LON edges are found by applying the Chained Lin-Kernighan (CLK)

local search to the local optima.
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Local Optima Networks

Figure 3: How LONs are generated for the TSP using the LK and CLK

heuristics. The LON is L = (V ,E), q̂ = CLK(p)

.For a more detailed (and formal) discussion please refer to:

P. McMenemy, N. Veerapen, G. Ochoa, ”How Perturbation Strength Shapes

the Global Structure of TSP Fitness Landscapes”, in: A. Liefooghe and M.

López-Ibáñez (Eds.), EvoCOP 2018, LNCS 10782, pp. 34–49, 2018.
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Examples

Figure 4: The LON with 200 most frequent local optima (out of 8000

discovered by the CLK). Large dots denote sink nodes, i.e. the local optima

that CLK could not improve using the iterative local search; red color highlights

the global optimum and the local optima transformed into it in the CLK process
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Examples

Figure 5: The LON with 400 most frequent local optima (out of 8000

discovered by the CLK). Large dots denote sink nodes, i.e. the local optima

that CLK could not improve using the iterative local search; red color highlights

the global optimum and the local optima transformed into it in the CLK process
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Some statistics

How often are the local optima found by the CLK and how often are the

edges followed?
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Figure 6: The frequencies of local optima in the CLK
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Figure 7: The frequencies of edges in CLK
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Some statistics

Better local optima are more frequently found by the CLK.
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Some statistics
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Figure 9: Transition Probability Matrix (for 40 most frequent local optima)
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Evolutionary Algorithm



Overview

In this paper the Inventory Routing Problem is solved using an

evolutionary algorithm with:

• population initialization based on practitioner’s knowledge

• roulette wheel parent selection

• problem-specific recombination operator

• two problem-specific mutation operators: changing the dates when

retailers are supplied and changing the order in which retailers are

visited

• LON-based solution improvement operator

• elitist population reduction
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Search Space

• A solution to the IRP is a pair (R,Q).

• A solutions in the EA is the list of routes R only.

• The quantities Q are defined by a supplying policy, the up-to-level

supplying policy, that assumes that each retailer is always supplied

up to the upper level of its inventory (or not supplied at all, if it is

not included in the route of any vehicle for the considered date).
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LON-EA-IRP

P1 = Init-Population(N)

for t = 1→ τ do

Evaluate(Pt)

P ′t = ∅
for k = 1→ M do

Parents = Parent-Selection(Pt)

Offsprings = Recombination(Parents)

Offsprings = SA-LON(Offsprings)

Offsprings = Mut-DM(Offsprings)

Offsprings = Mut-OM(Offsprings)

P ′t = P ′t ∪ {Offsprings}
end for

Pt+1 = Replacement(Pt ∪ P ′t)

end for
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Initial Population

In the IRP it is difficult to obtain initial, feasible solutions.

We use the following two-step procedure:

• Create a base solution according to a strategy commonly used by

practitioners which tries to supply each retailer on the latest date

possible before its inventory runs out. The up-to-level supplying

policy is used, i.e. the retailer is always supplied up to the upper

level of its inventory.

• Construct the required number of solutions by mutating the base

solution using a mutation operator which preserves feasibility. This

operator tries to move the retailers to earlier dates.
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Recombination

• The recombination operator takes T parent solutions

R(1),R(2), . . . ,R(T ), where T is the planning horizon, and produces

one offspring solution R̃ in such a way that

r̃i = r
(πi )
i , for i = 1, 2, . . . ,T , (2)

where π = (π1, π2, . . . , πT ) is a random permutation.

• If such an offspring solution is not feasible, the procedure is repeated

anew, up to κR times, otherwise the offspring solution is a copy of a

randomly chosen parent solution.
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Simulated Annealing with LON Operator

The SA-LON solution improvement operator:

• Takes one solution R

• Improves all its routes ri , for i = 1, 2, . . . ,T . For each route ri the

SA-LON operator performs the following operations:

• Transforms the LON L for a TSP involving all the retailers into

a LON Li for a TSP involving the retailers in ri .

• Uses Simulated Annealing in which the moves are based on the

information contained in the Local Optima Network Li .
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Simulated Annealing with LON Operator

Transforming the LON L for a TSP involving all the retailers into a LON

Li for a TSP involving the retailers in ri :

• Map each node p ∈ L to the node p̃ by removing from the route p

the retailers not visited in the route ri .

• Map the edges accordingly, recalculating the probabilities P(q|p).

The Simulated Annealing uses the information contained in the LON Li

by moving from the solution p to the solution q with the probability

P(q|p).
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Date-Changing Mutation

• Take a randomly chosen date t and a randomly chosen retailer R

from the route rt .

• Remove R from the route rt and all the routes for all the further

dates.

• Take a randomly chosen date t ′ < t.

• Assign R to service at the date t ′ and added to the route rt′ in a

greedy manner.

• If such a modified solution is not feasible, the procedure is repeated

anew, up to κM times, otherwise the original solution remains

unchanged.
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Order-Changing Mutation

• It takes one solution R and aims at optimizing the routes without

changing the assignment of the retailers to the routes.

• It analyzes each route and tries to change the order of the retailers

on the route.

• For short routes of no more than ρ retailers, each permutation of the

retailers is evaluated.

• For longer routes, ρ! random permutations of the retailers are

evaluated.

• If an evaluated route outperforms the original one, the original route

is replaced with the best found alternative.
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Experiments

Table 1: List of benchmark IRP instances used in the experiments

n = 5 5 instances with the planning horizon T = 3

and the inventory costs between 0.01 and 0.05

n = 10 5 instances with the planning horizon T = 3

and the inventory costs between 0.01 and 0.05

n = 15 5 instances with the planning horizon T = 3

and the inventory costs between 0.01 and 0.05

n = 20 5 instances with the planning horizon T = 3

and the inventory costs between 0.01 and 0.05

30



Experiments

Table 2: Parameter settings of the LON-EA-IRP algorithm

Description Symbol Value

Population size N 1000

Number of offspring solutions M 2000

Number of iterations T 100

Replacement parameter κR 10

DM mutation parameter κM 5

OM mutation parameter ρ 6
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Experiments
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Experiments

benchmark optimum
best of

10 runs (fb )

mean of

10 runs (fm)
fb − fopt fm − fopt

abs1n5 1281.6800 1281.6800 1281.6800 0.0000 0.0000

abs2n5 1176.6300 1176.6300 1176.6300 0.0000 0.0000

abs3n5 2020.6500 2020.6500 2020.6500 0.0000 0.0000

abs4n5 1449.4300 1449.4300 1449.4300 0.0000 0.0000

abs5n5 1165.4000 1165.4000 1165.4000 0.0000 0.0000

abs1n10 2167.3700 2167.3700 2167.3700 0.0000 0.0000

abs2n10 2510.1299 2510.1300 2510.1300 0.0001 0.0001

abs3n10 2099.6799 2099.6800 2099.6800 0.0001 0.0001

abs4n10 2188.0100 2188.0100 2188.0100 0.0000 0.0000

abs5n10 2178.1500 2178.1500 2178.1500 0.0000 0.0000

abs1n15 2236.5300 2236.5300 2236.5300 0.0000 0.0000

abs2n15 2506.2100 2506.2100 2506.2100 0.0000 0.0000

abs3n15 2841.0600 2841.0600 2854.2600 0.0000 13.2000

abs4n15 2430.0700 2430.0700 2439.4440 0.0000 9.3740

abs5n15 2453.5000 2453.5000 2464.0390 0.0000 10.5390

abs1n20 2793.2900 2793.2900 2793.3440 0.0000 0.0540

abs2n20 2799.9000 2799.9000 2821.1572 0.0000 21.2572

abs3n20 3101.6000 3101.6000 3102.6296 0.0000 1.0296

abs4n20 3239.3100 3239.3100 3242.5289 0.0000 3.2189

abs5n20 3330.9900 3330.9900 3334.2789 0.0000 3.2890
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Conclusions and Perspectives

• This paper proposes an evolutionary approach to the IRP.

• Practitioner’s knowledge is necessary in solving the IRP for avoiding

infeasibility.

• The results proved that LON-EA-IRP was capable of solving small

IRP instances.

• More effort is needed to optimize routes, especially long routes in

larger IRP instances.

• Further research concerns incorporating mechanisms to optimize

routes by internal simulated annealing or internal genetic algorithm.
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